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ABSTRACT A model was developed which can simulate both the transient and steady-
state mechanical behavior of contracting skeletal striated muscle. Thick filament
cross-bridges undergo cycles of attachment to and detachment from thin filament sites.
Cross-bridges can attach only while in the first of two stable states. Force is then
generated by a transition to the second state after which detachment can occur. Cross-
bridges are assumed to be connected to the thin filaments by an elastic element whose
extension or compression influences the rate constants for attachment, detachment,
and changes between states. The model was programmed for a digital computer and
attempts made to match both the transient and the steady-state responses of the model
to that of real muscle in two basic types of experiment: force response to sudden
change in length and length response to sudden reduction of load from PO. Values for
rate constants and other parameters were chosen to try to match the model's output to
results from real muscles, while at the same time trying to accommodate structural and
biochemical information.

INTRODUCTION

The model for muscle contraction proposed by A. F. Huxley (1957) based on a sliding
filament mechanism (A. F. Huxley, 1971; H. E. Huxley, 1971) has been of great value
because it provided relatively simple explanations for many of the characteristic fea-
tures of contraction in skeletal striated muscles (see for examples and discussion:
Julian, 1969; Julian and Sollins, 1972; Podolsky et al., 1969; Mommaerts, 1969). Re-
cently, however, Huxley and Simmons (1972) pointed out that the original Huxley
(1957) model would not account for the very early transient responses observed when
the length or the load is suddenly altered during a contraction. (See also Podolsky
and Nolan, 1972, for an attempt to modify the original Huxley model so that it will
produce force transients following sudden length changes similar to those observed in
real muscles.) Huxley and Simmons (1972) also discuss other aspects of the original
1957 scheme which are now in need of revision.
Huxley and Simmons (1971) have already proposed a mechanism to account for the

very early quick phases of tension recovery following sudden length changes, which
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they were the first to record from contracting muscles. This paper will show that it
is possible to construct a hybrid model based on the original Huxley (1957) model and
the new scheme put forth by Huxley and Simmons (1971). It will be shown that this
hybrid model can account for much of the transient and steady-state mechanical
behavior observed in tetanically contracting skeletal striated muscles. A short descrip-
tion of this hybrid model has already been published (Julian et al., 1972).

DESCRIPTION OF THE MODEL AND COMPUTATIONAL METHODS

Some of the features from the Huxley (1957) model and from the Huxley and Simmons
(1971) model that are combined in the present model will be described qualitatively
here before dealing with the mathematics.
Although it is possible to imagine many different ways of fitting the model into the

microscopic and molecular structure of a skeletal muscle fiber, the following arrange-
ment seems most natural (see also Huxley and Simmons, 1971). An elastic element
is assumed to be in the S2 subfragment of heavy meromyosin. The length-force
characteristic of this element is assumed to be linear for both positive and negative
(compressive) forces. The importance of this assumption will be seen later. The elastic
element connects the cross-bridge head, or S, subfragment, to the thick filament. The
cross-bridge heads can attach to the actin sites on the thin filaments and undergo
changes in configuration (or "flips") between the a and ,B states (see Fig. 1). When a
cross-bridge attaches, the head must be in the a position and there can be no force in
the elastic element. After attachment, force can be produced either by a flip of the
cross-bridge to the a position or by motion of the filaments relative to each other (or
both). It is further assumed that cross-bridges can detach from the thin filament only
while in the ,B state. The rate constant for this process is dependent upon the exten-
sion or compression of the cross-bridge elastic element. The rate constants governing
the flipping between the a and ,B states are functions of the work done on or by the
elastic element during a flip. The model deals only with the maximally activated state
and sarcomere length changes are limited to the plateau region of the length-tension
diagram. In accordance with the results of Huxley and Simmons (1971, 1972) and our
own experimental findings (manuscript in preparation) there is no series elastic com-
ponent in the model, i.e. all the elasticity is assumed to be in the cross-bridges
themselves.

Referring to Fig. 1 C, the differential equations for the number of attached cross-
bridges in each state are derived in the following way. Aa (u, t) is the number of
attached cross-bridges in the a position having elastic element extension u at time t.
A,(u, t) is defined similarly, and D(t) is the number of detached cross-bridges
(assumed to have u = 0). The u-dependent rate constants refer to the probability of a
transition of a cross-bridge with that u-value (before the change) to the state indicated,
e.g., k6(u) refers to transitions to the /3 state by cross-bridges having extension u
before the flip.
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FIGURE I (A) Possible biochemical scheme for the contraction cycle. In the figure, A represents
actin; M, myosin; and the dot, a complex. The k's are rate constants for state transitions. The
reversible reaction between states a! and , of the complex AM-ADP-P corresponds to the force-
generating step. h refers to the change in the cross-bridge spring extension that occurs with
changes between states a and (l. (B) Simplification to a four-state scheme. Aa corresponds to
(AM-ADP-P)a; A to (AM-ADP.P)a; D, to M-ADP-P. k4, k5, and k6 have been lumped so
that kd is determined by the smallest of them. ka and k,6 are equivalent to k3a and k3# in part
A. (C) Final simplified scheme used in the model. k, and k2 have been lumped to form ka
and D now replaces Da and Do. Aa and Ad6 give number of attached cross-bridges in a and f,
states, and D the number detached. AS refers to actin sites on the thin filament.

Since a flip of an attached cross-bridge changes its spring extension by the distance h,
the equations are written in terms ofAa at u and A. at u + h.

OAa(,ut)/dt = -k(u)Aa(u,t) + ka(u + h)A,(u + h,t) + ka(u)D(t), (1)

OA,,(u + h,t)/Ot = kO(u)Aa(u,t) - [ka(u + h) + kd(U + h)]A,(u + h,t). (2)

To make the expressions for the solutions more manageable, the arguments of the
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A's, of the k's, and of D will be dropped, i.e., Aa will refer to Aa(u, t); A#
to A,p(u + h, t); D to D(t); ka to ka(u); kd to kd(u + h); ka, to ka(u + h) and ki to k#,(u).
The solutions are:

Aa = [(mi + ka + kd)clexp(m,t)
+ (M2 + ka + kd)c2exp(M2t) + kaD(ka + kd)/kd]/k',6 (3)

A, = cl exp(Mit) + c2exp(m2t) + kaD/kd, (4)

where

c= AO(u + h,o) - C2 - kaD/kd, (5)

C2 = [k#Aa(u,o) - (m, + ka + kd)Ao(u + h,o) + kaMlD/kdl/(M2 - m,), (6)

ml = -[(ka + kd ± ld) + xk2 + k3 +kd + 2kakd + 2k#ka - 2kdko)]/2, (7)

and

m2= -[(ka + kd + k)- V(k2 +ka +kd + 2kakd + 2k#ka - 2kdko)]/2. (8)

The equations for A. and A,6 are left in terms of D because in the computer pro-
gram new values for A. and A, are evaluated for discrete time intervals during which
it can be assumed that D is constant. These equations hold only if there is no motion
between the filaments.
The way in which the u-dependence of ka and k, arises will now be described in

full. Although the basic reason for the u-dependence of ka and k,, is the same as
that of Huxley and Simmons (1971), the derivation will be somewhat different. Fur-
thermore it will be seen that in this extended version of their model both rate constants
must vary with u. First, the energy, W, required to stretch the cross-bridge elastic
element the distance h must be found as a function of u, the extension of that spring
just before the flip of the cross-bridge head. For flips to states a and ,B, respectively, the
equations are, Wa(u) = (K/2)(-2hu + h2), and W,(u) = (K/2)(2hu + h2), where K
is the elastic element stiffness (see Fig. 2A). Next, it is assumed, following Huxley and
Simmons (1971), that potential energy wells exist for each of the stable states. These
can be seen in Fig. 2 B, which shows the activation energies for two possible cases. In
each case, the activation energy, B, is made up of the potential energy required to get
out of the well plus the mechanical work done on or by the spring. It can be seen in
the left-hand case shown, that W is negative for a flip to the /3 state, and positive for a
flip to the a state. The activation energy for a change from a to O., BO, is just E,, but
for a flip from:6 to a, Ba = Ea + W. The right-hand side illustrates another possible
case where W is positive for a flip to the ,B state (and therefore negative for the flip
to a).

Part C shows that the activation energies, Ba or B,,, as functions of u before the
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FIGURE 2 Derivation of the rate constants for flipping, k. and k, . In all cases the subscript
a or ft indicates the state to which a cross-bridge is flipping. For example Ed (parts B and C)
contributes to the activation energy for a flip to state ,B even though E,6 is the depth of the well
associated with the a state. It is important to realize in part B the energies are plotted against
some variable measuring the extent to which a flip has progressed (e.g., rotation of the cross-
bridge head) as opposed to parts A, C, and D in which the abscissa, u, indicates the initial ex-
tension of a cross-bridge spring. (A) Wa and W,B give the work required to stretch the cross-
bridge spring in changes of state to ca and to ,B, respectively, as a function of the extension of
the spring just prior to the transition. W < 0 indicates that energy is released by the spring.
(B) Energy considerations for flips between states a and ,B. The potential energy well associated
with each state is labeled. Two examples are shown (corresponding to cross-bridges with different
spring extensions before the flip) of the way in which activation energy for a flip depends on well
depth and the work required by the spring. (C) B. and B6 represent the activation energies for
flips to the a and 6 states, respectively, as functions of u, the cross-bridge spring extension just
before the flip. (D) Numerical values for ka and k6 and also ka and kd used in the model are:

kJ()75 u > h/2
ka(u) = {l,75 exp [(-K/2)(-2uh + h2)/k7 u < h/2

k f(u=
3,633

2
u < .-h/2

13,633 exp [(-K/2)(2uh + h )/k71 u > -h/2
ka = 29 u = 0

412.5 u < O
kd = 75 u>0

All rate constants in seconds1.

flip are linear for u-values where Wa or W, is positive, but constant where W. or W,
is negative. The rate constants are assumed to be proportional to the exponential of
the negative activation energy, i.e.,

ka(u) = caexp[-Ba(u)/kT], (9)
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rcl u > h/2
ka(U)

a

ac' exp[-Wa(u)/kT] u < h/2 (10)

where c' = c exp(-Ea/kT) and

k,6(u) = c6exp[-B,(u)/kT], ( 11)

k(C, u < -h/2
l exp-W(u)/kT u > -h/2 (12)

where c' = c,jexp(-E6/kT).

Part D shows the rate constants ka(u) and kO(u) for the values chosen for the fol-
lowing parameters: c' = 75 s-, c = 3,633 s', h = 100 A,K = 2.2 x 10-9 dyn/A.
Also shown are the rate constants for attachment and detachment, ka and kd. The rea-
sons for the choice of these numbers are discussed later. Using these values for the
rate constants and the solutions to the differential equations, the model was pro-
grammed for a digital computer. The basic steps in the program are as follows: a small
time step, At, is chosen. Typically this would be on the order of a millisecond, except
during rapid transient phenomena when it might have to be as small as 0.1 ms to
achieve the desired resolution. From the current values of Aa(u, t), A,(u, t) and
D(t) at time t, AG(u, t + At) and A,(u, t + At) are computed from the equations 3
and 4, derived above. There is no relative sliding motion of the thick and thin fila-
ments at this stage. Next it must be ascertained that D did not change excessively dur-
ing the At since this quantity is assumed to be constant in the equations for A,, and
A,B The distribution functions, Aa(u) and A,6(u) are integrated over u to give A, the
total number of attached cross-bridges regardless of elastic element extension. (This
number, multiplied by K, the stiffness of each individual cross-bridge, gives the total
model stiffness.) A is subtracted from the total number of available cross-bridges,
which is taken to be 10i3 in one half-sarcomere, 1 cm2 in cross section. This gives the
new D which is compared with the value before the At. At is made smaller and the
process repeated if the change in D is large enough to cause a significant error in subse-
quent calculations. To find the total force generated a first moment integral must be
computed. Each cross-bridge contributes a force given by the product Ku so the total
force is KJ[Aa(u) + A,,(u)]udu. In the computer, Aa(u) and Aa(u) are represented
by arrays of values at discrete u-points. As a compromise between accuracy and cost
of computer time, a spacing of 5 A was chosen. Integrals are computed using the
trapezoidal rule. This simple approximation was chosen so as to be compatible with a
linear interpolation procedure that is applied to the distributions later in the program.
For isometric contractions this would complete one time step in the program. For
isotonic contractions, however, the model is constrained to maintain a constant force
less than the maximum capable, (PO), by shortening at the proper velocity. In this
case the program calculates a distance such that when the filaments are moved with
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respect to each other by that a,pount, the generated force is kept at the desired level.
In the program this motion of the filaments is accomplished by shifting the A, andA.
distributions along the u axis.
The distributions in the isometric steady state are easily visualized. Cross-bridges

can attach only in state a with u = 0. They then flip (reversibly) to the ,B state
stretching the elastic element to u = h and can detach while in the : position. Therefore
the A. distribution is non-zero only at u = 0, and A. has a value only at u = h (see
Fig. 4 A). If the model is shortening at some velocity, however, the spring extension of
every attached cross-bridge is constantly decreasing. This is equivalent to a continual
shift to the left of the distributions (see Fig. 7 H).

In order to assign actual values for the various rate constants and other parameters,
their effects on quantities that can be measured in real muscle fibers were considered.
Also, values for rate constants were kept compatible with current ideas about the bio-
chemistry of the contraction cycle (see Taylor, 1973). It was not possible to satisfy all
the constraints with one set of model parameters, so in some areas the model's be-
havior had to be compromised to produce reasonable results in others. The steady-
state solutions to the differential equations are:

A0(u) = k0(u)[k0(u + h) + kd(u + h)]D/kd(u + h)kp3(u), (13)

A,p(u + h) = k0(u)D/kd(U + h). (14)

Since ka = 0 for all u except u = 0 it can be seen A. is non-zero only at u = 0 and Ap
is non-zero only at u = h. Dividing Eq. 13 by Eq. 14 we have,

A(u)/AA,(u + h) = [ka(u + h) + kd(U + h)]/kp(U). (15)

The steady-state isometric tension may be written simply as

Po = ApKh. (16)

Letting yo equal the amount of instantaneous shortening required to bring the force to
zero from Po,

A.(o)Kyo = Ap(h)K(h - yo), (17)

A.1Ap = (h - yO)/yO. (18)

After a release of yo it can be assumed that nearly all the cross-bridges in the a state
flip to the 13 state. This is the rapid phase of tension recovery to the level T2. This
occurs because the A. spike which was at u = 0 is now at u = -yo where k1 is very
large. The force developed at this time expressed relative to PO is

T2(yo) = [A,(o) + Ap,(h)](h - yo)K/PO. (19)
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Making use of Eqs. 16 and 18,

T2(yo) A0(o)/A6(h). (20)

From Huxley and Simmons's (1971) data we would like T2(yo) = 0.7. h was cho-
sen to be 100 A; so from Eqs. 18 and 20, yo = 57 A which is an acceptable figure. X-
ray studies on skeletal muscle have indicated that only a small fraction of the cross-
bridges are attached during the isometric steady state (Huxley and Brown, 1967).
Simultaneously meeting this constraint and maintaining a reasonable value for PO was
difficult. The final set of rate constants and parameters used in the model represents a
compromise. The Po was only about 0.5 kg/cm2 and the fraction of attached cross-
bridges was about 40%. The value for P0 is low compared with that observed in living
muscles. However, the value depends upon the total number of cross-bridges per half-
sarcomere, the number of myosin heads per cross-bridge (it could be that the two heads
on a myosin molecule act independently so that each contributes equally to the iso-
metric force), and the fraction of cross-bridges attached during isometric steady con-
traction. If each cross-bridge contains two myosin molecules (Huxley, 1972) with each
head counted separately and the fraction of attached bridges in the isometric steady
state is greater, then the above value for PO could be increased by as much as a factor
of five. Huxley and Simmons (1971) have already mentioned that this kind of simple
two-state model fails to develop an adequate PO. The rate constants influenced by
these considerations are ka, kd(h), ka(0), and k0(h). In order to obtain the proper
rate of tension recovery to T2, k6(u) for u less than -h/2 or c' (see Eq. 12) was made
3,633 s' . Using Eq. 12 and the value for k,,(0), Kwas set at 2.2 x 10-9 dyn/A. The
most powerful influence on shortening speed is the value given kd(u) for negative u.
The value of 412.5 s-' was found to give the best fit to V.ax and the force-velocity
relation. The rate of rise of tension in the slow phase of the recovery was another
consideration influencing the choice of values for ka and kd.

RESULTS

The first type of model response considered is the force response to sudden changes in
muscle length as shown in Fig. 3. It was this type of experiment that led Huxley and
Simmons (1971) to their new model so it is important that our extension of that model
still accommodate the experimental findings. Taking the case of a release (parts A-D),
the force trace first shows a drop in tension in phase with the length step. This is simply
the result of the undamped elasticity in the attached cross-bridges. Next the quick re-
covery to T2 occurs, fastest for the largest release (part A). A slight dip in the force
is seen, followed by the slow recovery back to the steady isometric level, PO. The
stretches also exhibit these phases of the response but in opposite directions.
Examination of the state of the force generator provides insight into how this force

response arises. The distribution of attached cross-bridges in the a and ,B states over
the variable u, the extension of the cross-bridge elastic element, completely determines
the state of the model at any time. This is shown in Fig. 4 for various times in the re-
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FIGURE 3 Force responses to instantaneous length changes. To is the steady isometric force.
T1, the extreme force attained, is concurrent with the length step, and T2 is the force at the end
of the quick phase of the recovery. In all cases the force returned to To in a time consistent with
that observed in real muscle. The sizes of the length changes (stretch taken as positive) are in
angstroms: A, -56; B, -43; C, -29; D, -14; E, 6; and F, 29. In part C, the arrows and letters
a-e indicate the times of the cross-bridge distributions in Fig. 4, e.g., Fig. 4 A is the distribution
of cross-bridges at the time indicated by the letter a and the arrow. Note the decrease or "dip"
in the force record just after the quick recovery to T2. This feature is characteristic of the
responses we have obtained from single frog skeletal muscle fibers at OC.

sponse of Fig. 3 C. Fig. 4 A shows the model in the isometric steady state just before
application of the length step. As mentioned in the Methods section, cross-bridges in
the a state all have u = 0, while for those in the f# state u = h = 100 A. In part B the
instantaneous length step has been applied causing the distributions to be shifted left
by the amount of the release, 29 A. The shift of the spikes of A. and A, have
caused them to encounter new values of ka and ka (see Fig. 2 D). k. is lower
and kp higher so that the equilibrium is now heavily in favor of the , state as can be
seen in part C, where most of the shifted Aa have "flipped" into the ,3 state at u-=
71 A(loo A - 29A). This is the mechanism in the model of the quick phase of tension
recovery following a release. The dip in the force following T2 results from detachment
of some of the ,B state cross-bridges at u = 71 A. Eventually the steady-state distribu-
tion of part A must be regained, and this can be seen in parts E and F. The two shifted
spikes decay, cross-bridges attach in the a state at u = 0, and, by flipping, restore the
original isometric steady-state distribution. Our model's performance is compared to
that of Huxley and Simmons (1971) in Fig. 5. The difference between the length axis
intercepts, yo, of the T, curves, is largely due to our assumption that cross-bridges
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FIGURE 4 Cross-bridge distributions during the model's response to an instantaneous length
change (force response shown in Fig. 3 C). The abscissas refer to the extension, in angstroms,
of the cross-bridge spring. Positive values indicate tension in the spring, which aids shortening,
while negative values indicate a compressive force which opposes shortening. The ordinates
give the number of cross-bridges relative to the total number attached in the isometric steady
state. The times at which these distributions occur are given in Fig. 3 C by the small letters and
arrows. The distribution in part G occurred after the end of the trace in Fig. 3 C.

can have no tension when they attach. Over the range of length steps used in our

model, the T2 curve shows close agreement with that of Huxley and Simmons.
The other type of experiment done on the model is to study the length response

when the load is suddenly decreased and then held at a level less than P,. Four re-

sponses of this kind are shown in Fig. 6. As in the force responses in Fig. 3, there are

several separable phases to the response as described in the legend for Fig. 6. Again
these features can be explained by considering the cross-bridge distributions at differ-
ent points in the response as indicated in Fig. 6 C. In Fig. 7, parts A and B are similar
to Fig. 4, A and B. In this case, however, the generated force now must be kept at the
proper level by letting the filaments slide past each other at the appropriate speed. Just
as in the case of the length step, the attached cross-bridges re-equilibrate heavily in
favor of the ,B state, so, in order to maintain the load, the muscle must shorten rapidly
(parts C and D). By the time of part E, most of the attached cross-bridges have
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FIGURE 5 T' and T2 responses from models. All forces are plotted relative to the maximum
tetanic force, P0. The length axis refers to the size of the length step expressed in angstroms per
half-sarcomere, stretch taken as positive. Solid lines, response of the present model; dashed
lines, response of the model of Huxley and Simmons(197 1).
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FIGURE 6 Length responses to imposed loads. The unlabeled arrows indicate the size of the
initial instantaneous length step required to drop the force to the desired load. Thereafter three
features of the length responses are to be noted: first, a short period of very rapid shortening;
second, a plateau phase in which practically no shortening occurs; finally, the attainment of a
constant velocity of shortening. The loads relative to To and steady-state velocities relative to
Vmax, are, respectively: A, 0.50 and 0.18; B, 0.30 and 0.34; C, 0.15 and 0.57; and D, 0.01 and
0.95. The extrapolated value for Vmax is 1.93 gm/half-sarcomere per s. The length calibration,
100 A, applies per half-sarcomere. In part C, the arrows and letters a-g indicate the times of the
cross-bridge distributions in Fig. 7 (modified from Julian and Sollins, 1972).
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FIGURE 7 Cross-bridge distributions during the model's response to an instantaneously im-
posed load (length response shown in Fig. 6 C). The abscissas refer to the extension, in ang-

stroms, of the cross-bridge spring. The ordinates give the number of cross-bridges relative to

the total number attached in the isometric steady state (note the scale changes). The times at
which the distributions occur are given in Fig. 6 C by the small letters and arrows. The distribu-
tion in part H occurred after the end of the trace in Fig. 6 C.
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flipped and little further motion is necessary until the slower attachment and detach-
ment processes begin to have an affect. At F and G reattachment and subsequent flip-
ping cause shortening to begin again and finally a steady state is attained as shown in
part H.
The steady-state shortening velocities are plotted as a function of load in Fig. 8. A

hyperbola fits the points well and there is reasonable agreement with our own experi-
mental results (Julian and Sollins, 1972). In Fig. 9 the relation between steady-state
stiffness and shortening velocity is shown. The important point here is that as the
shortening velocity approaches Vmax, the force tends to zero, but the stiffness ap-
proaches a value of about 0.4 relative to the isometric steady state. A net external
force of zero can occur even though a considerable number of cross-bridges are still
attached because of the assumption that the cross-bridge elastic element can bear com-
pressive loads.

DISCUSSION

It is now commonly believed that the essential event in the process of contraction is an
interaction cycle between a myosin cross-bridge and a site(s) located on actin (see, e.g.,

2.5

L0 2.00

E
0
c)
0

> 0

I-

a

0

-J

I

0

z

10
( Q

0.5
RELATIVE LOAD

1.0

FIGURE 8 Model force-velocity relation. The solid circles show the steady velocities attained
in the records of Fig. 6. The solid curve is a hyperbola (a/P0 = 0.56, b = 0.29 gm/half-sarcomere
per s) fitted by the method of least squares to these points.
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FIGURE 9 Model stiffness as a function of shortening velocity. The points indicate the stiffness
(proportional to the number of cross-bridges attached) while in the steady phase of shortening
(length records shown in Fig. 5). Stiffness is plotted as a fraction of the stiffness in the isometric
steady state and velocity is expressed as a fraction of Vmax.

Taylor, 1973, for a recent, detailed statement of this view). According to Taylor
(1973), a reasonable contraction cycle would consist of at least four steps: (a) dissocia-
tion of a cross-bridge from actin; (b) return of the free cross-bridge to some initial
position; (c) reattachment of the cross-bridge to an actin site; and (d) power stroke
tending to translate the thick-thin filament lattices with respect to each other. It can be
seen by examining Fig. 1 that this kind of scheme can be very well accommodated by
our model, though in the calculations it was assumed that step b does not become rate
limiting. This means that the model has the potential to use the information obtained
from structural, biochemical, and mechanical studies of muscle contraction and thus
make it possible to arrive at a deeper understanding of the mechanism of muscle con-
traction. For example, it is essential in the model that the link between the cross-
bridge head and the thick filament be capable of bearing a compressive force. This
makes it possible to disprove the model on the basis of structural or physical chemical
evidence, if such can be obtained.

It is clear that the model in its present form gives a good qualitative fit to the
mechanical responses recorded from contracting muscles after a sudden alteration of
either the length or the load. On the other hand, some experimental data (Huxley and
Simmons, 1971; Julian and Sollins, unpublished observations) are not accounted for
very well. In the case of T,, the deviation of experimental data from a straight line
which becomes more prominent as the magnitude of the length decrease becomes
greater can be explained in the way indicated by Huxley and Simmons (1972). That is,
in contrast to the model where the length steps are made instantaneously, there is some
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flipping of attached cross-bridge heads from the a to the p position during the finite
time taken to apply a length step to real muscles. Undoubtedly, if in the model the
length decreases were made to take about I ms a similar effect would be produced. In
the case of T2, the deviation of experimental data from the model curves at either ex-
treme of size of length step is more difficult to explain. However, in our model, no
attempt was made to optimize the fit to the T2 data, and we did notice that the fit did
depend on the values assigned to the various rate constants and parameters. It remains
to be seen whether an improved fit to all of the T2 data can be obtained without sac-
rificing the good fit obtained to other real muscle responses.
The behavior of the model when the load is suddenly reduced from the isometric

level is very similar to that observed in real muscles as shown in Fig. 6. The character-
istic features of the real muscle response have been described by Huxley (1971): (a) an
initial very rapid length change coinciding with the tension change; (b) muscle shorten-
ing at a speed much greater than the steady-state value; (c) speed of shortening then
declines to a very low value, or reaches zero and even reverses its direction; (d) the
steady-state velocity is approached, with or without heavily damped oscillations. It
is worth pointing out again (see also Julian and Sollins, 1972) that the existence of
phase b implies that the steady-state speed of shortening in real muscles is not limited
by an internal load, e.g., friction, which is either fixed or varies directly with the level
of activation.
As shown in Fig. 8, the model produces a steady-state force-velocity relation very

similar to that obtained from real muscles. A very important point to notice is, just as
in the original model of Huxley (1957), that the speed of steady shortening at any load
is set by the attainment of a force balance in which the sum of the load and force pro-
duced by all the attached cross-bridges opposing contraction is equal to the force gen-
erated by all the attached cross-bridges aiding contraction. At Vmax, the external load
is zero, and there is a force balance attained by all the attached cross-bridges aiding and
opposing contraction. VTax in this model is strongly affected by the value of the break-
ing rate constant kd for cross-bridges opposing shortening, while the values for the rate
constants for flipping, k, and k,, have less effect. A consequence of this feature of
the model is that the steady-state model stiffness, given simply by the number of cross-
bridges attached regardless of their distribution about the equilibrium position, falls as
the speed of shortening increases, though less rapidly than does the force. This be-
havior is shown in Fig. 9. As discussed by Huxley (1971), there is evidence available in-
dicating that the number of attached cross-bridges decreases as the speed of shortening
rises.
An objection to this model can be made on the grounds that it does not account for

what now seems to be known about the relation between the rate of the energy-produc-
ing reaction and the sum of the rates of output work and heat as a function of shorten-
ing speed (see Gilbert et al., 1972, for a statement of this criticism). This problem has
also recently been discussed by Huxley (1973), Huxley and Simmons (1972), Podolsky
and Nolan (1972), and Chaplain and Frommelt (1971). It is true that in the model as
it now stands, if one ATP molecule were hydrolyzed each time a cross-bridge turned
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over, the rate ofATP splitting would be a monotonic increasing function of shortening
speed just as in the original Huxley (1957) model. In addition, the ATP splitting rate
is high in the isometric steady state because we chose to keep the fraction of cross-
bridges attached small in order to accommodate X-ray evidence (Huxley and Brown,
1967). However, little is known about alternate reaction pathways involving the steps
in the cross-bridge interaction cycle postulated in Fig. I A (Taylor, 1973). It may be,
as suggested by Podolsky and Nolan (1972), that ATP turnover is not tightly coupled
to cross-bridge turnover in at least some mechanical states, e.g., while shortening at
high speed. Also, Huxley (1973) has shown how the substitution of a two-stage attach-
ment process in his original model (1957) could lead to a fall in ATP splitting rate at
high shortening speeds. It seems to us that until still better evidence is available con-
cerning, e.g., the number of cross-bridges attached during the isometric steady state,
and the rate of ATP hydrolysis during shortening at high speeds, to reject this model
on the basis of current energetic evidence alone is not justified.
One final comment concerning our model is worth making. No account has been

taken of the calcium regulating system. In the model, it is assumed that all regulating
sites are filled with calcium, so that the contractile system is fully activated. This cor-
responds to the tetanic state of real muscle. It would, of course, be very interesting to
have evidence regarding the behavior of T, and T2 as the level of activation was varied
at constant overlap and in the rigor state produced by removing ATP.
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