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ABSTRACT The impedance measured in a strip of heart tissue from the moth
Hyalophora cecropia is fitted by circuit models of several configurations. The
circuits include: (a) a single R-C circuit (b) a double R-C circuit (c) terminated
transmission lines, and (d) a pattern of cells with cell-to-cell transmission paths.
The last of these is found to give the best fit. Calculation of the model impedances
and optimization of element values are performed by a computer. The possibility
that the mechanism of cell-to-cell transmission may be capacitative rather than
conductive is explored using values of capacitance derived from the circuit models
to calculate the effect of capacitative coupling alone on signal transmission. The
calculations show that sufficient voltage can be transmitted from the excited cell to
an adjacent cell to effect excitation.

A. EQUIVALENT CIRCUIT MODELS

A pervasive model circuit depicts the passive electrical properties of excitable tissues
and particularly of nerve by representing the cell membrane as a simple R-C circuit
consisting of a single capacitor connected in parallel with a resistive element. This
simple scheme does not now appear applicable to muscle cells and more particu-
larly to cardiac cells. An electrical network with at least two "time constants,"
probably due to multiple infoldings of the membrane and to the indentations of the
transverse tubules, has been proposed to represent Purkinje fibers (Fozzard, 1966;
Freygang and Trautwein, 1970). This topic is reviewed and summarized by Fozzard
(1972).

This paper considers circuit models which simulate impedances measured in the
heart of the adult moth, H. cecropia by a gap technique. The measurements were
reported in the first paper of this series (McCann et al., 1973). While it has been
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noted that the numerical values of impedance obtained in the sucrose gap change with
time, and must, therefore, be accepted with certain reservations, still the general
form of the impedance function does not change with time, and therefore appears
reliable. Since the configuration of the model circuit is primarily determined by the
shape of the impedance function, we believe that the conclusions reached regarding
the configurations of the models presented here are valid.

In this study, configurations or arrangements of resistive and capacitative elements
have been chosen empirically with regard to the physical structure of the tissue being
represented. The computing facilities of the Dartmouth time-share computing
center have been employed extensively, and programs have been written which
embody the circuit equations of the models. The program, described in the Ap-
pendix, instructs the computer to optimize the parameter values for the "best" fit
between the model and the experimental impedances. The criterion used here for the
best fit is the minimum value of a weighted sum of squares of the differences in
modulus and angle between the two impedances.
Measurement and fitting of models have been based on impedances rather than on

indicial admittance functions (step functions). While the theory of communications
systems shows that both representations are equally valid, the equality assumes that
no noise is present, and that the measuring equipment used is capable of recording
accurately within a negligible time period. Impedance measurements are made in
very narrow frequency bands and the noise in such bands is relatively unimportant.
Furthermore, analysis of time functions is difficult and sensitive to errors.

All models treated here assume the measured tissue to be a cylindrical body sur-
rounded by three pools of fluid, of which the center pool is an insulating medium.
The end pools contain electrolytes in which electrodes are immersed to serve as
electrical connections to an impedance bridge (Stibitz et al., 1973).

LEFT RIGHT
ELECTRODE DIAPHRAGM ELECTRODE

ELECTROLYTE ELECTROLYTE

FIGURE 1 A schematic diagram of the tissue specimen in the sucrose gap. The heart is cylin-
drical and passes through holes in rubber diaphragms which separate the right and left
electrolyte pools from the central insulating medium, M. Impedance is measured between
the left and right electrodes. Points P1 and P2 (see text) lie on the axis of the cylinder and
in the planes of the diaphragms.
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Fig. 1 is a schematic of the experimental setup. The total impedance between the
electrodes in the end pools is the sum of Z1 impedance between the left electrode and
point Pi, Z2 impedance between points P1 and P2 and Z8, impedance between P2 and
the right electrode. It is assumed that the currents induced by the bridge flow longi-
dinally in the portion of the specimen immersed in the insulating fluid, and that these
currents flow from the electrodes, by way of the electrolyte, through the cell mem-
branes and into the myoplasm of cells or portions of cells immersed in the electrolyte
pools.
The total impedance between the electrodes has been found for a large number of

specimens and data from one experiment have been selected for the modeling opera-
tion. Fig. 2 is a reproduction of a computer plot showing the impedance both as a
curve in the complex plane and as modulus and angle functions of frequency.
The simple R-C model previously referred to is seen in Fig. 3. At a frequency of

w/27r the model impedance has the form

z = Z1 + Z2+ Zg,
where

l/Z1 = iwACI + hR1
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FIGURE 2 Plots of the measured impedance of a specimen arranged as in Fig. 1. The lowest
curve shows the impedance plotted on the complex plane. The upper curves are, respectively,
the angle and the modulus of the impedance plotted as functions of frequency.
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FIGURE 3 Circuit schematic for a simple model of the specimen of Fig. 1. C1 and C2 repre-
sent the capacitances of the portions of the membrane in the left and right electrolyte pools,
respectively. R1 and R2 are the corresponding leakage resistances. Ro is the longitudinal re-
sistance of the portion of the specimen in the insulating pool.

Z2 = Ro

I Z3 = iwC2 + /1/R2.

If the membrane is homogeneous, then R1 C1 = R2 C2 and Z becomes the impedance
of a single capacitor, C1 C2/(C1 + C2), in parallel with a resistance R1 + R2. The
computer program previously mentioned has optimized the values of resistance and
capacitance and found Ro = 0.3397 Q, C1 = 0.00118 mF, R1 = 0.7959 mQ, E = 0.974
arbitrary units, where E is a measure of the discrepancy between the simulated and
measured impedances. Further details of this measure are presented in the Appen-
dix.
Comparison of the model impedance (solid lines) with the measured impedance

(dotted lines) in Fig. 4 shows that the model is completely inadequate for the cell of
the moth heart. Furthermore, it is well known that any circuit which contains a
single capacitor and any number of resistors has an impedance which, like that
plotted in Fig. 4, is a semicircle on the complex plane, and would be equally un-
satisfactory.
We conclude that the specimen under investigation does not have a single "time

constant," that it cannot be modeled with a single capacitor, and that its response to
a step function, while qualitatively similar to an exponential in time, cannot be so
represented.
The model may be elaborated according to the suggestion (Fozzard, 1972) that

the sarcolemmal invaginations or transverse tubular system observed in many ex-
citable cells may account for a second capacitance, and hence for a noncircular
impedance plot. The second capacitance would be in electrical connection with the
electrolyte by way of high resistance paths along the tubules. This suggestion leads to
the model presented in Fig. 5 A.
The circuit of Fig. 5 A is not minimal, in the sense that there exists another circuit

with fewer elements but identical impedance. Fig. 5 B shows a circuit which is
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Log Frequency

FIGURE 4 Impedance plots comparing the electrical properties measured in the specimen
with that of the simple model of Fig. 3. The impedance of the specimen, shown by dotted
curves, is superimposed on that of the model. Both are plotted according to the plan of
Fig. 2.

A

cl

B

FIGURE 5 (A) Schematic of a model that includes the transverse-tubule system. Ci, R1,
represent the capacitance and leakage, respectively, of the cell membrane. C2 and R2 represent
capacitance and resistance, respectively, of the transverse tubules. R8 represents the longi-
tudinal resistance of the medium within the tubules. (B) Schematic ofa circuit with a minimal
number of elements, equivalent at all frequencies to that of Fig. 5 A.
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electrically equivalent to that of Fig. 5 A if

Di = C, Si R, (R2 + R&)I(Ri + R2 + Ra)

D2 = R22/(R2 + RS)2 C2 S3 = R3 (R2 + R3)/R2

Ro = Ro

The computer program has optimized the values of Fig. 5 B with respect to the
measured impedance and found (Fig. 6) D1 = 4.117 1O-4 ,uF, Si = 0.4475 MR, D2 =
1.704 10-1 F, S3 = 0.4378 Mg2, Ro = 0.7359 MR, E = 0.155 arbitrary units.

It will be noted that the agreement between model and experiment is much closer
than in the previous simple model, as indicated by the smaller value ofE as well as by
the appearance of the impedance plots. If the model is to be related to the physical
specimen, a decision must now be made as to which of the infinite family of equiva-
lent circuits of Fig. 5 A will be selected. The choice may be made to depend upon one
element, say R2, which may be allowed to vary while the other elements are adjusted
accordingly without change in the impedance. A computer program has plotted in
arbitrary units the values of R1, C2, R3, corresponding to any value of R2 from 0.2
to 4.4 MQ, and infinity (Fig. 7).

It will be noted that C2 of Fig. 5 B which represents the capacitance of the trans-
verse tubular system, must have a value at least as great as that when R2 is infinite, or

L." Frequeotcy
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FIGURE 6 Plot of impedances measulred on the specimen (dotted line) and of the model
depicted in Fig. 5 B (solid line).
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FIGURE 7 Graphs of elements R1, C2, 1? for values of R2 taken from Fig. 5 A. The im-
pedances of any two circuits, formed by inserting into Fig. 5 A sets of values chosen in
accordance with these graphs, are identical for all frequencies.

C2> 1.704 10-3 ,F. This is approximately four times as great as D1, the membrane
capacitance.

Bassingthwaighte and Reuter (1972) deduce a total area of the transverse tubular
system approximately equal to that of the total membrane in rat heart cells. Hence,
to account for the 4:1 capacitance ratio we need only assume that the tubular
boundary is less than Y4 as thick as the membrane, assuming similar physical char-
acteristics. Impedance measurements alone can give us no further information about
this model. The two models investigated so far have assumed "lumped" elements
and have ignored the obvious fact that the membrane is distributed in space.

Retaining the assumption that the radial dimensions of the specimen are elec-
trically short, we now introduce the concept of a finite transmission line. For the
next model we represent that portion of the specimen which lies in the electrolyte by
a transmission line in which the membrane is a leaky shunt capacitance. The theory
of transmission lines has been treated by Kelvin (1854) for the capacitative cable, and
more generally by Heaviside (1887). Heaviside showed that if z1 is the longitudinal
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impedance per unit length of cable and l/Z2 is the shunt admittance per unit length,
then the impedance seen at one end of the cable is

Z = Zo (1 + 7P)/(l - 7)
where

Zo =V/Z1 Z2

T = exp (- v'27I2 L).

Unlike the lumped-element model, the terminated line model requires us to treat
individually the portions of the specimen which lie in the electrolyte pools. However,
in the present model we assume that the interior of the cylinder is homogeneous
throughout its length, and is resistive.
The formulas for the finite lines, the lengths of the gap and of the two end portions

of the specimen have been written into a computer program which calculates the
impedance of the specimen for arbitrarily assigned values of the axial resistivity, the
leakage, and the capacitance per unit length. Fig. 8 shows the optimized impedance
for a gap length of 0.47 cm, a left portion of 0.172 cm and a right portion of 0.328
cm length. The optimum values found are: capacitance, 0.0384 ,uF/cm; leakage,
0.0264 MR. cm; longitudinal resistance, 1.55 MQ/cm; E = 0.319.

Clearly the assumptions underlying this model are not adequate. While better
than the corresponding lumped model, the agreement is less satisfactory than for the

Log Frequency

i - .....I.. -.. -.A
* .4 ~~~~~~~~~~~~.-..--... 06

-Resistance-Mit..

/~~~~Q ..49

O.S.

FIGURE 8 The impedance of a model in which finite transmission lines represent the
portions of the specimen in the electrolyte pools.
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"transverse tubule" model. Our next step recognizes that the medium within the
cylinder which represents the specimen is, in the moth heart, not a single cell, but a
bundle of small cells, none of which extend from pool to pool. The path followed by
currents in the interior of the cylinder is now visualized as a zigzag one, passing from
cell to cell in both lateral and longitudinal directions at specialized areas.

Electron microscopic inspection of the specimen (Fig. 9) shows that the cells are
not arranged in a regular pattern, but generally appear in columns of end-to-end
cells, with appreciable overlap between cells in adjacent columns. For simplicity,
however, our model assumes a regular pattern of cells with alternate columns of cells
overlapping by half their length (Fig. 10 A).

In this model it is assumed that adjoining cells are coupled electrically through
contiguous regions of their membranes, both end-to-end and laterally. The junctions
are assigned impedances appropriate to leaky capacitances, and the intracellular
region is considered a purely resistive medium. The lateral junctions midway along
the overlapping regions between cells are assigned impedance Zb. The end-to-end
junctions have impedance Zc, while Za is the longitudinal impedance between the
junction points, or 2Za is the impedance between the ends of a cell. The cell matrix
then is electrically equivalent to the simplified schematic of Fig. 10 B, with the im-
pedances Za, Zd (= Za + Zc) and Zb. The pattern of impedances is repeated with
alternate rectangles inverted as shown. The branch currents are indicated in the
figure.

Since we are concerned with longitudinal transmission of currents in the network,
we assume zero net transverse current, and find that I3 + I4 = 0. The longitudinal
currents in alternate branches are I, and I2, so that the current per parallel rectan-
gle is (I, + I2)/2. If V is the voltage between the end junctions of a cell, we obtain

V = I, Za/2 + I2 Zd + I, Za/2

= Il Za + I2 Zd.

Tracing the mesh voltage around a rectangle we have

0 = Zd I2 + Zb I4 - Za Il - Zb I3

= Zd 12 - Za I + 2 Zb I4,

since I3 + I4 = 0. For each node the net current is zero and 0 = I, + 2 I4 - 12.
Solving these equations we find the impedance of each cell to be the ratio of V,

the voltage between the cell ends to I, the current per cell

Z = V/I = 2 ZaZb+ 2ZaZd + ZbZd
Za + 2Zb + Zd

Letting N be the number of parallel columns of cells side-by-side in the specimen,
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FIGURE 10 (A) The geometric arrangement of cells which is assumed in a model for
longitudinal transmission through the cylinder of Fig. 1. The impedances within and be-
tween cells are indicated as Z, Zb, Z,. (B) A schematic of the circuit implied by the arrange-
ment of cells shown in Fig. 10 A. Arrow indicates ends of a single cell at which voltage
(V) is measured.

and L the length of a cell, the impedance of a centimeter length of the specimen is Z,
= Z/(NL).
Since little is known about the electrical properties of the tight junctions in either

the lateral or longitudinal connections, and since they have similar microscopic ap-
pearance, we feel justified in assuming that their impedances are proportional. Thus,
we let Z, = K Zb where K is a real number independent of frequency.

In optimizing the parameters of this model, we note that the values of N and L
have no essential effect on the impedances, and can be absorbed by renaming the
latter. For this model the interior of the cylinder is replaced by the bundle of cells
just discussed and the portions of the specimen in the electrolyte pools are leaky
capacitances C1, R1 in the membrane itself,

2 Zb/NL = R2 + I/(ico C2)
2 Za/NL - R3.

STIBITZ AND MCCANN Impedance in Cardiac Tissue 85



The optimization program finds the plot of Fig. 11, with the impedance values:
C1 = 0.0227,uF/cm; C2 = 0.0122,uF-cm, R1 = 1.719 MR-cm, R2 = 0.381 MQ/cm,
14 = 0.735 MR/cm, K = 1.06, E = 0.044.
Comparison of the measured and calculated impedances in Fig. 11 shows fair

agreement. The model impedance exhibits somewhat more definite bimodality than
does the specimen, but it will be recalled that we have assumed exact equality among
the cells and perfectly regular arrangement in the meshes. The introduction of
random variation would doubtless reduce the clear-cut double hump in the model
impedance.

Log Frequency
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FiGURE 11 The impedance of the model sketched in Fig. 10 (solid line), compared with
the measured impedance of specimen (dotted line).

B. A STATISTICAL MODEL OF MEMBRANE IMPEDANCE

One of the classical models designed to represent the passive electrical properties of
an excitable cell membrane consists of a capacitance shunted by a conductance, each
proportional to the membrane area (Fozzard, 1966; Freygang and Trautwein, 1970;
Eisenberg, 1967; McCann et al., 1973). A comprehensive review of this topic has
also been published (Cole, 1968). A similar model can be used to represent the pas-
sive electrical properties of the interface between an electrode and an electrolyte. A
typical plot for the impedance of an electrode-electrolyte interface is shown in Fig.
12.
This model is not entirely satisfactory for either physical system, for it is well
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FIGURE 12 Impedance measured at the interface between gold electrodes and physio-
logical (moth) saline. If the interface were represented by a uniform capacitance and leakage,
with or without a series resistance, the impedance plot would be a semicircle with its center
on the real axis, and at the high-frequency end (left, in the figure) the impedance curve
would meet the real axis at right angles.

known that the plot of the impedance of any circuit which contains a single capaci-
tance and any number of resistors is a semicircle. However, plots of the measured
impedances of membranes and of electrode interfaces depart considerably from this
form. The proportionality of capacitance and conductance to area implies a uniform
distribution of the parameters over the membrane or interface. We suggest that only
the averages of these quantities over relatively large areas are uniform, and that the
capacitance and conductance may vary from point to point in a statistical manner.
This study considers the effect on the overall impedance when such point-to-point
variations occur.
Each small elementary area of the membrane or electrode interface is represented

by either of the equivalent circuits of Fig. 13.
These two circuits are exactly equivalent under all external measurements, pro-

vided that

R = r (1 + rg)

G = g/(l + rg)

C = c/(l + rg)2.

If one of these circuits represents a small area, S, and the parameters R, C, G are
values for a unit area, then for area S we replace C by CS, G by GS, and R by RIS.
If A is the specific admittance, then the admittance of the circuit representing area S
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FIGURE 13 Equivalent circuits for infinitemal element. Circuit A is a model of an in-
finitesimal region of a cell membrane or of the interface between an electrode and an electro-
lyte. Conductance, g, represents electrical leakage through the membrane or interface, and
resistance, r, represents the resistance of electrolyte in contact with the infinitesimal area.
Circuit B is electically equivalent to A when the element values, C, R, G, are appropriately
related to c, r, g (see text).

AS = GS + ioCS/(l + icoRC),

where w = 2ir times the frequency at which the admittance is evaluated.
It will be convenient to write RC = T, the "time constant" for the elementary

circuit. We may now express the admittance of any small area, S, as A(G, C, T,)S.
The admittance of a membrane of unit area, is then the sum of the admittances of all
such elementary areas, S, since these areas are electrically in parallel.

Let P(G, C, T) be the probability distribution of the parameters, G, C, T, so that
the portion of the unit area which has conductance in the range G to G + dG, ca-
pacitance C to C + dC, and time constant T to T + dT, is P(G, C, T) dG dC dT.
The total admittance of all the areas which have these values is

P(G, C, T) A(G,C,T) dG dC dT.

The admittance of the entire unit area at frequency w then is the sum of all such
admittances, or

A= ff P(G, C, T)A (G, C, T) dG dC dT

= fff P(G, C, T)G dG dC dT

+ fff iwC/(l + iwT)P(G, C, T) dG dC dT.

The first of these two integrals of this last expression merely defines the mean
value of G over the surface, and may be called (S. The second may be simplified by
introducing the quantity

Q(T) = ff CP(G, C, T) dG dC,
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which is the mean value of C for all elementary areas having a time constant, T.
Then

= G+iwf Q(T)/(1 +iT) dT.

The admittance, A, may be expressed in real and imaginary parts, A = A1 + i A2,
by writing

A, = + 2 Q(T)T dT

A2 =c Q(T)dTIj + w2T'

The impedance of a unit area is the reciprocal of the admittance A, or Z = Z
+ iZ2, where

Z, = Aj/(Aj2 + A22)

Z2 = A2/(A12 + A22).

For certain simple distributions of capacitance vs. time constant, it is possible to
integrate the equations for A1 and A2 in closed form. There appears to be no experi-
mental evidence for assigning any specific form to Q(T), and we must be content at
the moment to present an illustrative example arbitrarily chosen. This example does,
at least, suggest qualitatively what effect a random distribution of capacitance will
have on the measured impedance. Specifically, we choose as a very simple function a
uniform distribution of capacitance over a range, T1 to T2, of time constants. Then

Q(T) = I/(T2- T1) for T1 < T < T2

= 0 otherwise.
We now have

2 ~T2 TAdT -

A1 = I + G
T2-T1JT11 + W2TP

A2 = T2 T,L I +W27T2
We may reduce the number of parameters by calculating A1/G and A2/G, and by

letting K2 = T1/T2, and K1 = 1/[G(T2- T1)]. Then

A1/G = 1 + K1/2 log 1 + K22v2

A2/G= K1 arc tan (1 - K2) v

+vK2=
where v coT2.
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FIGURE 14 A-E Impedances for various statistical distributions of circuit parameters.
The impedance of a statistical distribution is normalized with respect to the mean con-
ductance, 0.The ratio is plotted on the complex plane for various values of K2 = TjIT2
and of K, =1/(G(T2 - Tj)) (see text). As the distribution of time constants, T2 -T1,
widens, K, decreases from 10 to I to 0.05, etc., and the impedance curve flattens progressively.
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A computer program has been written to calculate and plot ZG derived from these
functions of v on the complex plane, for various values ofK1 and K2 (Figs. 14 and 15).
Fig. 15 shows the shapes of the complex plots for T1 = 0, that is, for a uniform dis-
tribution of capacitance with time constants ranging from 0 to various values of T2.
Fig. 14 shows the effect of alterations in the band width T8- T1.

It will be noted that many of the impedance plots depart markedly from a semi-
circle, and take on the flattened shape characteristic of the impedances measured in
membranes and at electrode interfaces.

It is thus apparent that the characteristic flattened shape of impedances measured
in cell membranes and in electrode-electrolyte interfaces do not necessarily imply
either special and separate circuit elements or frequency-dependent "capacitances,"
but may be accounted for by statistical variation of electrical parameters from point
to point over the membrane or interface.
From the foregoing discussion, we conclude that the equivalent circuit model that

best describes the impedance curves obtained on the heart of the moth, is that which
takes into account the processes of intercellular transmission. While an impedance,
practically equivalent to that of the model proposed here, can be obtained by elabo-
ration of the membrane model which considers the transverse tubular system, it is

REAL

LX\X X~~~~~~~~~~~~~~~~~~~~~~00

FIGURE 15 Impedances normalized as in Fig. 14 are plotted for various band widths
when the time constants are distributed from 0 to T2, so that K2 = 0.
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difficult to correlate the added elements with known ultrastructural components. It
is our conclusion that the coupling impedance between cells is not negligible and
must be considered when impedance measurements are carried out on multiple cells
in a gap arrangement.

C. SIGNAL TRASMISSION BETWEEN CARDIAC CELLS

Myogenic hearts are considered functional syncytiums inasmuch as the electrical
signal that precedes the contractile event appears to pass from cell to cell with little
restriction. Much attention has focused on the mechanism whereby the signal crosses
the intercalated disc, the boundary between cardiac cells. One group of workers
believes that the junction between cardiac cells presents a formidable barrier to cur-
rent spread. Measurements of electrotonic interaction between contiguous cells have
been interpreted to indicate that the intercalated discs have a high electrical resist-
ance (Tarr and Sperelakis, 1964; Kamiyama and Matsuda, 1966; Sperelakis, 1969).
These workers have proposed that a chemical transmitter effects junctional trans-
mission in the manner of other processes at cytoplasmic discontinuities such as end
plates and synapses. An alternative theory suggests that the intercalated discs are
specialized at restricted regions where membranes of apposed cells fuse together
and Barr, 1964; Dewey, 1969; Barr, 1969). At this region, the membrane resistance
is believed to be very low; therefore, current can flow from cell-to-cell to effect
excitation (see review by Berger, 1972).
We would like to present as an alternative mechanism for cell-to-cell transmission,

one which considers that conductance is not a prerequisite and that, in fact, a purely
capacitative coupling is adequate for transmission. The model proposed here is
related to the ultrastructural features of the heart of the adult moth H. cecropia.
Electron microscopic examination of the intercalated disc region in this heart shows
the presence of septate desmosomes (SD) and it has been proposed that the SD may
be the functional correlates of the nexuses observed in some vertebrate hearts
(McCann and Sanger, 1969). The model proposed here incorporates the values of
impedance measured on the moth heart in a sucrose gap (McCann et al., 1973) and
considers other structural features as presented in section A of this paper. Setting the
conditions of this model such that all intercellular conductance is removed, calcula-
tion of the passive transmission of an action potential demonstrates that the capaci-
tative coupling between cardiac cells is more than sufficient to trigger action po-
tentials in adjunctive cells. While we do not imply, of course, that the results ob-
tained rule out low resistance paths or other means of coupling, we simply point out
that such paths are not necessary for signal transmission.
The model used here treats the cardiac tissue as an array of more or less cylindrical

cells about 20 ,um in diameter and 100 jam in length. These dimensions were obtained
from electronmicrographs (Sanger and McCann, 1968). For simplicity it is assumed
that the currents used to determine tissue impedance in the sucrose gap experiment
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pass from extracellular electrolyte, through cell membranes, to the myoplasm of
those cells which lie outside of the gap. These intracellular currents then flow axially
in a resistive medium. The model chosen here implies that the specimen in the su-
crose gap experiment presents a longitudinal impedance, Z1, Q/cm where Z1 is the
impedance of leaky capacitance in series with a resistor. The model further assumes
an admittance of 1/Z2 mho/cm over that tissue surrounded by electrolyte where Z2
is characteristic of the membrane.
The values found for these parameters by the method described in section A are

(per centimeter): membrane, 0.0234 mF, 0.0178 MQ; myoplasm, 1.489 MQZ; SD,
0.0149 mF, 0.289 MR.
As pointed out by McCann et al. (1973) the measured values are subject to large
variations with time as ions leach from the cell into the sucrose or other insulating
medium in the gap; however, they appear to be of the correct order of magnitude,
and suffice for the present study.
On the assumption that the mean length of the cells is 100 j,m, a specimen length

of 1 cm contains 100 SD in series, and the parameter values per SD multiplied by the
number of parallel cells are 1.49 mF and 0.00289 Mg. Since the number of cells in
parallel is not significant in the present study, we treat the specimen as composed of
macrocells having the specific values given for the myoplasm and membrane, joined
end to end by the capacitance 1.49 mF.

While it is possible to calculate the transfer functions for a line of the type de-
scribed, to expand an action potential signal in Fourier transform, and integrate to
obtain the signal form, it appears less cumbersome to solve the differential equations
of the system by direct numerical analysis. The region near the junction of two cells
is therefore segmented as in Fig. 16, with L the length of each segment. The mem-
brane and myoplasm of each cell is represented by a succession of short segments (L
= 20 ,4m), each with a series resistance R1 L, a shunt capacitance C2 L, and a resist-

coypling
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FIGURE 16 The model used in the calculation of cell to cell transmission. See text for
description.
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ance R2/L. Junctions between segments are numbered 1, 2, 3, etc. Junction no. N1
+ 1 is the terminus of the cell on the left and no. N1 + 2 that of the cell on the right.
The coupling between the cells is capacitance C1. The calculated voltage at junction
no. j varies with time, and is defined as V (j).
For the typical pointj, let the voltage be V (j). The net influx of current is zero, so

that at point j, where j is not equal to N1 + 1 or to N1 + 2, we have

V(j - 1) (j) V(j) - V(j + 1) + V(j) + C2L dV(i)
R1L RIL R2dt

For a very short time interval, H, we have

dV(j) V(j) -W(j)
dt H

where W(j) is the value of V (j) at time t-H. These equations can be solved for V (i)
in the form

V(j) = K1 (V(j- 1) + V(j+ 1)) + K2 W(j),

where the K's are constants.
At the junction, if I is the instantaneous value of current from N1 to N1 + 3 and

Q the charge on the coupling capacitor, we have

Qi= Qo + I dt

Qo + H(h1 + Io)/2,
where subscripts 0 and 1 indicate values at t-H and t, respectively. The current,
I, is

V(N1) - V(N1 + 3) -QIC
11= 2R1L

Solving these equations we have the forms

I, = K6 (V(NI) - V(N1 + 3)) -1 QO-Ks Io

Qi = Qo + H(1 + Io)/2

V(NM + 1) = V(N1) - I, RI L

V(N1 + 2) = V(NM + 1) - Q1/C1.

The equations for V(j) can be solved, given the necessary initial conditions, for a
short time interval, H. In the present problem we have chosen a segment length, L =
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0.002 cm and a time step H = 0.0005 s. A computer program has been written to
perform the calculations and plot the voltage, V(j), as a function of distance, jL,
and time, TH, where j ranges from 1 to 9 and T from 0 to 500.
The solution is calculated for an applied voltage V(1), which is set equal to volt-

ages measured in the moth heart (McCann et al. 1973). In the computer plot, dis-
tance from the junction of the cells, voltage, and time are measured on the axes
shown in Fig. 17. The action potential is seen as a function of time in the left-hand
boundary plane. Voltage is plotted at intervals of 0.005 s, while the corresponding
functions of time at each segment are plotted at intervals of 0.002 cm.

It will be noted that in passive propagation along the left cell, the overshoot peak
becomes rounded off and disappears. The signal generally decays in transmission
along the cell as well as between cells. The decay along the cell is very small in the
short distance shown in Fig. 17. At the junction, since we are dealing here with the
capacitative coupling alone, there is a radical change in the time course of the volt-
age. The signal now has the appearance of a derivative of the original signal, with a
maximum value roughly a third as great as the values immediately to the left of the
junction, or some 22 mV. The signal on the right of the junction is seen to overshoot
on its return to zero, and become slightly negative. Since the signal transmitted at
the junction is primarily a derivative of the impinging signal, it would have a much
greater amplitude if we had permitted the cell on the left to regenerate the action
potential spike at every point. However, even with the decrement due to passive
propagation in this system, a sufficient voltage is produced in the cell on the right to
trigger its action potential.

FiouRE 17 The passive spread of voltage from an action potential applied to the left
cell, along that cell, across the coupling and into the right cell is calculated and plotted
by a computer. The coordinate directions are indicated in the insert. Voltage is plotted
at intervals of 0.005 s; corresponding functions of time, plotted at each segment at intervals
of 0.002 cm.

BIOPHYSICAL JOURNAL VOLUME 14 197496



This model incorporates a capacitative coupling between cells without specifying
the anatomical correlate of this capacitance. However, it appears likely that the
coupling may occur at the septate desmosomes. The presence of any conductive
paths between cells would, of course, augment the transmission between cells in ex-
cess of that predicted by this model.

APPENDIX

Simulator Program

A program, EVOLVE, has been written to enable the computer to take over the tedious task
of adjusting the parameter values in a simulating circuit in such a way as to match the im-
pedance of the specimen.
An arbitrary criterion for the best fit has been chosen. It consists of the least square dis-

crepancies between measured and calculated moduli and angles, in which weights are suitably
assigned. Given the circuit configuration, then the sum of squares so weighted is a function,
E, of the circuit parameters. The objective of the program, EVOLVE, is to find parameter
values which miiniize E.

Starting with any given parameter values, the program finds the value of E. It then selects
one of the parameters at random, and applies to it a random alteration. It calculates the
resulting value of E, and retains or discards the alteration according as the new E is less than
or greater than the old one. Then, the cycle is repeated.

For economy of computation, the computer is instructed to form a weighted average of
its ratio of successes for each variable, with weights decreasing exponentially in the past.
The computer retains a "mutation range" for each variable, over which the probability of a
mutation or alteration is uniformly distributed. Clearly, if the mutation range is very small,
the probability of successful mutation is ½f, while if the range is very large, this probability
approaches zero in most instances. Hence if the success ratio approaches ½J or more, the
computer is instructed to increase that range; conversely, if the success ratio falls below a
given value (such as 0.35) then the range is decreased.
The number of mutations required depends, of course, upon the closeness of fit of the

original estimate of parameter values, and upon the chance mutations made by the computer.
To help the user in deciding when to stop the program, the computer prints the success ratio,
the mutation range, the parameter value being tested, and the resulting E value, for each
mutation (or at any selected period). The run is halted when the success ratios approach 0.5
and the mutation ranges are small compared with the respective parameter values, while E
approaches a constant value.
The function, E, is embodied in a subprogram which solves the given circuit configuration

with assigned parameter values. By appropriate specification of the subprogram, any of the
configurations implied in the models described here may be optimized. Program EVOLVE
has been used to determine the parameter values given in connection with each configuration
shown here.

It is clear that the optima found will be local only. There is, of course, a chance that there
exist other, and perhaps better, local optima, but if the program is run with large initial
ranges, it is extremely likely that any separate local optima will be discovered in a series
of runs.
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