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ABSTRACT Simple models are used to calculate the inelastic light scattering spectrum
of motile bacteria when wiggling motions are included in addition to translational
displacement. Computations of spectra lead to the conclusion that nontranslational
motions can be neglected when swimming speeds are deduced from light-scattering
data for normal vigorously motile strains. On the other hand, for slowly translating
bacteria, or for strains exhibiting noticeable wiggling motion when viewed in a micro-
scope, additional spectral components may be significant. Such components are best
distinguished when measurements are made at small and intermediate scattering
angles; at large angles the spectra have approximately the same scaling properties
(functionals of Qt, Q being the Bragg wave vector) as those associated with simple
translational motility.

I. INTRODUCTION

Using a unique tracking microscope, Berg and Brown (1, 2) recently investigated de-
tails of the trajectories of certain strains of flagellated E. coli bacteria. They found
that a bacterium typically follows a linear path for a distance approximately 10 times
its length, after which it quivers (tumbles or “twiddles”) and then changes direction.
For wild-type bacteria moving in spatially homogeneous media, the time spent in
“twiddling” can be as much as 159 of the total trajectory time. However, considerably
less twiddling is observed in the motions of nonchemotactic mutants, suggesting that
such movements are related to the detection of chemoattractant gradients. Additional
evidence for correlations between chemotactic response and nontranslational motions
of bacteria appears in the studies of Macnab and Koshland (3) and Tsang et al. (4),
which indicate that tumbling occurs to a greater extent when bacteria move from re-
gions of high to low chemoattractant concentration.

Methods of laser light intensity correlation spectroscopy recently have been used
to measure translational velocities of motile bacteria (5-7). Since bacterial dimensions
are of the same order as the wavelength of the incident light, spectral components due
to wiggling and twisting motions also may be observable. These motions are promi-
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nent under certain conditions (e.g., ‘“‘overgrowth” of the culture, the addition of
~10% glycerol, genetically abnormal motility), although in previously reported studies
(5, 7), samples were prepared such that bacterial motion visually could be charac-
terized as primarily straight line translation. Our purpose, here, is to investigate the
possibility of developing quantitative measures of the wiggling and twisting modes of
swimming microorganisms. Additionally, we wish to assure ourselves that errors will
not be made if translational velocities are deduced from the spectra when bacteria
are moving with a minimum of observable nontranslational components (7).

In previous publications, it was implied that a useful first approximation to the
light-scattering spectrum of motile organisms is obtained by considering the particles
to be point scatterers moving with constant velocities for times which are long com-
pared with typical spectral decay times. In such case, the correlation function
I(Q, 1), which is the time Fourier transform of the light scattering spectrum, is given
as(5)

1Q,1) = fs"‘(QV‘)P(V)dV (1)

when normalized such that I(Q,0) = 1. Here, P,(V) is the distribution of swim-
ming speeds, ¢ is the time, and Q is the magnitude of the Bragg wave vector (Q =
4wn\~'sin(0/2), where 6 is the scattering angle, n is the refractive index of the me-
dium through which the bacteria are moving, and A is the wavelength of the incident
light. Note that Eq. 1 predicts that data taken at different scattering angles would
all superimpose when plotted as a function of the reduced variable x = Qt. Spectral
components due to wiggling motions could appear as deviations from this ideal be-
havior.

Of course, the gross dimensions of most bacteria are comparable to or larger than
the wavelength of visible light. Although the expression given by Eq. 1 might be ex-
pected to hold for large particles if they are spherically symmetric, there is no a priori
reason to assume that it pertains to rod-shaped bacteria such as E. coli. In a com-
panion publication (8) we show that computed correlation functions for non-wiggling
motile rods present significant deviations from Eq. 1 when the velocities of the particles
are assumed to lie parallel to their long axes.

On the other hand, scaling according to Eq. 1 seems to be observed when care is
taken to prepare a sample of bacteria that do not wiggle (5). This paradox can be
resolved when it is recognized that bacteria are optically heterogeneous, i.e. that they
contain internal structures whose polarizabilities differ from that of the exterior re-
gion of the cell. Insofar as light scattering is concerned, the effective size of a bacterium
might be much smaller than its geometric size. Concomitant differences in shape also
must be considered.

Indeed, phase contrast microscopy of E. coli bacteria oftentimes shows opaque re-
gions (““‘chromatinic bodies’’) which occupy only part of the cell volume (9, 10). These
structures, which are believed to be analogs of the nuclear regions of eukaryotic cells,
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have somewhat irregular shapes and seem to be randomly oriented with respect to the
cell axes (10). The net effect is that the chromatinic bodies may be treated as present-
ing a morphology which is nearly spherical when averaged over the various orienta-
tions. The chromatinic bodies also can be visualized by histochemical techniques
(11, 12) and electron microscopy (12, 13). Various studies show that the shapes of the
nucleoid bodies change according to culture conditions (9, 11). For bacteria in log-
phase growth, the chromatin-rich regions usually appear in pairs localized at the op-
posite ends of a bacterium; however, when growth is inhibited the bacteria appear to
contain only one chromatinic body (9, 13). The nucleoid bodies form compact *“‘con-
densed’” masses when culture conditions are maintained properly, such that the bac-
teria can regulate their internal ionic environments (11, 13).

Inelastic light scattering from internally structured particles has been analyzed in
ref. 8, where it has been shown that coherent interference of the scattering from dif-
ferent parts of a complex particle can have important effects on the resulting spectra.
Internal structures can scatter light with relatively greater intensity than can the ex-
terior regions of the particles, given that the internal regions have a relatively more iso-
tropic shape and provided that their indices of refraction are sufficiently different from
that of the exterior region.

The basic model of ref. 8 is a particle having ellipsoidal Gaussian mass distribu-
tions, primary attention being focused there on the consequences of particle aniso-
tropies. In this paper, on the other hand, we principally are concerned with spectral
effects due to off-axial wiggling motions; we ¢ompute correlation functions for some
simpler distributions of scattering mass which, while roughly representing complicated
internal structures, yet are amenable to mathematical analysis.

In Sec. II we analyze a dumbbell-like model represented by two separated point
scatterers which move coherently. When nontranslational movements are absent the
spectra derived from this model are equivalent to those from a rigid bacterium con-
taining two identical, spherically symmetric, scattering regions (8). This model can
be solved in closed form, and the methodology developed for this purpose then forms
the basis of subsequent investigation of specttal components arising from twisting
motions. In Sec. III we further analyze the dumbbell model to obtain expressions
for spectral modulation arising from off-axial movements.

We present these dumbbell calculations first because, once the mathematics for the
more complicated problem has been set forth, analogous results for a single, medially
located, wiggling point scatterer may be obtained as a special case. The latter model
pertains to a uninucleate cell containing a spherically symmetric nucledid. Results
are given in Sec. IV, along with some for a wiggling line of scattering centers. Such a
distributed source might represent a cell whose single chromatinic body is elongated
and not spherical. In Sec. V we discuss the results and present some confirming
data. Throughout the paper we implicitly assume that the bacteria are in such dilute
suspension that they move independently of each other, and that multiple scattering
of photons can be neglected.
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II. LIGHT SCATTERING SPECTRUM DUE TO A
MOTILE TWO-POINT DUMBBELL

To calculate the spectrum we first consider a bacterium to be divided into N linearly
distributed segments, and designate R(z) to be the position of the center of mass of
the bacterium and g; to be the distance from the center of mass to the center of the
Jjth segment. Since bacteria move without interruption for times which are, on the
average, long compared with a typical spectral decay time (5), we may express R(¢)
approximately as R(#) = R(0) + V¥, where R(0) is the position of the center of
mass at ¢ = 0 (chosen arbitrarily) and V and ¥ are, respectively, the speed and a unit
vector signifying the direction of bacterial translation. Assuming, first, that the bac-
terium moves with its axis always parallel to ¥, the position of the jth segment may
beexpressedasr; = R + ;7. Thus, the scattering spectrum may be expressed (14) in
terms of the correlation function

Q.0 = N2<[Z aexpliQ- r,(m][z ap expl-iQ- r,.(0>1]>

ZZ aja, expli(s, — o, + Vt)Q-v1>, (2)
I=1m=1

where g; is the scattering power (the ‘“‘excess” polarizability) of the jth segment. The
brackets (...) signify averaging over the velocity distribution of the bacteria. Q is
the Bragg scattering vector (see Eq. 1 ff). To obtain Eq. 2 we have implicitly as-
sumed that Rayleigh-Debye scattering theory is applicable; recent measurements of the
total intensity of light scattered by E. coli bacteria are in substantial agreement with
this assumption (15).

If all segments were alike (a; = a for all j), Eq. 2 would pertain to an infinitely
thin, optically uniform rod. On the other hand, in accord with the remarks made
above in Sec. I, we here consider the scattering mass to be localized at only two points.
If the separation between the points is designated as d, Eq. 2 becomes (cf. Eq. 16,
below)

C(Q.0) = T (™1 + cos(1Q- 1)) o

® 1
= "2_2{21 f; V:P(V)dV [1 dx cos(QVix)[1 + COS(Qxd)l}- (4)

In Eq. 4, integration over x (which represents the cosine of the angle between Q and §)
is easily performed. When the resulting correlation function is normalized to unity
att = 0, we thus find

14(Q.1) = C(Q.1)/C(Q.0)
= [1 + jo(@{Go(@VD) + 'Llio(QLVE + dD) + (jo(QLVe — dD)], (5)
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FIGURE | Calculated normalized intensity correlation functions /(Q,t) for a translating two-
point dumbbell, calculated according to Egs. 5 and 6. Curves have been computed for different
values of the parameter ¢ = Qd/2, where Q is the magnitude of the Bragg scattering vector, and
dis the distance between the centers of the dumbbells (¢ = 3.75, 7.5, 15.0, 20.0).

where j,(z) is a spherical Bessel function of order u. Here, Q = | Q| symbolizes the
magnitude of the Bragg vector, and the brackets {...) now imply averaging with re-
spect to the bacterial speed distribution, i.e.,

(@YD) = f " jd@VnP(V)av, (6)
0

where P,(V) = 4z V2P(V) is the “swimming speed distribution” (5).
An alternate expression for I,(Q,t) is obtained by employing the expansion (16)
Jo(A + &) = >r_0(2n + 1)j,(N)),(§), from which one obtains

1a(Q.1) = (jo(@VD)) + [1 + jo(Qd)]"! Zl (4n + 1jn(Qd)(jun(@QVD)).  (7)

(The odd terms drop out of the series since j,(z) = —j,(-2),k =1,3,5...))
In Fig. 1 we show [,,(Q,t) as calculated from Eq. 5. We took the swimming
speed distribution P,(V) to have a Gaussian form, viz.,

P(V) = Qa/vT)(aV/2) exp{-(aV/2)*, (8)

where a is defined as o = (6/ {V'?))"/2, with (V'?)!/2 being the root mean square (rms)
speed of the bacteria. The curves have been computed for different values of ¢ =
Qd/2; for reference, we note that, if a He-Ne laser is used, when d is taken as 1.5 um
the parameter value ¢ = 7.5 implies a scattering angle of approximately 45°. Particu-
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larly for large values of Qd, scaling of 1,(Q,t) as given in Eq. 1 is observed.
(Actually, this is apparent from the factor [1 + cos (Qdx)] in Eq. 4, since integration
over the rapidly oscillating cosine term gives a contribution which is negligible when
compared with the constant term.)

The deviation from Q¢ scaling can be analyzed analytically by considering the terms
of the Bessel function expansion given in Eq. 7. Defining B,(Qd) as

By(Qd) = 1 + jo(Qd)

. 9
B,(Qd) =i (Qd), k = 0,
we have
-  By(Qd) 1,(QV1)
1, —<]0(QVI)>{1 +5 B:(Qd) IZ(QVt) + }, (10)
where, for the swimming speed distribution given in Eq. 8,
Iy = (jo(QV1)) = exp{—(Qt/a)}, (11)

and

o= Gaiovey - SE (5 et (2= [+ 5 (&) ere{-(2)]. 2

Here, erf(. . .) is the error function, viz., erf (x) = 2x~!/2 /;" exp (—y?)dy.
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FIGURE 2 The ratio /,(Qt)/1(Qt), evaluated for different swimming speed distributions P,(V)
(seeEqgs. 11and 12). Key: _________ Gaussian distribution; .__.__.__.___ uniform distribution;
----------- é-function distribution.
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The ratio I,/],, calculated with the distribution given in Eq. 8, is presented in
Fig. 2. For comparison, we also show results which are obtained when P,(V) is uni-
formly distributed up to a value V,,. (In this case we find I, = (j,(QV?)) = Si(QV,,t)/
QV,t,and I, = (j,(QV1)) = [SI(QV,1) — 3j,(QV,.1)]1/2QV .t; V,, is chosen to be 3!/
times the value of the corresponding rms speed. Si (...) is the sine integral [16].)
Similarly, we show I,/I; when P,(V) is é-function distributed. We observe that, for
values of @Vt such that I(Q, t) > 0.5, the ratio I,/I, seems not to depend too strongly
upon the specific form of P,(V).

The other factor in Eq. 10, namely, the ratio B,(Qd)/B,(Qd), is less than (20d)™!
when Qd is large. Taking as an example ¢ = 7.5, we find that the first order correc-
tion term is negligible, being 5 - (B,/B,) - (I,/1,) = (5)- (1/30) - (0.3) =~ 0.05 at the half-
decay point of I,,(Q, t). (The value I,/I, = 0.3 is taken from Fig. 2, and corresponds
to Qt{V»"2 = 2.) The higher order terms in Eq. 10 are yet smaller, and the series
converges rapidly.

III. SPECTRA DUE TO WIGGLING MOTIONS

To assess the spectral perturbations due to wiggling, we again evaluate Eq. 2 for a
two-point mass distribution. However, instead of assuming that a bacterium always
moves with its axis parallel to its translational velocity, we now also allow for changes
in the inclination of the bacterium in relation to the translational direction. To ac-
count for this in a simple way, we consider wiggling motion to occur in a plane, with
the bacterium moving as if hinged at its head (see Fig. 3). We expect that results are
not significantly different in the corresponding three-dimensional case (i.e. we pre-

A
}
-
Q
|
|
oy |
ox l 3 A
7 g =X
3 £ N
7% N
TAY
y

FiGURE 3 Coordinate system used for evaluating Eq. 2 when nontranslational movements are
considered. The direction of motion of the bacterium is taken as X, and the plane of wiggling
motion is defined by the coordinates {X,§}. The angle of inclination of the bacterium is a(?).
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sume that sinusoidal and helical motions give rise to qualitatively equivalent spectral
features).

We find it convenient to fix the X axis to be in the translational direction of motion
of the bacterium and average over the possible orientations of Q relative to this axis.
Let a(t) be the angle between (¢) and the direction of motion. In this coordinate
system the components of & and Q are then given as (see Fig. 3)

a(t) = {—cosa(t); sin a(?); 0}, (13)
and
Q = {Qsinfcos ¢; Osinfsin; Qcosb). (14)

It follows that C(Q, t) may be expressed as

C0.1) = %< /; " dosind f - dpe'QVisindcose B,(le.,,;o)>, (15)
0

where the brackets (...) now signify averaging with respect to the distribution of
a(t) and a(0) as well as P,(V). In Eq. 15, B(Qd | ¢;0) is defined as

B(Qd| ¢;0) = Yufl + expidQsinfcos(¢ + a(0))]
+ exp[—id Qsinfcos (¢ + a())]
+ exp (2idQ sin [(a(t) — a(0))]
-sinfsin[e + %(a@®) + a(0))} (16)

To derive Eq. 16 we have used various trigonometric identities; for example, the fourth
term follows from Egs. 2, 13, and 14 by [sing -(sina(f) — sina(0)) — cose -
(cos a(t) — cos a(0))] = 2 sin %o(a(f) — a(0)-sin(e + %(a(?) + a(0)).

The ¢, 0 integrals in Eq. 15 can be performed by noting that (16)

2r
f exp{iZsinfsin(¢ + ¢ Nde = 2wJy(Zsinb) (17)
(/]
and
27 f sin8J,(Z sin0)d6 = 4= jo(Z). (18)
[\]

Thus, Eqgs. 15 and 16 may be expressed as (see Appendix A)
c@Q.n = ‘A{(jo(Q VD) + (jo(Qld® + 2Vid cosa(0) + (V1)']'?))
+ {jo(Q[d? — 2Vidcosa(t) + (V1)’]'?)) (19)

+ (Jo(Q[B2d? + 2ViB,dsin Yy (a, + ag) + (V1)*]'?)),
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where 3, represents
B, = 2sin['f(a(t) — a(0))]. (20)

Note that, lim,_, C(Q, 1) = (jo(QV1)), i.e., when a particle is small compared with
the wavelength of the incident light, wiggle motions will not be discernible.
Similarly, if the wiggle amplitude is small (i.e. a() = 0), the expression given in
Eq. 19 tends to that given in Eq. S.

Eq. 19 could be used for computations. However, our current purposes are better
served by first employing an addition theorem for the Bessel functions, similar to that
which we used to derive Egs. 7 and 10. We have (16)

Jo([p? + r? - 2prcos6]'?) = Z 2n + 1)j,(p)j.(r) P,(cos8), (21)

n=0

where the P,(- - - ) are Legendre polynomials. Thus, Eq. 19 becomes

C(Q.1) = 31 + 2io(Qd) + jo(QBAN o(@VD))

—% Gsin 'La(?) + a(0)]{/,(QdB,) + B. i1 (QA)N(ji(QV1))
e (22)

When the first order correction term is examined, we note that if a(z) is small, the
term B,(t) = [,(QdB,) + B.j,(Qd)] sin([a(t) + a(0)]/2) is of order O(a?). Also, if
QOd is large but a(t) not small, then B,(¢) ~ 0(0.5/0d). Consequently, as an ex-
tension of the arguments used to show that Eq. 10 approximates Eq. 7, we keep only
the first term in Eq. 22 and now write

13(0,1) > fi(Q,1)(jo(QV1)), (23)
where the normalized function
S3(Q:1) = {1 + 2o(Qd) + (jo(QB,dN}/2 + 2jo(0d)] (24)
pertains to the spectral modulation due to the nontranslational wiggling and wobbling
of the dumbbell model.
In Eq. 24, the expectation (...) refers to averaging with respect to the stochastic

variable a(#). To our knowledge, wiggling motions have not yet been studied sys-
tematically, and we thus choose the simple functional form

a(t) = Asinwgyt (25)

BOON ET AL. Light-Scattering Spectrum from Wiggling Motions of Bacteria 855



I(Q,t)

0 1000 2000
X=Qt (s-cm™)

1(Q,t)

X=Qt (s-cm™)

FIGURE 4 Normalized intensity correlation functions I}, (Q,t), for motile two-point dumbbells
which are wiggling, calculated according to Eqgs. 1 and 26 for different scattenn% angles. (a) Pa-
rameters: distance between centers d = 1.5 um, mean translational speed V = 15 um/s,

maximum wiggle angle A = 30°, wiggle frequency v = wy /27 = 5s™'; (b) same parameters as
(a), except that » = 10 s7!

where w; is the wiggling frequency and A is the maximum angle. A rough character-
ization of observations made with a light microscope is in accord with Eq. 25; using
this functional form, we will at least be able to make appropriate estimates of spectral
perturbations. In all generality one needs the distribution of a(t) or, alternately, ac-
cording to Eq. 25, one should specify the distributions of 4 and of w,. However,
since these are unknown, we assume in the following that 4 and w, are 4-function
distributed. In Eq. 24, this corresponds to replacing the variables by their average
(expected) values. In the same spirit, we set «(0) = 0 for the sake of simplicity.
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FiIGURE 5 Normalized intensity correlation functlon l"f'SQ") for a distributed line of scatter-
ing centers (seeEq 29). Hcre,bl =0,b =1 um, V) =15 umfs, 4 = 30°. (@) v =
wo/2x = 55~ ! (b)v = 10s™". The precise values of the parameters are unimportant; for ex-
ample, we could have taken b, = 1.8 um, 4 = 25°,» = 3.3 s~ ! and have obtained essentially
the same curves as those given in Fig. 5 a. Note, also, the similarity between the expression
used to compute these curves and those given in Egs. 31 and 32.

With these approximations, Eq. 24 takes the form

0.1y = 1L+ 2e(0d) + ju20dsin oA sinwytD)
Sal@n = 21+ 74(04)]

(26)

From this result one observes (Figs. 4, 5):

(a) When Q — 0, f* — 1 so that I(Q,?) probes translational motion only (see Eq.
23);

(b) Forlarge Q, 1(Q,t) reflects the existence of nontranslational motion when it is
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present. The spectra approximately scale as Qr. This occurs because the time scale for
observation of f*(Q,1) is effectively set by the decay of (j,(QV1)) and, for large an-
gles, that decay occurs rapidly with 7. For small values of ¢, Eq. 26 becomes

Sa(Q.0) = {1 + 2jo(Qd) + jo(QdAw1)}/{2 + 2jo(Qd)}. (27)

(¢) Forintermediate values of Q(5° < @ < 30°—see Figs. 4, 5) the nonscaling of
1(Q,?) indicates that wiggling motion is present. Furthermore, analysis of the fine
structure of the spectra for these values of Q and comparison with model calculations
should reveal information about the detailed nature of the nontranslational motion.

(d) For sufficiently small values of wy, f*(Q,?) reduces to the expression given in
Eq. 27. Inthelimit w— 0, f* — 1 and wiggling motions do not materially affect the
spectra.

IV. OTHER MODELS

Results which are qualitatively similar to those outlined above are obtained even when
major changes are made in the assumed optical structure of the bacterium. A variation
of the model which now can be easily analyzed is that where only one significant scat-
tering mass is found, located near the center of the bacterium. This model resembles
vegetative (i.c. nonproliferating) bacteria, which frequently contain only one dis-
cernible chromatinic body per bacterium. We stress that the dimensions of these op-
tically distinct regions are much smaller and less asymmetric than are those of the host
E. coli bacteria (10).

For simplicity, we again assume that the scattering center is spherically symmetric,
but located at a distance b/2 from the forward end of the bacterium. When lateral
motions are absent, so that only translations need be considered, such a structure
rigorously yields the correlation function given in Eq. 1, viz., C(Qt) = (j(QV1)) (see
ref. 8). To calculate C(Q,7) when wobble motions are present, we again represent the
chromatinic body as a point scatterer. In this case the correlation function is calcu-
lated as in Sec. I1I, except that instead of Eq. 17 one has

B(Qb|e;0) = expliQbsin{'s(a(t) — a(0)}- sinf-sinfe + Yh(a(t) — «(0))).

This term is identical to the fourth term appearing on the right hand side of Eq. 17
and, by the same arguments which lead to Eq. 24, yields 7%(Q,t) = f*(0Q,?)
(Jo(QV1)), where the modulation function pertaining to a medially located scatter-
ing center f,(Q,t) is given as

Sn(@,1) = jo(bQ sin['/oA sin wyt]). (28)

The correlation function pertaining to a wiggling rod (i.e., a linear distribution of
scattering centers which, for example, might represent a single elongated chromatinic
body) also is of some interest. An approximate expression for this case can be obtained
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from Eq. 28 if interference scattering is neglected. Let b, and b, designate the dis-
tances from the forward moving end of the bacterium to the proximal and distal scat-
tering centers, respectively. In this case, integration of Eq. 28 yields

{Si(2b,Q sin['/e4 sin wyt]) — Si(2b, Q sin['/A sin wyt])}

2(b, — b,)QOsin['/,A4 sin wyt] (29)

fri’n(Qst) =

where Si(- - -) is the sine integral (16). Some of the approximations leading to Eq. 29
are examined in Appendix B, where optical interference between scattering centers
partially is taken into account.

Despite the apparent differences in form between Egs. 26, 28, and 29, it is interesting
that, when the argument Zb = bQ sin['%4A4 sin(wo?)] is small, essentially equivalent ex-
pressions are obtained. We find

02ty:
43N’

0%y2[b} - b2
3606, 61 OO

Q%d?y?
T 21+ jo(0)I(3Y)

Sa(Q,1) = 1 s Im(@t) = 1 —

fri’n(Qst) =1-

where v, = 2sin!wyt.

Finally, if instead of Eq. 25 one characterizes a(¢) as a(?) = Q,¢, where ©, denotes
a rotational frequency, scattering functions relevant to sustained rotations can be ob-
tained. For example, in place of Eq. 29 one finds (with b, = b, b, = 0))

o (0, 1) = Si<2bQ sin%) / 260 sin%ﬁ. (31)

Such expressions might be useful for interpreting light scattering from spinning mu-
tants of E. coli or other rotating bacteria.

COMMENTS AND CONCLUSIONS

The similarity of the functions shown in Egs. 26, 28, 29, and 31 implies the need for
presupposing a particular model for nontranslational motion in order to obtain ab-
solute measures of rotational or wiggling frequencies from inelastic light scattering
data. In this regard we remark that averaging over distributions of wiggling fre-
quencies and amplitudes also can lead to significant modification of the correlation
function expressions. For example, when the modulation function for medially dis-
tributed scattering centers is averaged over a uniform distribution of frequencies
(P(w) = wy' for0 < w < w,,; = 0 otherwise) we find, in place of Eq. 28,

Su(@:1) = Si(*hbQAwy 1)/ '/bQAWytL. (32)

(For simplicity, we have presumed w,, ¢ to be small in order to derive Eq. 32, as would
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be appropriate for large scattering angles [see below].) Significantly, the expression
given in Eq. 32 is identical in form to that given in Eq. 31 for small Q,¢, despite the
fact that quite different assumptions have been made concerning the distribution of
scattering centers and the nature of the nontranslational motion.

Nonetheless, a number of general observations can be made. First, we refer to Fig.
4, where representations of I},(Q,t) = f4,(0Q,t)-1,(Q,t) are shown for various an-
gles, having been computed according to Egs. 1 and 26. The translational component
1,,(Qt) has been computed with a Gaussian velocity distribution function having a
rms speed {(¥D'2 = 15 um per s (this is approximately one-half the normal speed
(7) and has been chosen to account for the reduced translational velocity resulting from
the aberrant motility). In Fig. 4 a, the distance between scattering centers d was taken
as 1.5 um, the angle of maximum wiggle 4 was taken as 30°, and the wiggling fre-
quency approximately 5 cps (w, = 2av = 30 s~'). We see that, for these parameter
values, it would be difficult to discern spectral changes as the scattering angle is
changed except, perhaps, at very small angles. .

Although, for the latter hypothetical case, an error of approximately 30%, would
occur if the half maximum of 1(Q,t) at, e.g., & 20°, were taken as an index of trans-
lational velocity, the amplitudes and frequencies of oscillation normally observed for
translating bacteria are considerably smaller than those chosen here. Thus, we can
conclude that if the bacteria do not exhibit marked wobbling when viewed in the
microscope, the values of swimming speed deduced from light scattering spectra are
likely to be correct. In other words, for vigorous strains exhibiting strong and dom-
inantly linear movements, wiggles and wobbles superimposed upon translational
motion do not lead to significant errors when inelastic light scattering is used for mea-
suring translational swimming speeds of bacteria (see, also, Fig. 5 a).

On the other hand, for certain aberrant cultures, spectral perturbations due to wob-
bling could be significant. This is illustrated in Fig. 4 b, for which parameters are
identical to Fig. 4 a, except that w, = 60 s™!. Variations in spectral structure, as a
function of angle, are quite noticeable. Errors in determination of translational swim-
ming speeds also would be greater.

We previously indicated that, when the bacteria are suspended in buffered media
which do not support growth, they most likely would appear as uninucleate cells. In
this case, correlation function expressions such as those given in Egs. 29 or 32 would
be appropriate. Consequently, we have evaluated Eq. 29 for the case b, = 0. Results,
which are presented in Fig. 5, lead to qualitatively similar conclusions.

In Fig. 6 we show some normalized correlation functions which had been measured,
primarily, to investigate the effect of wiggles on measurements of motility taken at
intermediate scattering angles (~25°-90°). The experimental apparatus is fully de-
scribed in ref. 5, where we also discuss the relationship between “clipped” autocor-
relation functions (measured by our instrument) and the functions /(Q,t¢). The spectra
pertain to a sample of E. coli K,, bacteria which had been grown in L-broth (see ref. 5
for details) and to which glycerol had been added to a concentration of 7%,. When
viewed through a microscope, the sample exhibited the following features. Before
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FIGURE 6 Measured intensity correlation functions for a sample of motile E. coli K,, bac-
teria in which wiggle motion had been effected by addition of 79 glycerol. (The channel width
was 500 us, counting rate ~ 500 cps, clipping level k = 0; see ref. S for further discussion.)

adding the glycerol almost all of the bacteria were moving rapidly, in apparently
straight-line motion. In contrast, after the addition of glycerol almost all were wig-
gling markedly, and their translational motion had slowed. A broad distribution of
wiggle frequencies and amplitudes were observed, the average values of which were
roughly estimated to be, respectively, 2-3s~! and 4 = 30°. Although the scattering
angle used in the present measurements does not go below 34°, some salient features
are observed. In particular, we find little difference between the various spectra per-
taining to larger angles, when plotted as a function of x = Qr (see Fig. 6). This is in
accord with the analysis shown in Figs. 4 and 5. Furthermore, the observation that
the spectrum ceases to scale when the scattering angle decreases also is in agreement
with theoretical predictions.'

We have not yet investigated how levitation occurring between linear runs con-
tributes to the spectrum. Further investigation of this point seems desirable, in view
of the possibility that such motion plays a significant role in chemotactic recognition.
Although detection of nontranslational bacterial dynamics may be accomplished by
stroboscopic photo-microscopy (3) or computer assisted tracking (1), quantitative
measures of the details of such motion are difficult to obtain by classical light micros-
copy. The present work suggests the possibility of investigating components of bac-

!1In a recent publication, Schaefer, Banks, and Alpert (1974. Nature (Lond.). 248:162) also present data for
bacteria whose movements contain off-axial components. They study a strain of E. coli which, under the
culture conditions used, shows considerable wobble motion when viewed through a microscope. Q¢ scaling
also is a characteristic of the correlation functions which they present. Further, when they add small
amounts (0.2%) of hydroxypropyl methyl cellulose to their cultures, wobble motion is suppressed. In this
case the measured correlation functions decay with times which are close to those observed for wild-type
strains of E. coli K12 grown under conditions which result in minimal nontranslation movement (7).
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terial motion such as wiggling or levitation by studying the fine structure of the spectral
distributions of scattered light.
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APPENDIX A: DERIVATION OF EQ. 19

As an example, let us consider the term (see Egs. 15 and 16)
r 2x . )
C4 = (47,-)-1 f dosin 6 dwe'Q"‘ sin6 cos peus‘(o,.o), (33)
0 0

where E, is given as
E, = 2dQsin{'f(a(t) — a(0))]sinfsin(e + ‘f(a(t) + a(0))). (34)
The exponents in Eq. 33 may be written as

iQsinfB[Asin(¢ + €) + Bcose) = iQsinf[(4 cose)sin ¢ + (Asine + B)cos ¢]
= iQsinf[Dcos(p — 0)], (35)

where ¢, A, B are defined as

€ = 'h(a(t) + a(0)); 4 = 2dsin['(a(t) — a(0)]; B = V1, (36)
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and é, D are given as
o = tan~'(cose/(sine + B/A)); D = [A* + 24Bsine + B?]'2, (37)

Thus, the fourth term on the right-hand side of Eq. 19 follows immediately from Eqgs. 17 and
18 when we identify Z and ¢’ as Z = QD, ¢' = w/2 — é. The other terms in Eq. 19 are derived
in like fashion.

APPENDIX B: CORRELATION FUNCTIONS FOR WIGGLING RODS

We now elaborate upon the approximate expression for ', (Q,?) given by Eq. 29. The latter
was derived for a wiggling rod of scattering centers when interference scattering between centers
was ignored. Its validity may be examined by employing techniques similar to those used to
derive the dumbbell and point distribution correlation functions given in Eqgs. 26 and 28.

Specifically, we consider the scattering mass to extend from the hinged end of the wiggling
rod continuously along a line of length b (i.e., b, = 0, b, = b, see Fig. 3 and discussion pre-
ceding Eq. 29). In this case the analog of Eq. 15 is given as (cf. Eq. 2)

b b L4 x
C(0.1) =(4wb2)"[ dl[ dm <fo dfsin 6 [2 de.

-expliQsin0[{(—I/cosa(t) + mcosa(0) — Vt)cos ¢
+ (Isina(t) — msina(0))sin ¢l}>. (38)
Thus, by arguments identical to those given in Appendix A, we have

b b
Cin(Q,1) = (b72) [ dl [ dm (jo(QD(m,1))) (39)

where D(m,!) is defined as

D = {I> + m?* — 2Imcos(a(r) — a(0))
+ 2Vt[lcosa(t) — mcosa(0)] + (Vi)?2}'/2. (40)

Using the addition theorem given in Eq. 21 we find

Cin(Q,1) =~ 1;(Q, 1) (Jo(@VY)),

where 1;;,(Q, t) is given as
b b
1;0(Q,0) = (b7?) f f (o(QU? + m* — 2Imcos(a(?) — a(0)]"?)) dldm (41)
(] (]
b 1
= (267%) f dl f dm (jo(QU(B)? + m* — m(18,)8,]'7)), (42)
(] (]
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with B, defined as in Eq. 20. (Eq. 42 follows from Eq. 41 by a change of variables, taking
account of the fact that the integrand in Eq. 41 is symmetric in /, m.)
Further analytical reduction of Eq. 42 is in general difficult to achieve. However, if 8, is

small we can write
Jo(QUBN? + m* — m(18,)8,1'?) = jo(QB,1)jo(@m),

so that Eq. 42 becomes

b0 z

La(Q,1) = 2(bQ) < fo dz jy(B,2) f0 dyjo(y)> (43)
= 2(b0)" kZ,; ckﬁf*fk<bQ)>, (44)

with the {C, } and { /; (bQ)} given as
C, = (—l)"/(2k + DRk + 1)! (45)

and
b0
£(bQ) = (bQ)*+'Si(bQ) - f z%*sin zdz. (46)
0

For large bQ, one has (bQ)**'Si(bQ) = (x/2)(b@)**' and [,"®z%*sinzdz = O(bQ)*.
Thus, a good approximation is obtained by neglecting the integral terms in Eq. 46, in which
case one has

5 Si(6Q) /5~ _(=D*(B,6Q)*
ln(@.0=2=5 <§ Gk + D2k + 1)z> (47)
= 2202 100, (48)

where f1,(0,t) is the (normalized) spectral modulation due to wiggling. After averaging ac-
cording to Eq. 25, the series may be summed to give

Si(2b0 sin|[(A4 /2) sin wyt]) (49)
2bQsin[(A4/2)sinwot]

f;:n(Qvt) =

This expression reduces to that given in Eq. 29 with b, = 0, b, = b.
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