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ABSTRACT Autocorrelation functions are computed for nonspherical particles whose
dimensions are comparable to or greater than the wavelength of scattered light.
Particular attention is given to models of motile microorganisms. Results for Gaussian
ellipsoids, finite thin rods, ellipsoids with internal structures, and dumbbell-shaped
scatterers are derived and compared.

1. INTRODUCTION

Several recent studies have demonstrated the feasibility of using laser inelastic light
scattering to obtain kinematic parameters of biological microorganisms. Among these
are investigations of the diffusion coefficients of viruses (1-3), the electrophoretic
mobilities of erythrocytes (4), and the mean swimming speeds of motile Escherichia
coli (5, 6).
A major advantage of laser scattering techniques is the rapidity with which measure-

ments are accomplished. Thus, for example, determinations of electrophoretic mobili-
ties of cells can be made in a matter of a few minutes (4). In contrast, classical micro-
electrophoretic methods require tedious examination of the motion of individual cells.
Furthermore, particularly for homogeneous assemblies of scatterers, kinematic param-
eters oftentimes can be determined with greater precision than with classical methodol-
ogy. These benefits derive from the large size of the scatterers, since very large amounts
of light are scattered by only moderately dense suspensions of such particles. Con-
comitantly, only minimal effort must be given to cleansing the fluids in which the
microorganisms are suspended, since dust and other foreign bodies are comparatively
poor scatterers.
For these reasons the large size of the microorganisms make them attractive constit-

uents for study. However, because the dimensions of such particles are similar to or
greater than the wavelength of light, they generally cannot be considered merely as
point scatterers. Therefore, careful attention must be given to the possible conse-
quences of coherent interference between light scattered from different points of the
same particle. With this in mind we investigate the effects of particle structure on the
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light scattering spectra for some simple models in the Rayleigh-Gans approximation.
Particular regard is given to the derivation of spectra for motile microorganisms.
Our basic model is that of an ellipsoid of revolution, characterized as having a

Gaussian mass distribution (Sec. II). This model has the desirable characteristic of
being analytically tractable, and spectra (actually, their time transforms) are computed
for both motile and diffusing particles (Secs. III, IV). Velocity distributions of the
particles are taken to be isotropic. Generally, we assume that motion occurs parallel
to the major axes of the particles; effects of off-axial orientation are analyzed in an
Appendix. We also analyze variations of the basic model which symbolize internally
structured microorganisms. These are, specifically, shell-like (Sec. V) and dumbbell
(Sec. VI) models, suggested by "chromatinic bodies" (7, 8) appearing in phase con-
trast microscope images of bacteria.
Whenever possible, we try to express our results in terms of reduced and normalized

variables to facilitate applications to particles and microorganisms of many different
sizes. Although references to scatterers having the dimensions and motile characteris-
tics of E. coli bacteria frequently occur, we emphasize that our interest in the latter
microorganisms derives largely from their role as typifying scatterers of biological
origin.

II. SCATTERING FROM AXIALLY SYMMETRIC GAUSSIAN PARTICLES

We consider all particles to be identical and in sufficiently dilute suspension that inter-
particle interactions and multiple scattering can be neglected. In this case the correla-
lation function C(Q, t) - (E*(0)ES,(t)) is given in the Rayleigh-Gans approxima-
tion as (9, 10)

N N

C(Q, t) = K : x: aiajeQ(-i(Q )-ri(0))) , (1)
i,l j=1

where N, frj, and Jail are the total number, the positions, and the excess scattering
powers' of the distributed scattering centers of a particle. As usual, Q = 47rnX'-
sin 0/2 is the magnitude of the Bragg wave vector. The average (..) is taken with
respect to the distributions of velocity and orientation of the particles.

In Secs. II-IV we assume that all scattering centers within a particle have equivalent
scattering power. Implicitly, we consider internal optical heterogeneities to be describ-
able by spatially variable densities of scattering centers. Equivalently, of course, one
could consider the particles to be composed of regions of uniform density but variable
polarizability (cf. Secs. V, VI).
The position of the jth scattering center rj(t) is rj = R(t) + pj(t), where R(t) is the

center of mass position of the particle and pj(t) is the position of the jth scattering cen-

IThe "excess scattering powers" (E,,) are proportional to the difference between the polarizabilities of the
scattering centers and the polarizability of the surrounding medium.
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ter relative to the center of mass. Therefore, assuming that all scattering centers have
equivalent polarizability, Eq. 1 can be expressed as

C(Q, t) = a2 KeiQ AR(') E E e-iQ Pj(O)eiQ'k(k)), (2)
j k

where zAR(t) is the displacement of the center of mass at time t. If P(p, t) denotes the
distribution function for finding a scattering center at p at time t, then NP(p, t)d3p is
the number of centers in d3p at p at time t and

N

EeIQ Pk(t) = Nfd3pP(p, t)e'Q. (3)
k-I

We note that P(p, t) changes with time only if the particle is nonspherical and is tum-
bling or experiencing some other axial reorientation. Combining Eqs. 2 and 3 gives

C(Q, t) =a(eiQ. R(') fd3p' fd3p P(P', 0) P(p, t)eiQ P'eQ) , (4)

where aN., Na is the total excess polarizability of the particle (the difference between
the polarizability of the scattering center and that of the medium in which the particles
are suspended).

In the case of a spherical particle, Eq. 4 reduces to

C(Q, t) = a2 S(Q) (eiQ AR(t))

where S(Q) is the structure factor for a sphere. However, generally we wish to con-
sider nonspherical particles which have axial symmetry. Therefore, we define u(t) to be
a unit vector lying along the major axis of such a particle at time t and further define a
body fixed coordinate system (i.e. one that tumbles with the molecule) which has a z
axis parallel to u(t) (see Fig. 1).
We next assume that P(p,t) is distributed according to a normalized Gaussian

distribution in this body fixed frame, viz.,

P(p, t) = (1/2wr 2)(1/2i7ro2 )1/2 e_Z/Uil e -(x2+y2)/2UL. (5)

It follows that

f d3p P(p, t)e'Q-' = e-llQz/2 e y (6)

where Qz = Q.u(t). Since Q2 + Q2 = Q2 _ Q2, Eq. 6 can be expressed as exp[-'/2.
(au- o)[Q u(t)]2] *exp[- 1/U2 Q2], and Eq. 4 becomes

(Q, t) = a2 exp (_ 2 Q2)

2 (0)]2 + U(t)]21) (7)Kxp(Q - AR(t))exp(~-~2Q I[Q u(0] + [Q
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FIGURE I Coordinate system defined for ellipsoidal particles (see Eq. 5).

where Aa2 =1 - a2 reflects the deviations from spherical symmetry, and Q is a unit
vector in the direction of Q. In the following, the model defined to as the Gaussian
Particle to distinguish it from other idealized models such as a linear mass distribution
or an internally structured particle.

For a spherical particle, Aa 0, so that C(Q, t) reduces to aN exp(- cLQ2)(exp.
(iQ A R(t))) and contains information related only to translational displacements.
On the other hand, if Aa2 # 0, thenC(Q, t) also contains components due to rota-
tional motion.

111. MOTILE MICROORGANISMS

We compute the light-scattering spectrum of motile microorganisms by considering
that such particles move in essentially straight-line paths for distances long compared
with Q-'. This condition is met to a good degree by various strains of motile E. coli
bacteria under proper culture conditions and, most probably, it holds for many other
motile microorganisms as well (e.g., the flagellated algae Chlamydomonas [11]). In
this case we can consider the displacement of the particle to be

AR(t) = Vt, (8)

where V is the particle velocity.
We now also presume that the particle always moves parallel to its major axis, so

that u(t) is independent of time and equal to V, a unit vector parallel to V (cf. Appen-
dix B). Moreover, in an isotropic environment the velocity distribution function
P(V) should not depend on the direction of V. In this event the normalized correla-
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tion function C(Q, t) - C(Q, t)/C(Q, 0) corresponding to Eq. 7 reduces to

) df ' dedQvl#e-.2Q2,12 W( V)

CEIfipsoid (Q, t)
d 2Q2 2

(9)

1 2

where x Q * v is the cosine of the angle between V and Q, and W( V) is the speed dis-
tribution function ( W( V) = 4wr V2 P( V)). In the limit A 2 = 0 we obtain the result
for a spherical particle

CSphere(Q,t) = f dVjo(QVt)W(V) = (jo(QVT)). (10)

Since CSphCer(Q, t) is a functional of Qt, Eq. 10 can be inverted to yield the speed
distribution W(V) in terms of a Fourier integral of the correlation function (12).
However, we remark that, in general, C(Q, t) is given as C(Q, t) = En- 0C2"(Q;o) -

(j2,(Q Vt)) and Eq. 10 is just the first term of an expansion whose higher order terms
increasingly important for larger particles and large scattering angles (see Appendix B).
Indeed, Eq. 10 is rigorously derivable from Eq. 9 only if P(p) is spherically symmetric
or the particles small compared with the wavelength of the incident light. The Gaus-
sian model encompassed in Eq. 5 yields analytical solutions for C(Q, t) and thus
conveniently allows quantitative examination of the manner in which particle aniso-
trophy causes deviations from Eq. 10; in Appendix A we demonstrate that results
obtained from this analytically tractable model are essentially identical to those ob-
tained numerically for a uniformly distributed finite rigid rod, provided that the
parameters a,, al (see Eq. 5) are related to the particle length L and width w ac-
cording to2u1 = L/VT,au1 = w/x/T 0.

In order to complete the calculation, the swimming speed distribution W( V) needs
to be specified. For this purpose we take

W(V) = 47r("y2/w)3/2 V2e-42V2, (11)

where y is related to the root mean square (rms) swimming speed ( V2)1/2 as

n/2 = 3 (V2)-1. (12)
2

The Gaussian distribution expressed by Eq. 11 is partly conjectural, but it seems to
approximate data determined (12) for the swimming speed distribution of motile E. coli
K12. Fortunately, qualitative aspects of the resulting spectra are not too sensitive to
the exact form of P,( V) (6, 13).

2Alternatively, e.g., one might demand that 95% of the mass distribution given by Eq. 5 lie within the actual
boundaries of the particle. In this case one would obtain a I L/4, al * w/4.
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FIGURE 2 Normalized autocorrelation functions for motile ellipsoidal "Gaussian particles," cal-
culated according to Eq. 13. The parametere is given as e = [(L2 _ w2)/ 1011/2 Q, where L and w
are the major and minor axes of the particles, and Q is the Bragg wave vector (see Eq. 14). In a
typical experiment e would change in proportion to Q, the latter arising from changes in the
scattering angle.

As shown in Appendix C, Eqs. 9 and 11 lead to the simple result

C(Q, t) = t[erf(ez)/z] + (2/v'r)(Z2 _ 1)ez22l/z2erfE, (13)

where the parameters e and z are defined as

e = Q(ao - a2)1/2
z = {1 + t2(V2/6)Q2/E21'/2 (14)

= 11 + W2/f211/2 (15)

and erf(y) = 2/V`fOYexp (-x)dx is the "error function" whose values are tabu-
lated (14). .Correlation functions computed from this expression are shown in Fig. 2,
results being plotted in terms of the reduced variable W = Qt (V2/6)"/2 and para-
metrized by e (cf. Eq. 14). Note that, for a He-Ne laser, Q - IO5cm-' when the
scattering angle is 45°. Thus, for a particle whose length is - 1.2 um and width is
-0.4 um (the approximate body dimensions of a moderately sized E. coli bacterium)
one finds (with au = L//T0) that e - 3.6. This puts us well within the range where
significant deviations from the ideal Qt scaling relationship expressed by Eq. 10 would
be predicted.

However, with regard to measurements on E. coli bacteria, we caution that this sim-
ple model probably is not directly applicable since it implicitly represents the bacteria
as rod-shaped microorganisms of uniform optical polarizability. In fact, phase con-
trast microscopy shows internal structures ("chromatinic bodies") which occupy only
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part of the cell volume (7, 8). Thus, the effective size of the bacteria may be somewhat
smaller than the geometrical size as far as light scattering is concerned (15, 16). This
point is further discussed in Secs. V and VI, where we investigate models of optically
heterogeneous microorganisms.

In general, if the Qt scaling relationship is not observed experimentally, it is difficult
to extract swimming speed distributions from C(Q, t). In such case the structure of
the microorganism needs to be specified with considerable precision in order that un-
ambiguous values of the motility parameters be obtained. On the other hand, Eqs. 13
and 15 indicate that the spectra are functionals of (V2)'/2t. Thus, by performing mea-
surements at a fixed scattering angle, relative values of swimming speed can be deter-
mined even when Eq. 10 is not applicable.

IV. DIFFUSING PARTICLES

The Gaussian mass model also can be used to investigate the manner in which inter-
ference scattering might affect spectra obtained for large freely diffusing particles (for
example, bacteria whose metabolism has been inhibited [17]). For sufficiently large
particles, rotational diffusion times are very long compared with translational diffusion
times, so that in Eq. 7 u(t) can be approximated as a stationary quantity. Thus,
Eq. 7 becomes

C(Q, t) = (exp(iQ-i\R(t)) exp(- Aa2Q2[Q *u]2). (16)

To evaluate Eq. 16 we first average over the translational motion, keeping the particle
orientation fixed, viz.,

(exp(iQ - AR(t)) fixed. = exp(-Q *D *Qt), (17)

where the translational diffusion tensor is

D = D11uu + D1(I - uu). (18)

Here, Di and D1 are the translational diffusion coefficients for motions parallel and
perpendicular to u, respectively, and I is the unit tensor.

Substituting these results into Eq. 16 gives

C(Q,t) = exp(-Q2D1t) (exp(-[Ao2 + (DH - Dj)t](Q_U)2))

= exp(-Q2D1t) f (dq/2)exp(-[4A2 + (D - D)t] Q22) 19)
I

where i7 = Q u/ Q again is the cosine of the angle between Q and u. Alterna-
tively, the correlation function can be normalized and expressed in terms of error func-
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tions as

C(Q,t)= eY erf[E(l + VIY)'/2] (20)
[I + OVY]"'2 erf[,E]

where is defined in Eq. 14 and Y and Vt are defined as

Y DLQ2t (21)

V/- (D1 - D1)/(H - Or )D1Q2. (22)

This result reduces to exp(- Q2Dt) for a sphere.
It should be noted that in general the correlation function does not scale with Q2Dt

as it does for a sphere. Interestingly, however, for large particles the deviations from
scaling are small. For example, for E. coli, one expects (D 11 - D1) O0(10-9cm2/S),
(q2 - 2) O(10-8cm2), t S e(I0-2s), so that A Y < O(10-2) in Eq. 20. Conse-
quently, nonscaling corrections to C(Q, t) are predicted to be small in this case, in
agreement with experimental observations (17).

V. INTERNALLY STRUCTURED PARTICLES

Gross geometric shape may not be the best representation of the structure of a micro-
organism for the purpose of computing light-scattering spectra. Viruses and cells are
inhomogeneous, and their constituent materials have differing optical properties.
Since the intensity of the light scattered by a structure is proportional to the difference
between the optical polarizability of the structure and that of the surrounding material,
the light scattering spectrum may in fact depend primarily on those parts of the micro-
organism whose index of refraction is very different from that of the culture medium.

For example, bacteria contain nuclear figures (chromatinic bodies) which are com-
posed of material of relatively low refractive index. These regions show up clearly in
investigations, by phase contrast microscopy, of dividing cultures of E. coli. One or
more (usually two) distinct bodies are observed, and their somewhat irregular mor-
phology changes as the bacteria grow and divide (8). The significant point, however,
is that the chromatinic bodies are considerably smaller and, when averaged over all
orientations, more nearly spherical than are the bacteria themselves. The proportion
of multinucleate to uninucleate cells depends on culture conditions. When the bacteria
are vegetative-for example, when suspended in a buffered motility medium which
does not support growth-almost all members of the culture contain only one chroma-
tinic body lying near the center of the cell. On the other hand, when the bacteria are
rapidly growing, the chromatinic bodies usually are visualized in pairs, localized at the
ends of each cell (8).
We now analyze a shell-like model meant to represent uninucleate cells. We suppose

that the particle of interest consists of an interior ellipsoidal region, containing scatter-
ing centers having excess polarizability a, and an exterior region composed of scatter-
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ing centers having excess polarizability a. The correlation function for this type of
particle may be calculated as in Sec. II except that, in place of Eq. 2, we now have

C(Q,t) = (eiQAR(1) Sa(Q t U) 2), (23)

where Sa(Q, t, u) is here given as

Sa(Q9t9U) = a E eiQPi + (d - a) E eiQPi. (24)
Entire Interior
particle region

Thus, after again invoking the Gaussian model for each sum in Eq. 24 we find that
Sa(Q, t, u) is given as (cf. Eqs. 3, 5-7)

Sa(Q1t,u) = Naexp (
I

Q2) exp (- 2[Q * u]2)

+ N(a - a)exp 2)exp( 2 )[Qu (25)

where N represents the total number of scattering centers, and N the number of scat-
tering centers in the interior ellipsoid. The parameters a.L and A ar relate to the overall
dimensions of the particle, whereas & a-,A relate to the dimensions of the smaller
interior.
The function Sa(Q, t, u) 2 in Eq. 23 contains four terms, each having a form

equivalent to that which appears in Eq. 7. Thus, the techniques used in Sec. III could
be used to determine C(Q, t) for the current model. However, even without perform-
ing the computations, we observe that the light-scattering spectrum of a large particle
may depend more on the morphology and motions of internal organelles than on the
dimensions and movements of the particle as a whole. In effect, the light-scattering
structure of a biological cell depends both on the index of refraction of its constituents
and, also, on the manner by which interference scattering leads to reduced scattering
intensities from the different regions.

These points are illustrated if Eq. 23 is analyzed for a model bacterium. We first
note that when the index of refraction of the culture medium is adjusted to be close to
that of the exterior region of the cell, then a = 0, and only the smaller interior is visible.
This technique has been used to visualize the morphologic changes of chromatinic
bodies which accompany cell division (8). However, when the suspending medium has
an index of refraction close to that of water, the factors a and (a - a) are comparable.3
In this case, the dominant influence on the light-scattering spectrum is the shape and
size of the cell organelles.

3Cross and Latimer (16) have explained the angular dependence of total intensity scattering spectra of
E. coli by choosing the refractive index of the exterior portion of the cell to be 1.10 times that of water (the
suspending medium) and the relative refractive index of the interior material to be 1.045. Wyatt (18) has
employed similar values for his studies of light scattered by various bacterial suspensions.
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Thus, in Eq. 23 we see that the factors exp (- a Q2/2), exp(- 1 Q2/2) act to at-
tenuate the intensity of the scattered field. For E. coli, the product a Q is of the order
of 10 at moderate (i.e. not very small) scattering angles. Since al Q and al Q appear
as exponential factors, even a 20% difference between a. and a'1 (these being propor-
tional, respectively, to the exterior and interior dimensions of the scattering regions)
markedly increases the relative importance of scattering from the interior region.
Similarly, the terms AU2, ja2 influence the spectrum in the same way, except that,
additionally, anisotropy is important. For example, if the interior region is spherical,
one finds that exp (- 1/2 2) = 1, whereas the analogous term exp(- /A a) can be
quite small. Although the total number of scattering centers N exceeds those in the
interior region N, the attenuation factors due to structure are generally more signifi-
cant in determining relative scattering intensity.
Due to their irregular shapes and due, also, to the fact that their orientation within

the cells seems to be variable, it is difficult to specify the dimensions of the chromatinic
bodies of E. coli with great precision. However, on the average I seems to be greater
than w, values of I - 0.8 ,um, w - 0.6 ,um perhaps being typical (7, 8). The value of
E which corresponds to these dimensions at, e.g., a scattering angle of 450, ise - 1.7.
By contrast, if the overall cell dimensions of L = 1.5 ,um, w = 0.8 ,um were to be used,
E would have the value E = 4. Thus, a significant reduction in effective size is achieved,
which has the effect of squeezing the theoretical spectra given by Eq. 13 into a rather
narrow range lying relatively close to the E = 0 limit (see Fig. 2).
Even so, the predicted variance from Qt scaling exceeds that which has been ob-

served experimentally (12). This might be due to an overestimate, here, of the aniso-
trophy of the chromatinic bodies, particularly insofar as we have neglected off-axial
particle orientations (see Appendix B). On the other hand, nonmotile contaminants
possibly present in a sample would give spectral components having nonscaling charac-
teristics opposite to those shown in Fig. 2; when plotted as a function of Qt, such
spectra decay more rapidly at successively higher values of Q. The presence of such
contaminants could lead to spurious demonstrations of Qt scaling under certain con-
ditions.

VI. DUMBBELL-SHAPED SCATTERERS

Another structured particle which is easily analyzed in terms of the procedures devel-
oped in Secs. II-III is an ellipsoidal dumbbell. This model is suggested by the visualiza-
tion of dual chromatinic bodies in proliferating bacteria.
We now treat the scattering region as being composed of two linked identical ellip-

soids of revolution, having length I and width w, and separated by a constant distance
d. Following along the lines which led to Eq. 7 we find, for this geometry,

Cdb(Q, t) = a2 e- 2Q2 KeiQ *R(I) cos2( u22[Qu)eAU2Q h). (26)

Here, Aa2 has the same form as that previously given (cf. Eq. 7 ff. and Eq. 5) but the
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FIGURE 3 Normalized autocorrelation functions for motile ellipsoidal dumbbells, calculated
according to Eq. 27. The parameters x and Rare defined as x = Qd/2, R = I2x2 = 4rv/d2,
where ^ 2pertains to the dimensions of the dumbbell sections (e.g., Aa = (l2 - w )/ 10), and d
is the distance between the two dumbbell centers. If d is taken to be 1.5 zm, a scattering angle of
45°implies X 7.5(A = 6,328 A). (a) R = 0.05, corresponding to, e.g., l= 0.8 tm, w
0.6Mgm,d = 1.5M/lm. (b)R = 0.10.

effective length of the scattering region now is that of the smaller optically distinct por-
tions of the cell (i.e. the dumbbell sections), rather than being the overall cell length.
Since the lengths of these regions are similar to their widths, the effects of asymmetry
are mitigated (see, also, the discussion of the previous section).
Due to the cos2 (Qdn/2) term, we have not been able to obtain an analytic reduc-

tion of Eq. 26 similar to Eq. 13. However, upon proceeding as with Eqs. 7-9 but inter-
changing the V and x7 integrations, we find
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e -2y2 cos2xye-Y2W2 [I - 2W2y2]dy
Cdb(Q, t) = (27)

ace -(2y2 Cos2 Xydy

where e and Whave the definitions given in Eqs. 14 and 15. The parameter X is defined
as

X = Qd/2. (28)

Note that in the limit X >> 1 the term cos2 (XY) varies rapidly about its average value
and can be approximated as cos2(xy) = 0.5 [1 - cos 2xy] - 0.5 (i.e. the integral
over the varying part is small compared with the integral over the constant). Conse-
quently, in such limit we get an expression which represents scattering from optically
noninterfering dumbbells of relatively small dimension (cf. Eq. 13). However, in
general the integral in Eq. 27 needs to be performed numerically, but this can be ac-
complished without much difficulty.

Representative results are shown in Fig. 3. The most notable aspect of these curves
is the extent to which they overlap, particularly when compared with those shown in
Fig. 2. A certain amount of Q-dependent dispersion arises due to the large distance
between the dumbbells (see Fig. 3 b). However, the smaller size and decreased aniso-
tropy of the scattering structures leads to a net increase in the degree by which the
correlation functions approach the scaling relationship expressed by Eq. 10.

Receivedforpublication 28 May 1974.
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APPENDIX A: SCATTERING FROM INFINITELY THIN MOTILE RODS

We now compute the correlation function C(Q,t) pertaining to an infinitely thin rod of
length L. By fitting the results to those for the Gaussian model (Eq. 5 if.) we can relate the
widths a 1, oa of the Gaussian mass distribution to the actual cell boundaries.
We divide the rod into N segments and designate yj as the position of thejth segment taken

with respect to the center of mass. In place of Eq. 2 we now have

N ~~~N

C(Q t) = a2 (eiQAR() +-Ze+'(t)yj -! e( k (29)
Nj-1 ~ Nkk-I

Taking the limit N - X provides

l eiQ I(1)yj = fs dy e'Q 01)y = jo(Q. u(t)L/2),
Nj-1 -/2 L

where j0(z) = sin (z)/z is the spherical Bessel function of order zero. Thus, again presuming
that the particle always moves parallel to its long axis, we find from Eq. 29 (cf. Eq. 9)

Crod(Q, t) = a2 (eiQ AR() jo(Q u(O)L/2) 2) (30)

= aN jt dV f d?leiQVl Io(V j rt) W(V). (31)

When the speed distribution represented by Eq. 11 is used in Eq. 31, the V integrations can be
achieved without difficulty. Subsequently, after some straightforward manipulation the nor-
malized correlation function can be expressed as

- 2li- Ls dy jo(Y) 12eW2Y2,2[j - 2y2W2/r2]
Crod(Q, t) = ,2 (32)

2 ;dy jo(y)

where W and r are defined as

W Q (V2/6)1/2t; - QL/2. (33)

In Fig. 4 we show Crod(Q, t) for two different values of ¢. For comparison, we have set a, = 0
in Eq. 13, and have varied aH to achieve good correspondence between the C(Q, t) of the two
models. We see that the correlation functions virtually superimpose when all is chosen to be
a11 = L/V-T.
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FIGURE 4 Comparison between autocorrelation functions for motile thin rods (Eq. 32) and
motile Gaussian ellipsoids (Eq. 13) with al = 0. Good correspondence is achieved when a

is taken to be ao1 = L/vT0, where L is the length of the rod.

APPENDIX B: EFFECTS OF OFF-AXIAL ORIENTATION

In Secs. II-VII we consistently presumed that the particles move in directions parallel to their
major axes. Although this assumption is correct for the average orientation, in reality there is
some dispersion about this idealized directional ordering. For example, for certain culture
conditions or particular strains of E. coli, wiggling movements are present, so that at any given
moment a number of bacteria are oriented such that their long axes lie obliquely with respect
to their directions of translational motion ( 13). Such off-axial orientation diminishes the degree
to which particle anisotropy causes deviations from the Qt scaling relation expressed by Eq. 10.

This may be illustrated by extending the calculation of Crod(Q' t) previously outlined in
Appendix A. As before, we let iu be a unit vector lying along the major axis of the particle.
Also, we define a as the angle between ui and the direction of motion, V. We now find it con-
venient to fix the x axis to be directed along V and take the y axis as lying in the plane de-
fined by fi, V. We then average over all possible orientations of Q relative to these axes
(seealso ref. 13).
The components of V, fi, and Q are thus given as

V = JV,0,0O
U = $cosa, sin a, 0 (34)

Q = fQsin0cosep,QsinOsinlp,QcosOJ

where 0 is the angle between Q and the z axis, and op is the angle between x and the
projection ofQ on the {x, yj plane. When Eq. 30 is expressed as

C(Q,t) =
aN dy L/ dz (eiQ vIei(Y-z)Q.h) (35)

L2 L/2 J-/2
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then, using Eq. 34, we have

C(flt) =
2 (L/2 fL/2 ICQQ,t) = J/2 dy dz dVW(V) (47Lf dO sinO f dw

*exp(ip sinOf(Vt + [y - z]cosa)cos,o + [y - z]sin asinzol)> (36)

where the brackets (...) here signify averaging with respect to the angle of inclination a.
The integrals over 0 and sp can be performed (13), so that Eq. 36 becomes.

2 L/2 f L/2 rOD
C(Q,t) = Ja dy dz dV

L2 L/2 L/2

* W(V) (jo(Q[(Vt)2 + 2(y - z) Vt cos ca + (y _ Z)2]I/2)). (37)

Thus, upon expanding the Bessel function according to (14) jo((p2 + r2 - 2pr cos 0) 1/2) =

E'_0(2n + 1)j1(p)j1(r)Pn(cos0) where the P(...*) are Legendre polynomials, we can ex-
press Eq. 37 as

C(Q,t) = aNE (4n + 1)B2n(QL) fdVW(V)j2n(QVt)-(P2n(cosa)), (38)
n1-0

where the IBk(QL)I are defined as

PL/2 L/2

Bk(QL) L dy dzjk(Q(y - z)) (39)
L/2 L/2

Note that, since jk(z) = -ik(-Z), k = 1, 3, 5 . .. , one finds Bk = 0 if k is odd. (Thus, only
terms of even order appear in Eq. 38. When the particles are aligned along the directions of
their translational motion, a = 0 and (P2n (cOs a)) = 1 for all n.
The IBk I are easily expressed in terms of familiar functions. For example, we find

Bo(x) = (2/x)fSi(x) + ([cosx - 1]/x)j (40)

and

B2(x) = (1/x)1Si(x) - 3i1(x)J + (2/x2)$3jo(x) - cosx - 21, (41)

where Si(...) is the Sine integral and is tabulated (14). The expression given by Eq. 40 is
the structure factor which appears in theories of classical light scattering from hard rods (19).
The ratio S2(x) B2(x)/BO(x) is shown in Fig. 5. It rises markedly over the range 0 <
x S 8, after which it attains a more-or-less constant plateau value of approximately 0.4. Since
(J2(QVt))/Ajo(QVt)) also has a value of approximately 0.3-0.4 at the half-decay point of
C(Q, t) (13), Eq. 38 indicates that the first correction term (i.e., that proportional to (j2(Q Vt)))
can be quite significant when compared with the zeroth order term given by Eq. 10 (i.e., that
proportional to (jo(QVt))). This conclusion is consistent with the results shown in Fig. 4 re-
garding the non-scaling of Crod(Q, t)
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FIGURE 5 The ratio B2(QL)/BO(QL), calculated according to Eqs. 40 and 41.

To what extent can off-axial orientations reduce the relative magnitudes of the higher
order terms in the expansion given by Eq. 38? We need to know the distribution of orien-
tation angles P(cos a) in order to calculate the factors (Pft(cos a)). An estimate can be ob-
tained if we choose the following distribution

P (cosa)d cos a
f 1/(2 - 2 cos am) if 1 > cos a > cos amP(cosa)cosa =0 if Cosa < cosam. (42)

From Eq. 42 we find

(P2(cos a)) = [cosam(l + cosam)]/2. (43)

If the maximum angle am is taken to be 30', Eq. 43 yields (P2) - 0.83; if am is 45', then (P2) is
reduced to 0.6. These results suggest that, although off-axis orientations will indeed reduce the
degree to which C(Q, t) deviates from the "ideal" Qt scaling expressed by Eq. 1, they cannot en-
tirely account for the close approximation to scaling previously reported for measurements of
light scattered by E. coli (12).

APPENDIX C: DERIVATION OF EQ. 13

Combining Eqs. 9 and 11 and changing the orders of integration yields

C(Q, t) ,d e^22 dVI V2 e '22 cos(QVt?1)l (44)

= y2 d fQ2l2 (45)

v/r d7 f2 r(Qza 2I 12

Q de .4 y2Ao2 + t2)1/2 erf(Q(A 02 + t2/472)l/2)} (46)

Thus, upon taking the derivatives with respect to -y in Eq. 46 and substituting according to
Eqs. 14, 15, and 12, one obtains the expression given by Eq. 13.
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