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ABSTRACT A computational procedure is described for the analysis of fluorescence
decay data convolved with a lamp flash of finite width. The computer program cal-
culates the ratio of the Laplace transforms of the decay and the lamp flash for dif-
ferent values of s to give the transforms of the impulse response for each value of s.
These are set equal to the analytical Laplace transforms of the decay law involved.
Solution of the nonlinear simultaneous equations yields the desired decay parameters.
The method can be modified to analyze data that contains a component due to scat-
tered light and can also provide essential information regarding transit time changes
of the photomultiplier with changes in emission wavelength. The method was tested
by the analysis of real and simulated data. The accuracy of the analysis depends on
the degree of correlation among the parameters.

INTRODUCTION

The analysis of fluorescence decay curves is a problem which has attracted much atten-
tion in recent years due to the increasing interest in fluorescence decay measurements
as a sensitive tool for solving chemical and biophysical problems (1-6).

In the photon counting (7, 8) and sampling (9) techniques the fluorescence is initi-
ated by a relatively short flash of light and the fluorescence intensity is monitored as a
function of time yielding the decay curve. The time scale of fluorescence decay is
usually in the nanosecond region. Due to the finite width of the lamp flash and to
instrumental response time the lamp width obtained in an experiment is usually not
negligible compared with the experimental decay curve. The observed fluorescence
decay is related to the impulse response (i.e. the fluorescence decay which would have
been obtained if the lamp flash was infinitely short) by convolution (Eq. 1):

F(t) = f E(t - u)I(u)du, (1)

where F(t) is observed fluorescence decay function, E(t) is observed lamp flash, and
I(t) is impulse response function.

In the simplest case the impulse response is a single exponential decay function. In
the general case multicomponent decay laws are involved which need not be ex-
ponential functions. In many cases of interest, however, the impulse response is given
by a sum of exponential terms or may be accurately approximated by such a sum. In
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addition to the trivial case of heterogeneity (in which more than one fluorophore is
excited) this category includes excited state reactions in the general sense, i.e. any
kind of process involving the excited fluorophore and resulting in light emission from
a fluorophore which has not been excited directly. Excimer formation, excited state
proton transfer, energy transfer and solvent relaxation are some examples (10). If a
multiexponential decay law is assumed for the general case, the impulse response is
given by:

I(t) = AAie'/vi. (2)

The Ai's and 'r,'s appearing in Eq. 2 are the amplitudes and decay constants, re-
spectively, ofthe ith component.
The aim of the analysis is to deconvolve. the decay function of Eq. I and to eval-

uate the 2n parameters of Eq. 2 (nAi's and nfl's) using the observed decay curve
and the experimental lamp flash. Several methods have been developed for the analysis
of multiexponential decay data (11-17). The accuracy with which this can be done
highly depends on the degree of correlation among the parameters.
Helman (18, 19) has described the use of the Laplace transformation for the analysis

of fluorescence decay data. His treatment was restricted to single exponential decay
and to the case of excimer formation. The aim of the present paper is to describe a
general approach for the analysis of multiexponential decays using the Laplace trans-
formation. The procedure to be described not only provides a simple algorithm for
solving for single or double exponentials but also has provision for accounting for a
scattering component in the decay curve and for time shifts of the decay relative to the
exciting lamp flash. These time shifts are caused by the energy-dependent transit time
in the photodetector (20).

THEORY

The Laplace Transform
The Laplace transform (M(s)) of a function (M(t)) is defined as (21)

M(s) = L [M(t)] = M(t) * e"sdt(s > 0). (3)

The Laplace transform, being an integral, is a linear operator and so:

L[aM(t) + bN(t)] = aM(s) + bN(s). (4)

The Laplace transform of an exponent can easily be shown to be:

L[A* eh/T7] = - lA (5)
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A very useful theorem involving the Laplace transformation is the convolution
theorem which states:

F(s) = L [jE(t - u)-I(u)du] = L[E(t)]-L[I(t)] = E(s).I(s). (6)

Thus the convolution existing between F(t), E(t), and I(t) in the time domain is
converted to a simple product in the s domain. By evaluating the Laplace transforms
of a decay curve and of the corresponding lamp flash the Laplace transform of the im-
pulse response may be evaluated from the relation:

F(s) E(s) I(s) () (
E(s) E(s)

In the general case where the impulse response is a sum of n exponentials (see Eq. 2)
I(s) has the form:

F(s) I(s) A, 8
E((s) si) s + 1/r.

By evaluating I(s) in this way for 2n different values of s, a set of 2n equations
is obtained, the solution of which yields the desired n amplitudes and n decay con-
stants. In principle any such set of 2n different s values can be used to reach this goal,
however, as will be discussed, some general considerations regarding the s values may
be made to improve the accuracy of the calculated parameters. The solutions of Eq. 8
in the cases of single and double exponential impulse responses are described in the
appendix.

Cut-OffCorrection
The Laplace transform was defined (see Eq. 3) from zero time (which may be any arbi-
trary time prior to the lamp flash) to t = X . The experimental decay curve, however,
is never collected to infinite time and does not, in the general case, vanish at the last
data channel T (in the instrument used in this laboratory the decay curve is stored in
512 channels of a multichannel analyzer). The lamp flash, on the other hand, usually
has a short duration compared to the fluorescence decay. At time T the lamp intensity
is, therefore, negligible compared with the decay. The Laplace transform of the im-
pulse response appearing in Eq. 7 thus becomes:

I(s) = F(s) + I(s), (9)
E(s)

where 6I(s) is a correction factor given by:

SI(s) = Es) fF(t). e-sdt. (10)
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For an n components decay curve this correction factor will have the form (since the
lamp flash ends before time T the decay curve from that time on will be a sum of
exponentials):

_ ~~~~~~-/i1 C1 s+IfiM1(s) Ciehi esd1 = )L. e-(s+I/v)T. (11)
E(s) i-I ~~~E(s) j- s + l/r,i

Ci, being the contribution of the ith component to the observed decay function at
channel T, is given by:

rT sT

ci = J Ai, e`'/'i E(T - t)dt = AJ E(t) e-(T-')/idt
tT

= Aie-T/i f E(t) * e/lidt - A1e-T/l i E(t) *e./'i

= Aie-T/i * E(-I/Ti). (12)

E(- 1/;r) is the Laplace transform of the lamp flash for the value - 1/Ti of s.'
By introducing these expressions for the Ci's into Eq. 11, the set of equations 8

becomes:

__ _A i F( Ai4e -(s+2/rl)T E ____ I__T__, _ = I(s) F(s+ E _A___ E(-l/r) (13)

The second term on the right-hand side is the cut-off correction term, and may be
introduced into the equation by an iterative procedure. An approximate set of param-
eters (Ai's and ri's) is calculated from the experimental data using the approximate
equations:

F(s) Ai
E(s) I s + I/r/ (14)

The values of the parameters thus obtained are used to calculate the cut-off corrections
which are added to Eq. 13. The new set of equations thus obtained are solved and this
process is repeated until a self-consistent set of parameters is obtained.
The Laplace transformation, by nature of its definition tends to reduce the weight of

data points at long times as compared with shorter times, thus automatically "ex-

I Strictly speaking the Laplace transformation was defined for s 2 0 but due to the fact that the function E (t)
vanishes for all times beyond Tthe Laplace integral is finite for any finite value of s and the transforms for
negative s values can be calculated and used.
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ponentially depressing" (14) the data. This largely reduces the number of iterations
needed to get convergence of the parameters by the procedure described above.
A simplified procedure for obtaining the cut-off corrections uses values at the long

time "tail" of the experimental decay curve to evaluate the Ci's appearing in Eq. 11
rather than calculate them from Eq. 12. To reduce error due to the photon counting
noise present in the data these values are averaged over 10 channels in each case (or
the long time "tail" of the decay may be smoothed). For a single component analysis
the (smoothed) reading at the last data channel is used as the value of C. For two-
component analyses the values at two data points, separated by about 50 channels,
may be used along with the known (approximate) parameters to evaluate the contribu-
tion of each component at the last data channel T, i.e. the Ci's.

This method for cut-off correction assumes that the decay at the long time edge is a
sum of exponentials (i.e. that the lamp flash vanishes before that time). This require-
ment is usually fulfilled except in cases of very short decay times or of lamps with a
bad time profile. If this requirement is not fulfilled the accuracy of the cut-off correc-
tion might be damaged. The importance of using a lamp with a suitable time profile
(i.e. which is very low compared with the fluorescence in the tail) cannot be over em-
phasized for the analysis of multiexponential data. It was found that for two-
component analysis it is usually sufficient that the lamp intensity be 1/100 that of the
decay at the long edge of the decay curve.
The use of the simplified cut-off correction method has several advantages over the

rigorous cut off correction discussed earlier. The main advantage is that it largely
reduces the time of analysis as it does not involve the integrals E(- l/ri) appearing
in Eq. 13 so the time for each iteration, as well as the number of iterations is largely
reduced (the latter is usually about three to five).
The inaccuracy introduced into the calculated parameters when the Ci's are com-

puted by the "simple" method is, for typical data, at least one order of magnitude
smaller than the one caused by the photon counting error inherent in the data and so
its influence on the accuracy of the analysis is very small. Moreover, for typical experi-
mental data the accuracy of Ci's calculated by this method is better than that of
Ci's calculated by the rigorous convolution method. This is due to the fact that eval-
uating accurate Ci's by convolution requires very precise knowledge of the parameters
(especially the Ti's) and in order to achieve the same degree of accuracy as in the
"simple" method (which is 2-3%) the ri's have to be known to within a fraction of a
percent. This is rarely the case with noisy experimental data.

Exponential Expansion
The Laplace transform analysis automatically "exponentially depresses" the data thus
largely reducing the number of iterations needed for convergence. In some cases, how-
ever, the analysis can be improved by applying exponential expansion. This is done by
multiplying both the decay and the lamp flash by etlT (where T, the expansion con-
stant is larger than each of the ri's involved in the decay) and Laplace transforming
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these new functions:

F'(s) = F(t) e'IT.e -S= J F(t) e(-I/T)'dt = F(s - 1/T), (15)

E'(s) = E(t).eh/TIeT- = E(s - I/T). (16)

By dividing one gets (by analogy with Eq. 8):

E'(s) ss - I/T + I/Ti, E. s + I/T, (17)

where Ti is defined by:

T1 = Tri/(T - Tr). (18)

This set of equations 17 is mathematically identical to the set of equations 8, and are
solved using the same procedure to yield the n amplitudes and n Ti's. The values of
the decay constants, Ti's, are then calculated from these Ti's using the relation:

Ti = TiT/(T + Ti). (19)

The advantage of this approach is that the relative separation among the T,'s is
larger than that among the ri's and the resolution of the analysis for close decay
constants is improved. This is shown as follows. The "fractional difference" between
two decay constants Ti and Tj, which is an indicator for their separation is:

(Ti - Tj) /Tj Ti > Tj. (20)

The analogous expression for the T,'s may be treated by substituting the Ti's ac-
cording to Eq. 18. One then gets:

(Ti - Tj)/I = [(Ti - T)/Tj] * [T/(T - re)]. (21)

The second term on the right-hand side is larger than 1, as 'r, is always positive, and
the fractional separation of the Ti's is better than that of the r,'s, allowing close
decay constants to be better resolved and analyzed by the program.
As this procedure expands the "tail" both of the decay and of the lamp flash the

requirement of having a negligibly low lamp tail is more crucial. This method, there-
fore, yields satisfactory results only when the decay constants involved are quite long
compared with the lamp flash.
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Provisionfor Evaluation ofa Scattering Component in the Decay Curve

In many cases of interest the experimental decay curve contains scattered exciting light.
This is true for studies of macromolecules, membranes or cells especially when the
emission wavelength of the fluorophore is close to the excitation wavelength.

For decay data which contain scattered lamp light the decay function assumes the
form:

F(t)= f E(t - u)-I(u)du + C. E(t). (22)

C, the scatter constant, defines the amount of scattered lamp light. The Laplace trans-
form of the decay will now be:

F(s) = E(s) * I(s) + C- E(s), (23)

and the set of equations 8 become

F(s)I +C Z A_ + C. (24)E(s) i-I s + i/Ti+C.(4

By calculating the Laplace transforms of the decay and the lamp for 2n + I dif-
ferent values of s, a set of 2n + I equations is obtained. Solution of the equations
gives the decay constants, the amplitudes, and the scatter constant. The solutions of
Eq. 24 for single and double exponential decays are described in the Appendix. When
generating the calculated decay curve the scatter is added so that the experimental
and calculated curves can be compared. Strictly speaking the method described above
only applies to scattered light having the same wavelength as the fluorescence.

Time Shifts
The transit time of a photomultiplier is usually dependent upon the energy of the
photon incident on the photocathode, as well as on other experimental conditions (20)
(the position of the photocathode on which the photon is incident being one). This dis-
tortion in the time profile of the lamp flash may be well approximated by a relative
time shift of the decay curve with respect to the experimental lamp flash. Significant
errors in the analysis can occur if this shift is not taken into account.

For a decay curve which has been shifted to longer time the convolution is:

F(t + Q) = f E(t - u) - I(u)du, (25)

where Q is the shifting constant. A well-known theorem describes the Laplace trans-
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form of a shifted function (21):

L[M(t + Q)] = e-12L[M(t)] = e-Q'. M(s). (26)

By applying this theorem to F(t) in Eq. 25 one gets:

F(s) = E(s) - I(s) * e-Q.1 (27)

and hence:

F(s) 1 (28)
E(s) ~is + I1/ri

By evaluating the Laplace transforms of the decay curve and of the lamp flash for
2n + 1 different values of s and solving the set of equations 28 thus obtained, the
amplitudes, decay constants and the shift constant are derived. The solution of Eq. 28
for a shifted single exponential decay is described in the Appendix.

COMPUTER ALGORITHM

The steps involved in the analysis of an n component decay curve are summarized in
the following scheme:

(a) Laplace transforms of the decay curve and of the lamp flash are calculated for
2n different values ofs using trapezoidal integration (see the next section for choice of
s values). The ratios of these Laplace transforms are calculated to yield 2n approxi-
mate Laplace transforms ofthe impulse response (see Eq. 14).

(b) The set of 2n equations are solved to yield the first approximations for the n
decay constants and n amplitudes.

(c) These 2n parameters are used to evaluate the 2n cut off corrections for the
Laplace transforms of the impulse response according to Eq. 11. Each of these cor-
rections is added to the corresponding IO(s) to give a corrected set of 2n equations.

(d) The corrected equations are solved to yield corrected values for the decay times
and amplitudes.

(e) The difference between the values of the parameters calculated in the last two
loops is determined and steps c and d are repeated until the difference reaches a pre-
chosen negligible value. Usually no more than four loops are required.
(f) When the iteration is complete the program prints out the values for the pa-

rameters and convolves the parameters with the experimental lamp flash when in-
structed to do so. The convolved theoretical curve may then be compared with the
experimental decay curve. We use a fast convolution method which has been described
in the literature ( 16).

RESULTS AND DISCUSSION

Data analysis was carried out with a Hewlett-Packard 2100 minicomputer (Hewlett-
Packard Co., Palo Alto, Calif.) interfaced with a multichannel pulse height analyzer
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(MCA) which has 1024 channels. The MCA is part of a single photon counting
fluorescence decay instrument. It has a display unit which provides a convenient way
of examining curves generated by the Laplace program and comparing them with ex-
perimental decay curves. The computer is interfaced with a digital plotter so that
permanent records of experimental or calculated curves may be obtained.

Choice ofS Values
It has been found that values for s close to 0, 0.01, 0.02, and 0.03 are usually suitable
for analysis of double exponential decay systems. This represents a compromise based
on the following considerations. The errors involved in the solution of the simul-
taneous equations 8 decrease as the numerical divergence in the values chosen for s
increases. On the other hand large values of s tend to reduce the significance of Ti in
Eqs. 8 and thus make these equations less sensitive to the decay times. In addition the
use of large values of s (s > 0.1) in the Laplace transform gives excessive weight to
the counts in low numbered channels and small lamp shifts or distortions in the data
may over influence the values of the parameters obtained.
The units used for the Ti's in the calculations are channels (of the MCA). It was

found that the best numbers to use for s are those of the same order of magnitude as
the expected values for 11/r (in channels-'). Thus s values are chosen so that s -

(CIT) where C is the instrument's time calibration (nanoseconds/channel) and T is

EFFECT OF s'
TABLE I

ON THE ANALYSIS OF DOUBLE EXPONENTIAL DECAY

Theoretical value A
I A 2 t T2

0.30 0.30 4.00 10.00

Recovered with s'
0.003 0.31 0.28 4.20 10.17
0.005 0.31 0.29 4.09 10.10
0.007 0.31 0.29 4.05 10.07
0.01 0.30 0.30 4.03 10.05
0.012 0.30 0.30 4.00 10.04
0.014 0.30 0.30 3.99 10.02
0.018 0.30 0.30 3.97 10.00
0.02 0.30 0.30 3.96 10.00

Theoretical value 0.30 0.30 4.00 6.00

Recovered with s'
0.003 0.59 0 5.10 -23.19
0.005 0.38 0.22 4.22 6.32
0.007 0.36 0.24 4.18 6.25
0.01 0.33 0.27 4.08 6.13
0.012 0.31 0.30 3.99 6.03
0.015 0.30 0.30 3.96 6.01
0.018 0.30 0.30 3.97 6.01
0.02 0.30 0.30 3.97 6.03
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the average decay time in nanoseconds. The program has an input of s'. It then se-
lects 0, s', 2s', and 3s', as the values of s. Thus if s' is chosen as 0.01 the program will
use 0, 0.01, 0.02, and 0.03 for the four values of s required to solve a double ex-
ponential decay.
The effect of s' on the analysis of a double exponential decay with well separated

lifetimes as well as with more closely correlated lifetimes is indicated in Table I. The
decay curves with amplitudes of 0.3 and decay times of 4 and 6 ns in one case and 4
and 10 in another were generated in the computer, the decay curve was numerically
convolved with a typical experimental lamp flash. For each channel, a random num-
ber was selected from a Gaussion distribution of numbers with a mean of zero and a
standard deviation of one, and was multiplied by the square root of the counts in that
channel. This was then added to the number of counts in that channel to simulate a de-
cay curve with photon counting noise.
As can be seen from Table I the choice ofs values was more critical when the param-

eters were closely correlated than when they were far apart. The optimal s' values de-
pend on the parameters. In the analysis of real data it is convenient to start by using
s' = 0.01. If the decay constants are correlated (one is less than twice the other) than
several other values for s', between 0.003 and 0.02 may be used and the best set of
parameters chosen by testing the fit of the calculated curve to the experimental one
using the weighted root mean square deviation2 or the autocorrelation function of the
residuals (16). Another approach is to use s' = 0.01 to obtain the first set of parameters
and then carry out simulations to find the best s' to use for this particular set, thus
refining the results obtained. For single exponential decay the choice of s' is not
critical.

A ccuracy to be Expected
The accuracy to be expected in the values of the parameters obtained by the Laplace
analysis, as with other methods of analysis, depends on the degree of correlation
among them.

2The weighted root mean in square deviation, WRMS, was defined as:

0(i) -Fc(i)) F (i /2

n-i I n

L Fo(i)

1 (Fo(i) - F¢(i))21I/2

( ~) (E F 2F0(i) J

where Fow), FCQ) are the observed and calculated fluorescence intensities, respectively, at channel i. n is the
number ofchannels over which the fit is tested (usually covering 300500 channels).
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I

FIGURE I The standard deviation obtained for '2, the longer of the two decay constants of
synthetic double component decay curves, as a function of the ratio of the two decay constants.
Curve 1, Tl = 4 ns; curve 2, xr = 6 ns; curve 3, Tl = S ns.

Three sets of experiments were simulated to study this dependence. In each set rl
was kept constant while the accuracy of analysis was determined as a function of T2.
This was done in the following way: A double exponential decay was generated in the
computer with about 40,000 counts in the maximum channel, using an experimental
lamp flash. Photon counting noise was simulated and added to the decay curve using
the procedure described above. The convolved curve was analyzed for the parameters
by the Laplace method. This procedure was repeated 20 times for each set of param-
eters. The standard deviation between the calculated and known decay times was
computed in each case and the average standard deviation for the 20 experiments was
obtained. r2 was then changed and all the steps described above repeated. The re-
sults for the simulations of the following sets of parameters are shown in Fig. 1 (A I =
A2 = 0.3 in all cases): set 1, Tl = 4 and T2 =5.7-15 ns. Set 2, rI = 6 and T2 = 8-15 ns,
and in set 3, rI = 8 and T2 = 10-15 ns.
When T2 is more than twice TI, an accuracy of 1% or better in the standard devia-

tions can be achieved. As T2 approaches Tl in value a dramatic increase in the stan-
dard deviations is apparent. As would be expected the increased error as the two life-
times become closer is greater for the shorter lifetimes. These results are in qualitative
accord with the theoretical predictions of Isenberg (22).
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Simulation studies of this type can give useful insight in regard to the degree of ac-
curacy that can be achieved. Similar experiments have revealed that the accuracy
obtained in the analysis depends on the relative amplitudes of the components. Also,
better accuracy is obtained when the amplitudes are opposite in sign than when they
are of the same sign.

Analysis ofReal Data

To evaluate the program with real data, decay curves of 9-cyanoanthracene and ,B-
naphthol were obtained under conditions where both compounds show single expo-
nential decays. The measurements were done by the method of single photon counting
(7, 8). Fig. 2 shows the experimental lamp flash and decay curve as well as the result
of the Laplace analysis for a single exponential. The residuals3 between the real and
theoretical curve and the autocorrelation function of the residuals (16) indicate a good
fit for a single exponential decay. A decay time of 10.3 ns and an amplitude of 0.411
was obtained for 9-cyanoanthracene. A similar fit for a single exponential decay of
4.84 ns and amplitude of 0.467 was obtained with ,6-naphthol.
The two decay curves were added in equal proportions and the results of a double

exponential analysis using various values of s' are summarized in Table I1. The best
set of parameters obtained in this analysis, as judged by the WRMS (see Table II) and
by the autocorrelation function of the residuals was: Tl = 4.72, A I = 0.473, T2 =
10.38, A2 = 0.411, in good agreement with the expected values. Fig. 3 shows the ex-
perimental and calculated curve as well as the residuals and the autocorrelation func-
tion of the residuals for this set of parameters.

I~~~5O0 ~~~~~~ b.

ka~~~~~

I2500 2so

140 290340 14020280350 420
CHANNIELS CHANNELS

FIGURE 2 Experimental and computed fluorescence decay curves, as well as the lamp flash used
for excitation, E(t). The residuals and the autocorrelation of the residuals function show
good fits for single exponential decay. Timing calibration 0.204 ns/channel. (a) #-naphthol
in aqueous solution, pH = 7. T = 4.84 ns, A = 0.467. (b) 9-cyanoanthracene in cyclohexane. r =
10.32 ns, A = 0.41 1.

3The residuals are given by: R(i) = 1F0(i) - F,(i)]/FO(i).
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TABLE 11

ANALYSIS OF MIXED EXPERIMENTAL DECAY CURVES*

S' Tlns Al T2ns A2 WRMS*105

0.007 4.83 0.487 10.49 0.395 4.4194
0.008 4.79 0.481 10.45 0.401 4.4085
0.009 4.72 0.473 10.38 0.411 4.4049
0.010 4.63 0.462 10.30 0.423 4.4165
0.011 4.57 0.454 10.24 0.431 4.4387
0.012 4.49 0.444 10.17 0.442 4.4847

*j#-naphthol (TIl4.84 ns, A1 = 0.467) and 9-cyanoanthracene (T2 = 10.32 ns, A2 = 0.411) mixed in a 1:1
ratio.

Results obtained by the Laplace analysis of mixtures of the two single exponential
decay curves in different proportions are shown in Table III. s' = 0.01 was used for all
these analyses. The exponential expansion procedure outlined previously was also
used. Comparison of the results obtained with and without the use of this technique
shows that in most of the cases studied the exponential expansion improves the results.

Determination ofthe Shift Correction

The error introduced into the analysis by failure to introduce the shift correction is
illustrated in Fig. 4 a which shows the result of an analysis of a 9-cyanoanthracene
decay with excitation at 340 nm and emission at 450 nm. The lamp was not shifted
prior to analysis. The result indicates a poor fit for a single exponential. Fig. 4 b shows
the results of an analysis based on Eq. 28 which include the shift. Three simultaneous
equations rather than two are solved and values for Q, T, and A are obtained (see Ap-
pendix). The shift Q was found to be 0.27 ns and a much better analysis for a single
exponential is obtained. It has been found that the shift depends on the wavelength
and on the area of the photocathode used. Use of the modified Laplace algorithm
facilitates the evaluation of the shift correction with the use of a single exponential

TABLE III

ANALYSIS OF EXPERIMENTAL DECAY CURVES
MIXED IN DIFFERENT PROPORTIONS*

Found
Expected

Mixing ratio, a;nplitudes No exponential expansion With exponential expansion
curve 1/curve 2

Al A2 Tl Al 12 A2 Tl Al 12 A2

1 0.467 0.411 4.63 0.462 10.30 0.423 4.74 0.472 10.37 0.409
2 0.467 0.205 4.52 0.442 10.00 0.238 4.69 0.466 10.32 0.212
5 0.467 0.082 4.49 0.437 9.51 0.120 4.71 0.466 10.34 0.088

0.5 0.234 0.411 4.61 0.231 10.30 0.417 4.84 0.246 10.43 0.400
0.2 0.093 0.411 4.80 0.101 10.38 0.405 5.19 0.114 10.48 0.391

*16-naphthol (TI = 4.84 ns, A I = 0.467) and 9-cyanoanthracene ('2 = 10.32 ns, A2 = 0.411).
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FIGURE 3 Mixed experimental fluorescence decay data, observed and computed. The data are
those for #-naphthol and 9-cyanoanthracene shown in Fig. 2 mixed in 1:1 proportions. An
s' value of 0.009 was used in this analysis. An identical lamp flash was used for both experi-
ments.
FiGuRE 4 Fluorescence decay curves (experimental and computed) of 9-cyanoanthracene in
cyclohexane. Excitation wavelength 340 nm, emission observed at 450 nm. Timing calibration
0.204 ns/channel. (a) Data analyzed using Eq. 8 (time shift not taken into account). Param-
eters obtained: r - 10.74, A = 0.395. (b) Data analyzed using Eq. 28 (time shift incorporated as
a parameter) yielding: 7 = 10.32 ns, A - 0.411, Q - 0.27 ns.

CHAANNELS CCHANNELS

FIGURE 5 Experimental and computed fluorescence decay curves of acridine (2.10'- M) in
aqueous 0.2 M ammonium nitrate solution, pH - 8.3. Excitation wavelength 355 nm, emission
observed at 560 nm. Timing calibration 0.40 ns/channel. (a) Decay curve analyzed for two
components. Parameters obtained: rI - 3.69 ns, A I- - 0.126, T2 - 28.96 ns, A2 - 0.386. (b) The
decay curve to which 0.700 of the exciting lamp flash was added and analyzed using the set of
equations 24. The parameters obtained: rT - 3.58 ns, A, - - 0.135, T2 = 28.90 ns, A2 - 0.387,
C -0.703.
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standard. Failure to take the shift into account can lead to serious errors in the estima-
tion ofexponential parameters, especially for multiexponential decay curves.

Estimation ofParametersfrom Decay Curves which Contain a
Component Due to Scattered Light

Under some experimental conditions decay curves contain a significant scatter com-
ponent. To study the accuracy of the analysis in this important case an experimental
decay curve was obtained for acridine in aqueous 0.2 N ammonium nitrate solution.
Under these conditions a partial excited state proton transfer reaction takes place, as
a result of which the observed decay is a double exponential, the two amplitudes being
of opposite signs. The decay curve was analyzed and the results are shown in Fig. 5 A.
A 70% component of the experimental lamp flash was then added to the decay. Fig.
5 B shows an analysis carried out by the Laplace program modified according to Eqs.
22-24. The parameters are in good agreement with those obtained without scatter and
the scattering component was found to be in good agreement with the amount of scat-
ter added to the data.

CONCLUSION

Fluorescence decay measurements are capable of providing detailed kinetic informa-
tion about excited-state reactions. Good procedures for data analysis are as essential
as the proper instrumentation. Some of the problems involved have been discussed by
Knight and Selinger (23). The detailed papers of Isenberg (12, 14, 22) have clearly out-
lined the problems involved and described the method of moments as an excellent
computer approach to the problem. The method of nonlinear least squares can also
be used for analysis as outlined in detail by Grinvald and Steinberg (16).
The Laplace method described here is straight forward in concept and could be

adapted to a variety of decay laws. It is simple to program and requires little computer
core or time, while yielding excellent results. It should be of value to have a variety
of techniques available for the analysis of fluorescence decay data.

APPENDIX

2n equations of the type shown by Eq. 8 are needed to analyze an n component decay curve.
As was mentioned in the text one value, s', is asked for by the program and the set 0, s', 2s',
... (2n - I)s' is then used to obtain and solve Eq. 8.

(a) For a single exponential decay the equations assume the form:

1(0) =A(11/T),
I(s') = A/(s' + l/T).

The solution of these equations is:

T = (()- I(s'))/s' 'I(s'),
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A = J(O)/T.

(b) For a single exponential decay with time shift Eqs. 28 become:

1(0) = /(IIT)
I(s') = A/(s' + I/T).e-QS,

1(2s') = A/(2s' + I/T) -2QSI

and the solutions of these equations are:

Str I(O).I(2s') 1/2 - 1
[ I(O).I(2s') - J2((S

A = 1(O)/i,

Q=-.ln i() 1/i
s [I(S') s + I/T]

(c) For a single component with light scatter the equations are:

I(O)= [A/I/IT)] + C,

I(s') = [A/(s' + I/T)] + C,

I(2s') = [A/(2s' + I/T)] + C,

and the solutions:

T
I I(SI )-I(O) I2s' \I(2s') - I(s') /

A [1(0) - I(2s')] .[ (1 + 2s')]

C = I(2s') - A/(2s' + 1/T).

(d) For two components the four equations are:

I(O) = (AI/i/I,) + (A2/l/2)2
I(s') = [Al/(s' + 1/rl)] + [A2/(s' + 1/T2)],

I(2s') = [A,/(2s' + 1/Ti)] + [A2/(2s' + I/T2)J,
I(3s') = [A1/(3s' + 1/ri)] + [A2/(3s' + l/T2)].

For presenting the solutions for these equations one may define:
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V, = 2s'2[I(s')- 2I(2s')],

V2 = 2s'[I(s') -I(2s')],
V3 = I(2s') + I(O) - 2I(s'),

V4 = 3s'2[I(s') -3(3s')],

V5 = 3s'[I(s') -I(3s')],
V6 = 3I(s') - 2I(O) - I(3s'),
V7= (V3.V4 + V,IV6)/( V3- V5 + V2.V6),
V8 = (VI + V2.V7)/V3,

I= 2/[V7 + (V2 4 V8)1/2
T2=2/[ V7 - (V' - 4VS) I/2

A[ (%S- +( 2/72) ]o)/[(5 + ITI) S + I /T2)]
A2 = (I(O) - TI-A )/T2.

(e) In the case of a double exponential decay with scattered exciting light the equations are:

I(O) = [Al/(/ITI)] + [A2/(I/T2)] + C

I(s') = [A( /(s' + 11/ri)] + [A2/(S' + 11/2)] + C,

I(2s') = [A /(2s' + 1/T,)] + [A2/(2s' + 1/T2)J + C,

I(3s') = [A,/(3s' + 1/Ir)] + [A2/(3s' + 1/T2)] + C,

I(4s') = [A /(4s' + 1/ri)] + [A2/(4s' + 1/T2)] + C,

By defining:

U, = 2[I(O) + 3I(2s') - 3I(s') - I(3s')],

U2 = 6s'[I(s') + I(3s') - 2I(2s')],
U3 = 6s'2[I(s') + 3I(3s') - 4I(2s')],

U4 = 3I(0) + 6I(2s') - 8I(s') - I(4s'),

U5 = 4s'[2I(s') - 3I(2s') + I(4s')],
U6 = 4sI2[2I(s') + 4I(4s') - 6I(2s')],
U7 = (U,l U6 - U3.LU4)/(U2.U4- Ul-US,
U8= (U2U7 + U3)/U,,

one gets as the solutions of the above equations:

Tl = 2/[U7 + (U7 - 4(U8)1/2],
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T2 = 2/[U(7 - ( 4

AI = [I(O) - I(s')] K4 - [I(O) - I(2s')]K21/K, * K4 - K3* K2,
A2 = [I(O) - I(s') -K * A I ]IK2

where:

K, = s'*rT1/(s' + I/TI), K2 = S * T2 / (S + I /T2)
K3 = 2s'5*r/(2s' + 1/rI), K4 = 2s' *r2/(2s' + 1/12).

And for the scatter constant one may use the equation

C = I(0) -A I,* r, -A2A T2
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