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ABSTRAcr The general formalism required to treat two-state sliding filament models
of muscle contraction, including free energy considerations, is first reviewed and ampli-
fied. This- formalism is then used to examine, and modify as needed, three models
studied previously by Podolsky and Nolan, in which cross-bridge attachment-detach-
ment and ATP turnover are not tightly coupled. No attempt is made here to establish
an optimal, self-consistent model of this type because our interest is primarily in
methodology rather than in fitting experimental results. But it appears from this pre-
liminary study that such a model, with satisfactory mechanical and thermodynamic
properties, could be found. An extremely simple but unrealistic two-state model is
also studied which is of interest because it demonstrates the fact that it is possible, in
principle at least, for sliding filament models to work with very high thermodynamic
efficiencies (50-100%). An appendix is included that is concerned with the form of the
dependence of certain first-order rate constants on the concentrations of ATP, ADP,
and P.

1. INTRODUCTION

The sliding filament model is currently much used as a working hypothesis for the
molecular mechanism of contraction of vertebrate striated muscle. Implicit in the
sliding filament hypothesis, though not widely realized, is a general theoretical formal-
ism (Hill, 1968 a, 1974, 1975 a) that involves an appropriate combination of thermo-
dynamics, statistical mechanics, and biochemical kinetics. This paper is the third of a
series that is intended to illustrate the proper application of this general formalism to
particular models.

In the first two papers (Chen and Hill, 1974; Hill and Chen, 1974) a very simple,
prototypal, two-state model was used for the purpose of explicit examination of funda-
mental theoretical questions such as behavior of the model near equilibrium as well as
far from equilibrium, the Onsager reciprocal relation, thermodynamic efficiency of
ATP free energy conversion, entropy production, etc. This particular model was
chosen for convenience only and was not meant to be a practical or realistic model of
muscle contraction.
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The present paper is also limited to two-state models (one kinetically significant
attached state; one kinetically significant unattached state). But our primary objective
here (section 4) is to start with some of the models, with realistic mechanical properties,
previously studied by Podolsky and Nolan (1971, 1973) and to investigate the modifica-
tions of these models that are required in order to render them complete and self-
consistent in accordance with the general theoretical formalism mentioned above.
Similar modifications are presumably required in most previously published explicit
models of the sliding filament type.
We supplement section 4 with: essential free energy considerations for two-state

models (section 2); a summary of some of the fundamentals of the formalism, as ap-
plied to two-state models (section 3); an analysis of an idealized two-state model de-
signed to show that it is possible in principle to obtain very high efficiencies in a sliding
filament system (section 5); and an appendix on the dependence of certain rate con-
stants of the formalism on the concentrations of ATP and products (ADP, P). Small
print is used for certain material that is not necessary to the main argument.
We are presently investigating models with more than two biochemical states and

with multiple actin sites (Hill, 1973; Hill, 1975 a, section IV). It is our intention in these
models to use current biochemical and structural knowledge as an important guide in
the selection of states and parameters. The models in section 4 of the present paper
were constructed (Podolsky and Nolan, 1973) to fit mechanical data primarily, espe-
cially isotonic transients.

2. FREE ENERGY CONSIDERATIONS FOR TWO-STATE MODELS

Our main object here and in section 3 is to summarize theoretical principles that are
essential for an understanding of sections 4 and 5. In addition, sections 2 and 3 should
be of value for some readers as a relatively simple, though condensed, introduction to
the two long and much more general papers available on this subject (Hill 1974,
1975 a). It is assumed that the reader is acquainted with structural and other features
of the sliding filament model of muscle contraction (H. E. Huxley, 1969; Carlson and
Wilkie, 1974).
We consider an ensemble of independent and equivalent cross-bridges in the overlap

zone, each ofwhich has accessible to it at most one actin attachment site at a time. We
use the term "cross-bridge" to apply to a projection from a myosin filament whether it
is attached to an actin site or not. A cross-bridge can exist in various biochemical
states, as illustrated in Fig. 1, where M = myosin cross-bridge, A = actin site,
T = ATP, and D = ADP, P (treated as a single entity for simplicity). Fig. 1 is called a
"diagram." Each line represents a pair of possible inverse first-order transitions. The
heavy lines indicate what is currently presumed to be the dominant cycle (involving five
states). For simplicity and concreteness, only this cycle is considered below. The net
flux around this cycle is in the counterclockwise direction (resulting in T -p D).

Actually, such a cycle must be considered at each value of a structural variable x.
But this complication is not an essential feature here, and is therefore reserved for the
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FIGURE 1 Six-state diagram for a myosin cross-bridge. Each line represents both forward and
backward first-order transitions. See text for further details.

next section. With x dependence excluded, the treatment in the present section is in
fact applicable as well to other biochemical systems that employ ATP as a free energy
source, e.g., active transport (Hill, 1968 b, Chapter 7; Hill, 1975 b). In active transport,
we are concerned with an ensemble of independent and equivalent transport units or
channels (rather than cross-bridges).

In this section, we first summarize the assumptions of the formalism. Using the five-
state cycle in Fig. 1 as an example, we then discuss the relations between free energy
levels and rate constants in this cycle. Finally, we examine the same relations for two-
state cycles obtained by "reduction" (Hill, 1975 a, Appendix 2) of the original cycle.
That is, because some of the original rate constants are (by assumption) large com-
pared with others, we consider that the number of effective or necessary states can be
reduced from five to two.

(a) Summary ofAssumptions
A thorough discussion of the assumptions of the formalism has been published (Hill,
1974). However, we give a very brief summary of these assumptions, as applicable
here, as an aid to the reader. They are as follows (some have been mentioned above).
(a) At any instant a given cross-bridge has accessible to it, for attachment with signifi-
cant probability, only a single actin site. (b) The cross-bridge behaves operationally as
if it has only one head. (c) The ATP hydrolysis products ADP+P can be treated as a
single species. (d) Cross-bridges in the overlap zone act independently of each other.
(e) The kinetic and mechanical behavior of a cross-bridge is independent of the
myosin-actin interfilament spacing. (f) A cross-bridge can exist in several different
discrete biochemical states (providing the diagram), some attached to actin and some
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unattached, and transitions between these states include the binding and splitting of
ATP.

Implicit in (f) are the following: the states of the diagram are in general not in
equilibrium with each other, yet each state is an equilibrium state internally; transitions
between states occur "instantaneously" (on the time scale of the diagram); force
exerted by a cross-bridge on an actin filament is associated with attached states and not
with transitions; a nonzero force per cross-bridge (under nonequilibrium conditions) is
a consequence of the effect of myofilament structural asymmetry on the rate constants
of the diagram and possibly on the forces associated with attached states; and the
molecular rate constants of the diagram (for any given model) are oblivious of (i.e.
invariant to) the kind of experiment being conducted and hence do not depend at all
on the macroscopic load or on the velocity of contraction.

Actually, the above assumptions and their consequences are not new, aside from
having been set out explicitly and in detail (Hill, 1974). They are implicit [except for
(c)] in the earlier work of A. F. Huxley (1957), Hill (1968 a), Podolsky et al. (1969),
Podolsky and Nolan (1971, 1973), and others.

(b) Five-State Cycle
To simplify notation, we number the states as shown in Fig. 1. Let aj be the first-order
rate constant for the transition i -.j. As demonstrated with the aid of detailed balance
in Hill (1974, pp. 278 and 325-327), equilibrium constants, defined as rate constant
ratios, are related to free energy differences in successive counterclockwise steps around
the cycle, as follows:

K45 a45/a54 = exp[- (A5 - A4 - AT)/kT] (1)

K52 a52/a25 = exp[- (A2 - A5)/kT] (2)

K23 - a23/a32 = exp[- (A3 - A2)/kT] (3)

K36 a = exp[- (A 6 - A3)/kT] (4)

K64 a64/a46 = exp [-(A4 - A6 + MD)/kT]. (5)

In these equations, Ai is the Helmholtz free energy of the cross-bridge in state i (the
Gibbs free energy differs by a negligible pV, term), while the chemical potentials MT
and MD are related to concentrations (omitting activity coefficients for simplicity) in the
usual way by

MT = MA + kTln CT (6)

AD = MA + kTlnCD.

Here CD = CADP or cp, assuming (for simplicity) only one of these is varied in a given set
of experiments. The free energy A, refers to a single independent cross-bridge (a
"fsmall" thermodynamic system) fixed in the myofilament structure. Thus Al has
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FIGURE 2 Free energy level differences between states in the dominant cycle of Fig. I and in the
reduced two-state cycle. See text for further details.

nothing to do with the "concentration" of cross-bridges or of actin sites in this struc-
ture (if, say, one tries to make an analogy with free SI orHMM molecules in solution).
The chemical potentials appear in Eqs. 1 and 5, but not in Eqs. 24, because state 4
(AM) is the only state (in this cycle) in which the cross-bridge does not contain bound
nucleotide. The equilibrium constants are for "isomeric" reactions (changes in state
of the cross-bridge), and are dimensionless. Note that, if CT and/or CD are varied,
a4S/aS -~CT, a064/a46 - I/CD, but the other rate constant ratios are unaffected.
A schematic but possible set of free energy levels for these five states is shown at the

left of Fig. 2. The free energy differences are indicated. In this illustration, there is a
drop in free energy for every counterclockwise step in the cycle, but this need not be the
case. However, one complete cycle (starting at any state) must give a total drop of
.UT - AD. The order of magnitude of this quantity, in vivo, is about 10-13 kcal * molh-
(see section 4). When MT 0 MD, the free energy levels can be extended indefinitely
above and below the levels actually shown in the figure (which refers to the case
AT > MAD), one set 23645 for each cycle. But in the special case of equilibrium, where
the (extremely small) ATP concentration C'T is chosen to be in equilibrium with CD
(whatever its value, so long as it is finite), we have MT = 14 and At - MD = 0. In this
case the free energy "drop" A4 - A5 +Av will lead back (dashed arrow) to the top level
(state 5 = AMT) shown in the figure. At equilibrium, then, there is only a single set of
five free energy levels instead of the nonequilibrium indefinite set.
The mathematical equivalents of the above comments on the complete cycle are,

from Eqs. 1-5,

K45 K52 . . . K64 = (a45/a54) (64/aC46) = e(T-D)/kT _ ea (7)
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and

Ke5 K52 K64 = (a45/ae) (a64/a46) = e(455D)/kT = 1, (8)

where A is defined as (UT - AD)/kT and Eq. 8 refers to the equilibrium case men-
tioned above in which CT = CT. If, for example, eA = 10'0 (section 4), the average K#
or ajl/aji in Eq. 7 would be 102 (there being five steps in the cycle).

If we wish to consider explicitly variations in both CT and CD, we can write, from
Eqs. 6,

e== e(MT-,D)/kT = (CT/CST)/(CD/CD) = (CT/CD)/(C.T/CeD), (9)

where CT, CD is any equilibrium pair of values. For example, if we take 1010 as the in
vivo value of el', the in vivo ratio CT/CD is 1010 times as large as the equilibrium ratio
CeT/CS e

Of course the cycle in Fig. 1, or a similar one, may also apply to free HMM or S I in
solution, in the presence of ATP, products, and F-actin. But the definitions of rate
constants, equilibrium constants, and free energy changes, as well as their physical
interpretations, are different in such a system (Hill, 1975 b). The interrelationships be-
tween the "structural" and "solution" systems is a subject for future investigation (see
Hill, 1974, pp. 323-325).

(c) Reduced Two-State Cycle
We now use the cycle in Fig. 1 to illustrate reduction to only two states. We suppose
that only one unattached state is important (MD, MT or a "fast" equilibrium mixture
ofMD and MT), and this state is designated 0. Similarly, there is, we assume, only one
significant attached state, designated 1. The single "reduced" attached state might be
AMD, AM, AMT, or a fast equilibrium mixture of from two to four consecutive states
in Fig. 1 that includes at least one attached state and excludes at least one unattached
state. The conditions on the rate constants necessary to achieve this kind of reduction
to two states are illustrated in Hill (1975 a, Appendix 2).
A two-state cycle remains (Fig. 3): the attachment rate constant in the (dominant)

counterclockwise direction is designated f, with inverse f', and the detachment rate
constant in the same direction is designated g, with inverse g'. At the detailed molec-
ular level, the respective inverses must of course undo exactly those events (Fig. 1) in-
cluded infand g.
The middle of Fig. 2 illustrates some of the specific possibilities for the relative free

energy levels of the two states. State 0 is chosen as MD here (it could just as well be
MT), while state 1 is either (a) AMD, (b) AM, or (c) AMT. All three of these cases
assume that the eliminated states are transient intermediates (Hill, 1975 a, Appendix 2).
In the event of reduction of a group of states by a fast equilibrium, the single resulting
effective state has a lower free energy than any of the individual participants in the
equilibrium. For example, for two states a b, the free energy Aab for the combined
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FIGURE 3 Kinetic diagram for two-state models, with first-order rate constants (functions of
x). n(x) is the probability of attachment at x.

state ab is given by

e Aab/kT = e Aa/kT + e-Ab/kT (10)

Cases of this type are not included in Fig. 2 (or Eqs. 14 below).
As indicated on the right of Fig. 2, we designate (whatever the special case) the free

energy levels ofthe two reduced states by AO, A 1, AO -AkT, etc., though of course only
differences Ao - A , etc., have physical significance. Corresponding to Eqs. 1-5, we
now have

Ko = fl/f - e-(A,-A)/kT ()

Klo = glg' = e (A.A,AkT)/kT (12)

Also,

KOl KIO = fg/f'g' = e = (CT/CeT)/(CD/CeD) (13)
Eq. 11 follows directly from detailed balance at "equilibrium," even though A # 0
(imagine theg, g' transitions to be blocked). That is, elA/kT is proportional to the
equilibrium population of state 1, etc. A similar statement applies to Eq. 12. Blockage
of eitherf, f' or g, g' does not change the other two rate constants or the free en-
ergies. Hence it is legitimate to use the equilibrium situation as a device to establish the
connections in Eqs. 11 and 12.

If CT and/or CD are to be varied, the effect of these variables on f/f' and g/g' de-
pends on the special case, as is evident from Fig. 2 (note gT and MD in the free energy
differences). For the different cases in the figure (not the only possibilities):

(a) f/lf const, g/g' CT/CD

(b) f/f' 1/CD, g/g' CT (14)
(C) f/lf CT/CD, g/g' const.

But in any case,fg/f'g' - CT/CD(Eq. 13).
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The separate dependences off, f', g, and g' on CT and CD is a more complicated
question that is reserved for the Appendix (see also Hill, 1975 a, Appendix 2).

3. SUMMARY OF THE FORMALISM FOR TWO-STATE MODELS

With section 2 as background, we turn next to the formalism for two-state models. We
give results here, but not derivations. Also, it should be noted, we do not employ the
dimensionless notation introduced in the first two papers of this series (Chen and Hill,
1974; Hill and Chen, 1974).
As implied by the term "formalism," we need not make particular commitments as

to the molecular origin or biochemical interpretation of the parameters and states
which appear in the discussion that follows (see, however, sections 2 and 4).
Each cross-bridge in the ensemble of cross-bridges (section 2) may, we assume here,

be in one of two possible biochemical states: state 1 = attached to the (nearest) actin
site; state 0 = unattached. The longitudinal location of the nearest attachable actin
site relative to a given cross-bridge is specified by a variable x (Fig. 4). In the whole
ensemble of cross-bridges, at any instant, as a consequence of the lack of register be-
tween the natural spacings on the myosin and actin filaments, there is a uniform distri-
bution ofx values over an interval of length d, where d is the distance between succes-
sive actin sites (on an actin filament) to which a cross-bridge may attach. The obvious
value to use for d, incidentally, is the actin filament repeat distance of 360 A. The
considerations of section 2 now apply at each x (of course CT, CD, and A are inde-
pendent of x). That is, in general, free energies and rate constants are functions of x
(details below).

Let F, (x) be the longitudinal component of the force exerted by the cross-bridge on
the actin filament when the cross-bridge is attached (state 1) to the actin site at x
(Fig. 4). The origin, x = 0, is chosen (by convention) as the point at which F, = 0. Of
course for state 0, Fo = 0 for all x (since the cross-bridge is unattached). The question
of force did not arise in section 2 because variations in x were omitted.

Al (x)

\ x_ O/- x+/
Actin F1(x) N Actin site \ ox / A*

-Contraction g 7 x-
Si

S2

Myosin

rkT

-- -A0.

FIGURE 4 FIGURE 5

FIGURE 4 Schematic myosin cross-bridge attached to actin site at x.
FIGURE 5 Schematic free energy and force functions for a two-state model.
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Fig. 3 shows the kinetic diagram for this two-state system. There are four first-order
rate "constants," each (in general) a function of x.

In order for this system to work as a free energy transducer (ATP free energy
mechanical work), it is essential to have two pairs (ff' and g,g') of rate constants in
the diagram, that is, a cycle (reduction of a larger diagram, with one or more cycles, to
two states will always produce a two-state cycle). This allows the necessary transient or
steady nonequilibrium cyclic flux around the diagram, driven by the high concentra-
tion (i.e., far above the equilibrium value) of ATP in solution. Eq. 13 is pertinent in
this connection.
The physiological or in vivo value of e", which we denote by ePs, is somewhat un-

certain but it is probably between 108 and 10" (see section 4). For example, at 30 C,
ife4P = lO8, then Ap = 18.4 and A.T - AD = 10.1 kcal - molh'. Or, if el. = 1010, A =
23.0 andMT -MD = 12.6 kcal - mol'.

(a) Self-consistency
A crucial point, which we now turn to, is that the functions F,, f, f ', g, and g', intro-
duced above, are not independent of each other. Assignment of these functions in the
construction of a two-state model without being aware of this fact will in general pro-
duce a model that lacks self-consistency.
An unattached cross-bridge (state 0) has a free energy, denoted by AO, that is inde-

pendent ofx. When attached (state 1), the cross-bridge free energy is a function of x,
A , (x). Since F, = aA, /dx (Hill, 1974), A, (x) is determined by F, (x) (if already speci-
fied), except for an integration constant:

A,(x) = A?0 + f F,(x) dx. (15)

A? is the value ofA , at x = 0. As an illustration of Eq. 15, if

F,(x) = Kx + ax I + * **,(16)

then

A,(x) = AO+ ! Kx2 +! ax3 + * * * (17)
2 3

where K is the (Hooke's law) force constant. A schematic illustration is shown in Fig.
5. Since F, = 0 at x = 0, A, necessarily has a minimum, A, = A , at x = 0 (this is the
position of the actin site that provides the most stable attachment of the cross-bridge).
The free energies of the two states are equal at x = x and x = x+ (Fig. 5). Between
these values of x, AI < Ao and the attached state is thermodynamically more stable.
But outside ofx_ and x+, the unattached state is more stable.
We define r = (Ao - AO)/kT. rkT is the maximum free energy of detachment (Fig.
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5). The magnitude of r relative to A has an important bearing on the efficiency and
other properties, as might be expected (see below).
We see from Eq. 11 that the ratio f/f ' at any x is determined by the free energy dif-

ference (A, - A0)/kT at that x. Hence only one of the two functions f(x) and f'(x)
can be assigned with complete freedom if, for example, F,(x) is already specified.
When A, = A9, that is, at x = x and x_, we must havef = f '. When A0 > A, (at-
tached state more stable), that is, between x and x+, we have f > f ' (the rate con-
stant leading toward the more stable state is the larger). Also, when AI > Ao (un-
attached state more stable), that is, outside of x and x+, we havef' > f Some of
these points are included in Figs. 6a-6 e, especially Fig. 6 d.

Al
G) if,f' Af b

Se... Aa

f,f

rkT

I.g
AO-AkT

rkT akT \

_--. ____ 0// A -AkT

-Ao

Ao £,kT

AO-AkT

FIGURE 6 (a) Schematic free energy levels for a two-state model (A> r) showing relation-
ship of transition pairs to these free energy levels. (b) The case r >A. (c) The case

r , A (near equilibrium). See text. (d) Relative magnitude of rate constants as a function of
x(A > r). (e) The case r > A.
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According to Eq. 12 and Figs. 6 a-6 e, the ratio g'(x)/g(x) has the same relation to
A l (x) - (A4 - AkT) thatf(x)/f '(x) has to A, (x) - A0. For example, only one of g'
and g can be independent if A I - (A0 -AkT) is already specified. When A I =
A0 -AkT,g = g' (at x = x' and x' in Fig. 6e); etc. Ifg' is assumed in a model to be
small or negligible compared to g, for all x, it is clearly necessary to use A > r (com-
pare Figs. 6d and 6 e). Very near to equilibrium (r >> A), Fig. 6 b degenerates into
Fig. 6 c. In this example, Fig. 6 b A 6 c, we have assumed that only g and g' change
as A -O 0 (see below).
The concentration dependence off(x)/f'(x) (as in Eqs. 14) is contained entirely in

e-(A,A,)-kT= er (see Eq. 11) since f F,(x) dx in Eq. 15 does not involve CT or CD.
That is, the shape ofA , (x) does not depend on these concentrations since this shape has
to do solely with the intrinsic macromolecular properties of a cross-bridge attached to
an actin site (Hill, 1974, section II). An alternative but equivalent statement is that MT
and/MD in Fig. 2 have the same values for all x. Similarly, the concentration de-
pendence of g(x)/g'(x) (as in Eqs. 14) is contained entirely in the factor
e-(A-A,-k)/kT = ei-r. The variation ell CT/CD is general but the possible de-
pendence ofer on CT and/or CD may be different in different cases.

In summary: specification of the force function F, (x) determines A, (x) - A0
to within a constant (rkT); this free energy difference, in turn, determines the rate
constant ratios f(x)/f'(x) and (with AkT) g'(x)/g(x). Thus the parameters of a self-
consistent two-state model (Fl, fM', g,g', r, A) are fairly tightly interconnected.

(b) Steady Isotonic Contractions

Fig. 7 a (solid arrowed path) illustrates the transition details in one particular hypo-
thetical "pass" of an actin site by a cross-bridge in a steady isotonic contraction. The
site approaches the cross-bridge (in state 0) from large positive x (arrows), recedes from
the cross-bridge (again in state 0) at large negative x, and at intermediate x interacts
with the cross-bridge via ff',g,g' transitions. In the figure, these transitions are
superimposed on the corresponding free energy levels of the two states. The net effect
of the six transitions shown in this example (solid arrowed path) is the hydrolysis of
one molecule of ATP (counted by the r values) and the performance of a certain
amount ofwork (as measured by the net free energy drop in the segments marked X, Y,
and Z). The attachment transition (f) at negative x may be relatively improbable but
is included for purposes of illustration. The chemical free energy lost is AkT (since
r = 1 in this example). The dashed path shows a second possible hypothetical sequence
with two molecules ofATP hydrolyzed (r = 2), that is, with two net cycles completed in
Fig. 3.

Fig. 7 a clearly relates to a stochastic approach to this problem. To compute average
measureable quantities such as the mean value of r per pass (rl, the mean work done
per pass, etc., one would have to average over thousands of such passes using a Monte
Carlo technique. For two-state systems, a much simpler computational approach is to
solve the differential equation below.
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FIGURE 7 (a) Schematic set of possible transitions (with one net cycle, r - 1) in a single
pass of an actin site by a cross-bridge. The dashed path shows a second possible example (with
two net cycles, r = 2). (b) Transitions giving optimal efficiency of r/A.

The thermodynamic efficiency v is the stochastically averaged work performed per
pass (see X, Y, Z, for example, in Fig. 7 a) divided by IAkT. When A > r, it is clear
from Fig. 7 b that there is no way (i.e. for any choice of the other parameters) that the
efficiency could be greater than r/A.
The probability that a cross-bridge, with nearest actin site at x, is in state I (at-

tached) is pI(t,x) n(t,x) and in state 0, po(t,x) = 1 - n(t,x). In steady motion, n is
a function of x only. The differential equation that determines n(x) in steady motion
is (Fig. 3)

dn/dt = (an/Ot)x + (an/lx), (dx/dt) = -v(dn/dx)
= [f(x) + g'(x)J[l - n(x)] - [f'(x) + g(x)]n(x), (18)

where v = -dx/dt is the velocity of contraction and (dn/l t)x = 0 (steady motion).
Having found n(x) by solving Eq. 18 for a given v, the mean force exerted on the

actin filament at this v, per cross-bridge in the overlap zone, is then

F = d f F,(x)n(x)dx. (19)

Here we use the fact, mentioned earlier, that there is a uniform distribution in x values
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within the ensemble of cross-bridges. The limits i X can be introduced instead of
d/2 (Hill, 1974, p. 285) since necessarily n(x) = 0 at x = i d/2 (to be consistent

with the single actin site assumption made at the outset). The appropriateness of
averaging over an interval d can be seen most easily by considering an indefinite array
of actin sites at intervals d, with one arbitarily chosen site assigned the location x (Hill,
1975 a, section IVC). Then n(x), the probability of attachment to any site, is periodic
in x with period d.
The mean rate of hydrolyzing ATP molecules, per cross-bridge, is

J= d= I fg(x)n(x) - g'(x)[l - n(x)]}dx. (20)

Alternatively,f(I - n) -f'n can be used as the integrand. The efficiency is

v mean rate of doing work - FV/JAkT (21)
mean rate of use ofATP free energy

mean work per pass = Ed/iAkT. (22)
mean ATP free energy use per pass

(c) Very Near Equilibrium
In the domain of irreversible thermodynamics (which is of considerable theoretical but no
physiological interest), Fand Jin Eqs. 19 and 20 are both linear functions of AkTand v:

F = A(AkT) - Bv + .23
_ ~~~~~~~~~~~~(23)

J = C(AkT) + Dv + *

where the coefficients A, B, C, and D are positive constants that are properties of the sys-
tem at equilibriwn. At equilibrium, A, v, F, and J are all zero.
We can obtain explicit expressions for A, B, C, and D following the method of Hill (1974,

pp. 332-335). But, for consistency with the above discussion of concentration dependence, it
is desirable to use here the most general possible variations in the four rate constants near
equilibrium:

f(x) = fe(x)(l + a,A + ** )

f'(x) = f'e(x)(1 + a2A + * )(24)
g(x) = ge(x)(l + a3A + *** (

g'(x) = g"e(x)(l + a4A + ** ).

where the ai are in general functions of x but are subject to certain restraints. First, in view of
Eq. 13, we must have (aI - a2) + (a3- a4) = 1. Second, since

f(x)/f'(x) = [fe'(x)/1fl(x)Jerer, (25)
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where r and rt are independent of x, we have, on comparing Eqs. 24,

r - rt = (a, - a2)A (A - 0). (26)

Therefore the difference a, - a2 must be independent of x (likewise a3 - a4). Using these re-
straints, one can then show that

A dkT j 'g' (27)

B = X f _ dx (28)

C = dk dx (29)

I_ neF,fl
D = dkT f dx, (30)

where 2: = fe + f"l + ge + g'e and n' =(f + g')/Z'. Note that only equilibrium prop-
erties appear in these equations (not the a,). The Onsager reciprocal relation is A = D, and
this equality is not difficult to verify from Eqs. 27 and 30. It is useful as a computational check
on any model (see section 4).

In previous work we have generally used the special case g = g'eA (i.e., al = a2 = a4 = 0,
a3 = 1). Eqs. 297 a, b of Hill (1975 a), with g = a* and g' = T, provide a different example:
a, = a2 = 0. a3 = 1/(1 + a), a4 = - a/(l + a), where a is a function of x. See also the Ap-
pendix.

For a given A, the efficiency v is a function of v: v = Oat v = 0 (section 5 is an exception) and
at v = vmax (where F = 0); and v has a maximum value, v*, at some intermediate v = v*. At
equilibrium (i.e. in the limit A - 0), one finds (Hill, 1974)

- A [( + BC) - 1 (31)

For a given model, if A, B, and C are computed from Eqs. 27-29, nq may be compared with v*
calculated under physiological conditions (see sections 4 and 5, and Hill and Chen, 1974).

4. MODIFICATION OF PODOLSKY-NOLAN MODELS

Podolsky and Nolan investigated a large number of two-state models in a search for
special cases that would produce isotonic transients (length vs. time) similar to those
found experimentally (Civan and Podolsky, 1966). Most of these results have not
been published. However, from the point of view of section 3, these models (along
with most others in the literature) are somewhat suspect: they may be incomplete and
lack self-consistency in varying degrees.
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FIGURE 8 Model I of Podolsky and Nolan (solid lines). The dashed curves show the changes
needed for model I'. The numbers on F1 are relative slopes.

We employ three of these Podolsky-Nolan models here (which we denote by I, II,
and Ill) as starting points in the construction of illustrative two-state muscle models
that are both complete and self-consistent. In each case (I, II, III) we shall consider
the modifications needed in order to establish a "legal" model, according to the pre-
scription in section 3. This procedure will lead to ("legalized") models denoted IY,
IY', and HYI' respectively. However, model III' is not treated in any detail.
We emphasize that these are examples only. Our primary though not our only objec-

tive in this paper is to illustrate the proper application of the formalism. Therefore we
have made no attempt in the present work to search systematically for a more or less
optimal, self-consistent, two-state model of the Podolsky-Nolan type. It is our im-
pression, however, that such a search would very likely produce a model (probably
rather closely related to and) with generally satisfactory properties.
Model I is the model that has been used most extensively by Podolsky and Nolan

(1i971,t 1973). The rate constant f (Fig. 8) is finite between x = 0 and x = 120 A. The
rate constant f' (Fig. 8) corresponds to the non-ATP-splitting branch of 66g" used by
Podolsky and Nolan (1973). The properties of models II and III have not been pub-
lished before (the computations were made in the same way as for model I, as described
by Podolsky and Nolan). These latter two models have a finite f between x= 0 and
xae60ma To anticipate the main result below: model I requires significant alteration
(Ira ), but models II and III, with "narow f, are practically. legal" as they
stand (though not complete).

(a) Background Comments on Podolsky-Nolan Models

Podolsky-Nolan models are a modification of the original cross-bridge model of muscle con-
traction, first presented by A. F. Huxley (1957). Podolsky and Nolan modified the Huxley
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model in order to explain the contraction transients that were observed (Civan and Podolsky,
1966) after the Huxley model had been put forward. Podolsky-Nolan models are two-state
models in which the rate of attachment to actin, f, is postulated to be much faster than the
rate of detachment, g, and a cross-bridge can reattach immediately after detachment if it is
still in a position where an actin site is accessible. That is, no step occurs following detach-
ment that is rate limiting, such as a transition from a refractory to a nonrefractory state (Eisen-
berg and Kielley, 1973). On the other hand, these models have a rather stringent geometric
requirement, namely, a cross-bridge can attach to only one actin per turn of the actin helix.
Because of this geometric restriction many of the cross-bridges remain unattached during
isometric contraction. In fact, it is the detachment of many cross-bridges for geometric reasons
combined with a very rapid rate of attachment when they come into correct position that is used
by Podolsky and Nolan to account for the early phase of rapid velocity development during
the isotonic transient.

In Podolsky-Nolan models, as in all two-state models, the unattached state might be expected
to correspond to the biochemical state that occurs in vitro after ATP binding to myosin
(Bagshaw et al., 1974) or presumably to actomyosin as well, that is, MT or MD* or an equi-
librium mixture of the two. MD in Fig. 1 differs from MD* by some kind of conformational
change (Bagshaw et al., 1974). In two-state models, such as those of Podolsky and Nolan, in
which g, the rate of detachment, is relatively small, it is unlikely that g corresponds either
toAM + T- AMT (Fig. 1) or to AMT - A + MT, both of which have been reported to be
very fast (Lymn and Taylor, 1971). Rather it is more likely that g corresponds to AMD -

AM + D, which of course must occur before ATP can rebind to AM. In this case the attached
state will be AMD.
The above implies that, in Podolsky-Nolan models, essentially simultaneously with attach-

ment of the cross-bridge to actin, MT or MD* converts to AMD. This conversion is observed
to occur much more slowly with myosin alone than with actomyosin so presumably it is en-
zymatic in nature. Since, in Podolsky-Nolan models, attachment can occur over a fairly wide
range of x (Fig. 8), this enzymatic transition must also be possible over a wide range of x.
Also, release of products fromAMD (the g process) occurs over a considerable range in x. But
in most enzymes, a change in conformation of a few angstroms greatly alters or even abolishes
enzymatic properties. Thus, in Podolsky-Nolan models, either in some way x is unrelated to the
configuration of the actin-myosin attachment (for example, S2 is a spring the length of which
adjusts to suit the value of x), or large changes in the attachment configuration do not lead to
major changes in enzymatic activity. This is in contrast to many biochemical models in which
the biochemical state of the actomyosin is directly related to the actin-myosin attachment con-
figuration, for example to the angle between actin and the cross-bridge.
What does depend strongly on x in Podolsky-Nolan models is the force exerted by the cross-

bridge (Fig. 8). As discussed in section 3, this force is related to the change in free energy of
the attached state with x, which in turn is related to the change in the f/f' ratio with
x. If the rate of attachment, f, changes relatively little as x approaches zero from the
positive side, f' must be decreasing by many orders of magnitude (see below). In this case
the decrease in free energy of the attached state with x, which is associated with force develop-
ment in this model, will be tied to a dramatic decrease in f' the rate of detachment of the
cross-bridge, rather than to a large increase in the rate of attachment.
One other critical feature of Podolsky-Nolan models is that, in regions of high negative force,

the rate of detachment of the cross-bridge from actin increases sharply, but the detachment in
this case occurs without the hydrolysis of ATP (the f' process, Fig. 8). As pointed out by
Podolsky and Nolan, this feature is necessary both to account for the duration of the slow phase
of the isotonic transient and to satisfy the Fenn effect. If the model is correct in regions of
high negative force, AMD will have an altered conformation that somehow favors the f' pro-
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cess (inverse of f) over the g process (AMD -AM - AMT - MT or MD*). Although in
both the original Huxley (1957) and Podolsky-Nolan models negative force occurs, only in the
latter case in this negative force associated with an altered conformation in AMD that leads to
detachment without ATP hydrolysis occurring.
As we shall see below, because of this assumption of a large f' at negative x, particular

restrictions are placed on f and f' by the force function used. It is this feature that
makes model I (below) "illegal" as it was originally presented.

(b) Models Iand I'
Fig. 8 shows model I (solid lines): f' = 4,000 s-' for x < -63 A; g = 60 s-' for - 63
A < x < 120 A; f is finite in the interval 0 < x < 120 A as shown; g' = 0 everywhere;
and the force function F,(x) for the attached state is

F,(x) = Kx (x > 0)

= 2Kx (-40 < x < 0)

= K(7x + 200) (-50 < x < -40) (32)

= K(12x + 450) (-oX < x < -50).

Units of angstroms for x are omitted but understood from this point on. The numbers
on F, in Fig. 8 are the relative slopes of the different segments. The isotonic transients
obtained from this model (Podolsky and Nolan, 1971, 1973) are close to those seen
experimentally. The steady force-velocity curve, which we have recalculated from Eqs.
18 and 19, also compares favorably with experiment (circles in Fig. 9), except at small
values of F/IF (where Fo = isometric force).
We now examine model I for self-consistency. As will be explained below, there is

a conflict between the selected fand f' on the one hand and F, and Eq. 11 on the
other.

Free Energy Function. The first step is to obtain the free energy function
from Eqs. 15 and 32. At positive x, we have

Al/kT = (A°/kT) + (X2/2u2) (x > 0) (33)

where we have replaced K by kT/oa2. These parameters are interchangeable. The func-
tion e-Al/kT, which occurs, for example, in Eqs. 11 and 12, is Gaussian at positive
x, with standard deviation a (in A).

In the next interval (Eq. 32), integration gives

A /kT = (A°/kT) + (x2/12) (-40 < x < 0). (34)

This choice of integration constant makes A I /kT continuous at x = 0. In the third
interval (Eq. 32), the integration constant is evaluated by requiring continuity of
A,/kT at x = -40. The same requirement is imposed at x = -50 for the fourth in-
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FIGURE 9 Relative force vs. velocity in steady isotonic contractions. The solid curves have
been computed from models I and I'. Included are experimental points (o) (Civan and Podolsky,
1966), points calculated from models II and II' (-) (identical on this scale), and points
from model III (A) (model III' is presumed to give essentially the same results as model III).

terval. Thus we find

A,/lkT= (A°/kT) + (I/e2)( x2 + 200x + 4000) (-50 < x < -40)1 ~~~~~~~~~~~~~~(35)
= (A°/kT) + (1/u2)(6x2 + 450x + 10250) (-o < x < -50).

Values ofx+ and x_. Since AO = A, at x, and x_ we have from Eq. 33

(AO - A°)/kT= r = X24/2a2 = +(X_)/uf2, (36)

where +(x) is the polynomial in the particular branch of A /kT at negative x (Eqs.
34 and 35) that includes x-. We note that the relation between x_ and x_ is x2 /2 =
+(x-) irrespective of the choices of r and a, and that if, say, x+ and r are assigned
values, then a (or K) is automatically fixed.

It is easy to show that, for any two-state model (see Eq. 16), the relation between x+
and x is completely determined by the force function F, (x)/K.

In model I, f' is assumed to be zero at positive x. This requires that x+ > 120.
For, ifx+ < 120, we would have f ' > f in the interval x+ < x < 120, according to Eq.
11 and Fig. 6 d. There is no problem in the region x > 120, by the way, since we
imagine both fand f ' to be negligibly small there, whatever their ratio as determined
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by Eq. 1 1. This is done largely for convenience, for it would also be possible for f ' to
be quite large in this region, withf ' >> f(see, for example, Fig. 13, below).
Consider the value x+ = 124, as an example. From 4/2 = 0(x-), we findx =

-68.8. But this contradicts the requirement x_ > -63 (if x < -63, we would have
f> f ' in the interval x_ < x < -63, whereas we have assumed f = 0 at negative x).
Incidentally, if we should take x+ = 120 (which is itself unsatisfactory since it makes
f' =f = 200 s' at x = 120), we would have x = -67.5, which still violates x- >
-63.

Clearly, the origin of this problem with model I is that the pair of critical values x =
-63 and + 120 (Fig. 8) in thef' andf functions, respectively, are not consistent with
the chosen force function F1 /K (Eq. 32). We need both x+ to the right of thef func-
tion (Fig. 8) and x to the right of thef ' function, and F, /K does not allow this.
Note that this problem would not arise in any model that has f' = 0 at negative x
(there are two examples in section 5).
Model I'. We now alter model I not only to make it self-consistent but also com-

plete (e.g., the efficiency cannot be calculated for model I as it stands). The modifica-
tion we use alleviates but does not entirely eliminate the above difficulty with f andf '.
At the same time, the function g' (which is relatively unimportant-except possibly at
or near equilibrium) is introduced. The change adopted for f, f ' is to take x+ =
124 and move the position of the step in f ' from x = -63 to x = -71 (that is, to the
left of x_ = -68.8), as shown by the dashed vertical line in Fig. 8. Alternatively, the
cut-off in f at x = 120 could have been moved in to about x = 97, or the slope of F1
for x < - 50 could have been increased by a factor of about five, or a compromise be-
tween these three changes could have been employed. In any case (see below for
model I'), fairly severe effects on model properties can be anticipated.
With the choice x+ = 124, and retention off as in model I, Eq. 11 still requires a

nonnegligible f' function near x = 120. This is the dashed curve labeled f'(I')
in Fig. 8 (details below). Similarly, the step inf' at x = -71 together with x+ = 124
and Eq. 11 leads to the nonnegligible, dashedf(I') curve near x = - 71. To eliminate
f'(I') would require x+ > 124, but this in turn would necessitate x. < -68.8 and cor-
responding relocation of thef' step at x < -71. Thef(I') function in Fig. 8 could be
avoided simply by shifting the f' step to the left of the f(I') curve (leaving x =
-68.8). But increasing the f, f' "gap" from 63 A to 71 A is already too drastic for
satisfactory mechanical properties (see below). Therefore further increase in the gap,
to eliminatef'(I') and/orf(I'), would not be helpful.

In the gap (-71 < x < 0), as in the region x > 120, we consider both f and f ' to be
negligibly small, and so we can ignore the requirements of Eq. 11.
To proceed further, we must now consider A, (the only value of A used below, ex-

cept A - 0) and r. As in our previous papers (Hill, 1974; Hill and Chen, 1974), we
have adopted for our calculations eAp = 108, though recent work suggests that, say,
1011 might be a better choice (see below). At x = 0, Eq. 12 becomes

e'le'p = g'(0)/g(O). (37)
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Since g' is omitted entirely from model I, to avoid unnecessary alteration of this model
we want g' << g in model I'. We see from Eq. 37 and Figs. 6d and 6 e that we need
AP,>r for this purpose. However, as pointed out in connection with Fig. 7 b, if r is
too small relative to A, the efficiency will be adversely affected. Since g = 60 s-I is
already a relatively small rate constant, we adopt as a compromise er = l07, so that
g'(0) = g(0)/ 10 = 6 s-' (Fig. 8). On either side ofx = 0, g'(x) A 0 in accordance with
Eqs. 12 and 33-35. The maximum conceivable efficiency (Fig. 7 b), r/A, is then 0.875.

Incidentally, in model I' (Fig. 8), we extend g = 60 s-' to x = -71 and also to
x > 120 (this latter is needed only if calculations are made at or near equilibrium).

Having selected x+ = 124 and er = 107, Eq. 36 gives a = 21.84 A. This same order
of magnitude for a was used on pp. 275 and 310 of Hill (1974). The value ofK = kTja 2

at3C is then 0.80 erg* cm2. This result is discussed under (f ) below.
To complete the specification of model I', we give the explicit dashed functions

shown in Fig. 8. These follow from Eqs. 11, 12, and 33-35:

f'(I') (-0 + 2/20) (60 . x S 120)

(38)
_.O0 (0 < x0 < 60)

g'(I') = 6e-x2/2U2sI (x . 0)
6e-x2/f2s1 (-40 < x < 0) (39)

0%g0 (x < -40)

f(I') = 4000 exp[r (1/o'2)(6x2 + 450x + 10250)]s-

(x < -71) (40)

Incidentally, the value off'(I') at x = 120 is 72 s-' (compared with f = 200 s-'), and
the value off(I') at x = - 71 is 662 s ' (compared with f' = 4000 s ').

Effect of A, Value. As mentioned in section 3, e'P = 108 at 3°C corresponds to
AT - yD= 10.1 kcal. molh'. Higher values for this latter quantity are suggested by
Kushmerick and Davies (1969) and by Curtin et al. (1974). A compromise between
these two papers would be e -10= 0 and AT - yD = 12.6 kcal * mol-'. If we had
used e"P = 1010 and er = 109 [rather arbitrarily, to retain g'(0) = g(0)/ 10] in our cal-
culations, the effect would be quite small except for a uniform change in magnitude of
the force, since c-2 - K r(see Eqs. 36 and 47). The main modification contained
in model I', the shifting ofthef' step from x = -63 to x = -71, would be unaffected
(since the x_, x+ relationship depends only on F, /K). But the f'(I') and f(I') func-
tions would be diminished some in magnitude. Thus, at x = 120, f'(I') would be-
come 54 s' instead of 72 s' (above) and at x = -71, f(I') would become 396 s ' in-
stead of 662 s '.
Computed Results. We turn now to the calculated properties of models I and I', ob-
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tained by computer from Eqs. 18-21. The force-velocity curves, F/FO vs. v(A *ms. ' ),
are the two solid curves in Fig. 9. These should be compared with the experimental
points (circles). It is apparent that the change in models I - I', required to achieve
self-consistency, has produced a force-velocity curve (I') that is no longer in reason-
able agreement with experiment. The lowering ofthe I' curve (at higher velocities) can
be attributed primarily to the increase in the gap from 63 A to 71 A. Because of
this discrepancy between model I' and experiment, we have not thought it worthwhile
to compute isotonic transients for this model.

In contrast to the force, the ATP flux vs. velocity curve is practically the same for
models I and I'. The force, flux, cycles per pass, and efficiency for model I' are shown
as the solid curves in Fig. 10. The maximum efficiency, q*, at v* 2.5 A ms-', is just
under 12%. The value of vm.x (F = 0) is 6.4 A ms-'. The mean number of cycles per
pass at v* isr 3.4(compare Figs. 7a and 7bwherer = 1 orr = 2).
The early "hump" in the force-velocity curves (Fig. 9), which is also exhibited by the

experimental points (also, see Mulieri, et al. [ 1974]), is presumably due in the models to
the changes in slope of F, at x = -40 and x = -50.
The magnitude of the isometric force for all models is discussed under (f) at the end

of this section.
The fraction of attached cross-bridges for model I', under isometric conditions, is

found to be i7o = (l/d)fnodx = 0.32, if we take d = 360 A. This result is about as ex-

1.0

\ J~~~~~d/10(AMs-,)

0.86
0.4 \,((gEs1,g>,X>O)

0.6 \< \t ~Model I
0\-_
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FIGURE 10 Solid curves: computed steady properties of model I' (g = 60 s-I). The dashed
and dotted curves show the effect on the efficiency of lowering g at x > 0.

HILL ET AL. Sliding Filament Models ofMuscle Contraction 355



pected since thef function is 120 A wide, and no(x) - 1 in that region and is unimpor-
tant elsewhere.

Summary on Parameters ofthe Model. In the original Podolsky-Nolan model
(I), rate functionsf, g, andf' are given, together with the force function F, /K. With-
out regard to self-consistency, the steady properties that may be calculated from these
parameters alone are F(v)d/K and J(v)d, as can be seen from Eqs. 15, 19, and 20. By
combining these, one can also find F(v)/F0, r(v) = J(v)d/v, and F(v)v/KJ(v) [the lat-
ter quantity, if multiplied by the unspecified constant K/(Mr - 'D), would give the
efficiency]. Absolute values of F(v) and J(v) are not available.

Starting with the above Podolsky-Nolan ingredients, we have seen that the addi-
tional parameters needed to make a complete and self-consistent model (I') are the
ATP hydrolysis free energy A,kT, the maximum free energy of detachment rkT, the
distance between effective actin sites d, and the force constant K (or a, or x+). We
have actually used x+ rather than K and an experimental value of Fo rather than d
[see (f), below].

Change ofg Value in Model I'. The particular value g = 60 s' introduced
by Podolsky and Nolan is significant at negative x (in fitting experimental isotonic
transients) but is quite arbitrary at positive x. Also, so long as f >> g, the actual value
off in the interval 0 < x < 30 is arbitrary, since n - 1 in any case. The choice f =
constant in this interval for model I (Fig. 8) was made for convenience.

Since the g value at positive x does influence the flux J considerably, we examined
this effect briefly. To see the maximum effect of reducing g, we repeated our calcula-
tions using g = 0 at x > 0, with no other change except necessarily g' = 0 at x > 0.
With this modification, this model becomes rather similar to the one discussed in
section 5.
The computed effect on the force-velocity curve (Fig. 10) is found to be rather small.

The effect on the shape of the flux curve is also small, but this curve is displaced down-
ward sufficiently to give J0 = 0. Zero isometric flux is to be expected here since, at
any v,Jd = v[n(0) - n(-a)], where a is the width of the gap (a = 71 A). This expres-
sion is derived in section 5 (Eq. 76). Incidentally, r = n(O) - n(-a) < 1. The dashed
curve in Fig. 10 shows the efficiency v as a function of v. The maximum in v is at v = 0,
as in section 5. The efficiency is seen to have been increased considerably by abolishing
gatx > 0.

But use of g = 0, leading to J0 = 0, is certainly unrealistic. Curtin et al. (1974) de-
duce an experimental value of 471' = 0.337 s. Our computed value for model I' (g =
60 s ') is Jod = 6.790 A. ms '. If we use the actin site repeat distance for d, that is,
d = 360 A, the experimental value becomes Jod = 1.068 A . ms '. By interpolation,
then, we estimate that g _ 9.4 s ' (x > 0) for model I' will produce the experimental
isometric flux.

Because, as already indicated, the abolishment ofg has a rather small effect on both
the force and the vertically adjusted flux, we also interpolated "experimental" (i.e.,
g - 9.4 s-') values of force and flux at several intermediate values of v. The (ap-
proximate) efficiency was then calculated and is shown as the dotted curve in Fig. 10.
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FIGURE 11 Models II and III of Podolsky and Nolan (solid lines). The (barely visible) dashed
curves show the changes needed for model II'. The relative slopes 1, 2, 7, 12 in F, in Fig. 8 be-
come 1, 1, 2, 4 here, respectively.

We find q* - 0.37, v* - 1.7 A - ms', and r 1.6 at v*. This efficiency is of the same
order of magnitude as the approximate experimental efficiency of 40-50% (Curtin
et al., 1974).

(c) Models II and II'

Model II provides a different kind of example than model I. That is, it does not have
significant self-consistency problems. But it does need to be made complete.
Model II (Fig. 1 1) is of the same type as model I (Fig. 8), but the f function is nar-

rower and larger in magnitude (also, g is altered slightly). The slopes of F, shown in
Fig. 8 (1, 2, 7, 12) are changed in model II to 1, 1, 2, 4 for the same intervals. Un-
changed are the gap of 63 A andf' = 4000 s- ' for x < -63.
From F,, we obtain Eq. 33 for the free energy in the region x > -40. But instead

of Eq. 35, we find

A,/kT = (A°/kT) + [(I/l'2)(x2 + 40x + 800)] (-50 < x < -40)1 ~~~~~~~~~~~~~(41)
= (A°/kT) + [(1/a2)(2x2 + 140x + 3300)] (_o < x < -50).

The polynomials here give 0(x-) in Eq. 36. We then find from x2 /2 = ¢(x-) that if
we take, say, x = -58.5, then x+ = 62.52. That is, unlike model I, we can satisfy
both x > -63 and x+ > 60. Thus, in this case with a narrowffunction, the 63 A gap
is already consistent with the chosen F, /K. Minor additions of f(II'), f'(II'), and
g'(II') (Fig. 11) must still be made to obtain the self-consistent model II', but these
have very small effects on computed properties. In other words, model II itself is es-
sentially "legal."
To complete model II', we use the above values of x+ and x_ together with e'P =

108 and er = I07 (as for model I'). Eq. 36 then gives a = 11.01 A and K = kT/ a2 =

3.14 erg . cm-2. This is about half the value of a in model I', and four times the value
ofK (because the width of thef function differs by a factor of two). See (f ), below,
for further discussion of K.
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The new dashed functions in Fig. 11 are

fVII) (-117x + 7520) s-'
t(I) = l107 e-x2/20,2 (30 < x < 60)

(O< x< 30)

g'(II') = 5e-x2/22sI
= 8.5ex2/2,2 s-I

(x > 0)

(-40 < x < 0) (43)

(x < -40)

f(II') = 4000exp[I - (I/a')(2x2 + 140x + 3300)]s-'

(x < -63)
(44)

The value off'(II') at x = 60 is 140 s' (comparef = 500 s ')andf(II') at x = -63 is
88s-'(comparef' = 4000s').
The calculation of F/Fo for models II and II' is shown as solid circles in Fig. 9 and

as a solid curve through these points in Fig. 12. Except for a difference of 0.004 at

v = 6 A. ms-', the calculated values of F/Fo for the two models differ by at most

0.002. The agreement with experiment (Fig. 9) is not good (being very similar to

model I').
Fig. 12 (solid curves) includes, in addition, the ATP flux, efficiency, and cycles per

1.0

Model I['

0.8 /FO

n(gO,x>O) _
\42 J~~~~d/10 (A ms-l)

0.4 7(g 18.3s-X>0)

0.2 _ \7

0
2 4 6 8 10

v (A ms1)

FIGURE 12 Solid curves: computed steady properties of model II' (g = 50 s- at x > 0). The

dashed and dotted curves show the effect on the efficiency of lowering g at x > 0.
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pass for model II', as functions of velocity (incidentally, the values of id for models II
and II' differ by at most 0.02 A. ms' ). As compared with model I' (Fig. 10), the flux
is smaller and has a larger proportional increase with v. The maximum efficiency q* is
about 22% at v* " 2.2 A . ms '. The value of fat v* is about 2.2.
Although the steady force-velocity curve is unsatisfactory for model II, Podolsky

and Nolan (unpublished) computed and found realistic isotonic transients for this
model. In view of the slight differences, already noted, between models II and II', the
transients for the two cases are presumably very similar. Consequently, we have not
computed transients for model II'. The fraction of attached cross-bridges for model II'
is calculated to be nO = 0.166 (essentially as expected from d = 360 A and an f func-
tion of width 60 A).

Change ofg Value in Model II'. The discussion of the variation of g under
(b) (model I'), above, is applicable here as well except for the following changes in
numbers: g = 50 s- (at x > 0) in model II' to begin with; a = 63 A; Jod = 2.918
A . ms when g = 50 s' (x > 0); and g - 18.3 s'- (x > 0) produces (by interpola-
tion) the experimental value ofJod.
The dashed and dotted curves in Fig. 12 show the recalculated efficiency for g = 0

and g 18.3 s- , respectively, at x > 0. The same values as in (b) are found (from the
dotted curve in Fig. 12) for v*, v*, and F at v*: 0.37, 1.7 A ms-', and 1.6, respectively.

Model II' Near Equilibrium (A 0). We supplement the near-equilibrium results of
Hill and Chen (1974) with the calculation of A, B, C, D from Eqs. 27-30 for this much more
realistic model. We put g' = 10-8 g (that is, we use the special case g = g'eA referred to near
the end of section 3). Extension ofg to x > 60 (dashed line in Fig. 11), along with g' from Eq.
12, is essential. We find that A = D (as a check) and that

Adcr2 = 23.91 A2

Bd4/kT = 1.416 x 10'3A3-ms

CdkT = 2.973 x 10'8A-ms-' (45)

A2/BC = 1.358 x 10-3

,q* = 3.395 x 10-4.

The physiological efficiency (above) is n,7 - 0.22. The ratio of the two efficiencies is 6.5 x 102.
In the Hill and Chen (1974) example, tp was also much larger than *, with a ratio 2.1 x 104.

(d) Models III and III'

Models I' and II' are the only modified Podolsky-Nolan models for which we have
made complete calculations of steady properties. Both models give practically the
same rather unsatisfactory force-velocity curve (Fig. 9). As already mentioned, we
have made no attempt systematically to improve these models. However, that con-
siderable improvement is easily possible can be seen from another unpublished model
(III) of Podolsky and Nolan, which is included in Figs. 9 and 11. It will be noted in
the former figure that the force-velocity relation is, on the whole, closer to the ex-
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perimental points than is the case for models I' and II'. Further, the (unpublished)
isotonic transients for model III are very satisfactory. In fact, the time course of the
early rapid phase of the transients for model III is closer to the experimental motion
than that of models I and II.
Model III differs from model II only in the shape of the f function (Fig. 11). In

view of the results found above for models II and II', we can use the same (or, pre-
ferably, slightly adjusted) x+ and x_ as in model II', leave the gap as it is, and ex-
pect with confidence that model III' will have essentially the same transient and steady
properties as already computed for model III. Hence, we omit the details of model
III', and we have made no actual calculations for this model.

It seems to us probable, though this remains to be seen, that a systematic adjustment
of model III' could produce a self-consistent model with: (a) satisfactory transients;
(b) satisfactory force-velocity relation; (c) efficiency in the 35-50% range; and (d) vir-
tual elimination of physically unrealistic appendages such as f(II') and f'(II') (Fig.
11). Item (d) could be accomplished, for example, by using a steeper F, at negative x
so that both x and x+ can be moved somewhat to the right (Fig. 11).

(e) Other Models
We have also calculated steady isotonic properties for a number of self-consistent variations on
Podolsky-Nolan of the sort illustrated in Fig. 13 (with analytical functions). The model in
Fig. 13 illustrates, for example, how the discontinuous cut-offs used by Podolsky and Nolan
might be avoided. We anticipated that the particular models of this type that we examined
would have relatively poor transient properties, so they were not pursued further. For the
model shown in Fig. 13, we used F, /K = x for x > 0 and F, /K = x - (x2/15) for x < 0. Also,
we took ep = 108, er = 3.704 x 106, X+ = 1 IO, x_ - -58, and a = 20 A. The g' function is
not visible on the scale of Fig. 13. This model had an efficiency v* = 0.34 at v* - 6.5 A . ms- l
(where r - 1.5). Note the approximate inverse correlation between v* and i (at v*): model I',
?7* = 0.12, r = 3.4; model II', v* = 0.22, r = 2.2; this model, v* = 0.34, r = 1.5; and the re-
duced g models I' and II', v* = 0.37, r = 1.6. The idealized two-state model in the next sec-
tion has r near unity and a very high efficiency.

-4000 s-'

-3000

f
2000

f f
1000

-60 -40 -20 0 20 40 60 80 100 120
x(A)

FIGURE 13 A variation on Podolsky-Nolan models. HereF, /K = x for x > 0 and F, /K = x -
(x2/ 15) for x < 0. The function g'(x) is not visible on this scale. This model gives an efficiency
X7* =0.34.
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TABLE I

COMPUTED ISOMETRIC FORCE

Model Fodu2/kT Fod/kT

Aj2
I 6735.0 -

I' 6513.3 13.65
II 1752.0 -

II, 1711.5 14.11
III 1777.8 -

III' - (14.3)
Fig. 13(a = 20A) 5262.3 13.16

(f) Magnitude ofIsometric Force
The magnitude of the isometric force for all models studied in this section is given in
Table 1. The middle column is the directly computed quantity (with contributions of
the form fxnodx, etc.), as, for example, in the Podolsky-Nolan calculations. This
quantity is also equal to Fod/K. The value of or2 (or K) is needed to obtain the last
column, hence the calculation can be made only for the complete models I', II', III',
and Fig. 13 (the III' value is an estimate). The result (Table I) is that all complete
models give practically the same Fod/k T.

Before discussing the actual magnitude of Fod/kT, we consider the basis for the ap-
proximate uniformity of the Fod/kT values for the three modified Podolsky-Nolan
models (I'-III') in Table I. Let h be the width of the f function at positive x (h =
120 A or 60 A, Figs. 8 and 11). To a rather good approximation in these models,
no = 1 in the interval 0 < x < h and no = 0 otherwise. Therefore

rh

to 1 | (kT/I2)xdx = kTh2/2da2. (46)d J

Also, the value of a2 is given by a 2 = x2 /2r. Thus we have

Fod/kT- r(h2/x), (47)

where h2/x2 has the value 0.937 for model I' and 0.921 for model II'. We have
used in this paper (to some extent arbitrarily) er = 107 or r = 16.12. Thus the ap-
proximate values of Fod/kT we find from Eq. 47 are 15.1 and 14.8, respectively. Use
of the actual no < 1 would have reduced these values slightly. It is apparent, then, that
the uniformity referred to above is simply a consequence of x+ - h and of the same
choice of r for all models.

Incidentally, Eq. 61 below, for a different model, is very similar to Eq. 47. The
physical significance of Fod - rkT in both cases is obvious from Fig. 7 b and Eq. 22
(with v -0): the work obtained (Fod) in a low velocity pass is approximately equal
to the full free energy drop (rkT).
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In comparing Fod/kT - 14.3 (which we take as the best Podolsky-Nolan value in
Table I) with experiment, let us introduce the experimental value of Fo into this equa-
tion, calculate d, and see if it makes sense. To be reasonable, d should at least equal
the "width" of the model, as measured by the range of finite n(x) at vmax. This
range is about 200 A for model I' and about 130 A for models II' and III'. The op-
timal value would be d = 360A (actin repeat).
To estimate ,o, we begin with a myosin filament of length 1.6gum, a bare region of

length 0.16 ,um, a repeat distance of 430 A (Squire, 1973), and we assume 12 myosin
molecules per repeat (Morimoto and Harrington, 1974). There are then 200 myosin
molecules per half-filament. At rest length, we take the nearest-neighbor distance in
the hexagonal array of myosin filaments to be 412 A (Huxley and Brown, 1967). The
number of myosin molecules. mm-2 per half-sarcomere is then 1.36 x 10". If we use
for the maximum observed isometric tension (at 30C) a value 3.0 x 104 dyn mm-2
(Gordon et al., 1966), we find Fo = 2.21 x 10-' dyn for the isometric force per overlap
cross-bridge. Then Fod/kT = 14.3 leads to d - 250 A, which is "reasonable" but
not "optimal" (see above). Since in this calculation the value found for d is propor-
tional to the value used for r (Eq. 47), we note that if we had taken er = 109, as
suggested in section 4(b) above, we would have found d - 320 A.

Magnitude of K. We have already encountered values for K, at 30C, of
0.80 erg- cm-2 (model I') and 3.14 erg- cm-2 (model II'). These are direct conse-
quences of our choices of x+ and r (Eq. 36). If we had used er = 109 instead of 107,
we would have obtained K = 1.03 erg. cm-2 (model I') and 4.04 erg - cm2 (model II').
The experimental instantaneous stiffness together with the theoretical values of n10

(the fraction of attached cross-bridges) for models I' and II', above, furnish indepen-
dent estimates of K for comparison with the values above. For purposes of this cal-
culation, we have to assume that there is no passive series elasticity. The simplest
theoretical relation (which is all we use) between the instantaneous force per cross-
bridge, F(O;y), and Fo is (Hill, 1974, Eq. 44)

F(0;y) = Fo + il0Ky,

wherey is the instantaneous change in length per half-sarcomere. Ford et al. (1974)
have found that F(0;y) = 0 when y - 50 A. Using Fo = 2.21 x 10-7 dyn from
above, we then deduce that 1oK = 0.442. To find K itselfwe also need no. On intro-
ducing 1o = 0.32 (model I') and no = 0.166 (model II'), we obtain finally K = 1.38
erg-cm 2 (model I') and K = 2.66 erg-cm-2 (model II'). The K values from the two
sources (x+ and r; stiffness) agree as to order of magnitude.

5. IDEALIZED TWO-STATE HIGH-EFFICIENCY MODEL

The two-state model considered here is perhaps as simple a self-consistent model as can
be constructed. It represents a kind of asymptotic limit in two-state model construc-
tion; it is therefore very unreal. But it is of interest because it demonstrates the possi-
bility of very high efficiencies, and at the same time might provide an upper limit in this
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1-n(O) 1-n(O) n =0
fj,f

n(Ol
n(QI g,g A0-AkT

r=1l

FIGURE 14 Top: rate constant functions for the idealized model of section 5 in the case A > F
(the dashed g' curve illustrates r > A); f and f' are zero at negative x while g and g' are zero at
positive x. Bottom: corresponding free energy curves with possible transitions indicated by dou-
ble arrows, for the pass of an actin site starting on the right at the r = 0 level. Heavy arrows
indicate schematically the fate of the initial unit probability packet labeled n = 0.

respect for two-state models. Of course in "real" two-state models (e.g. section 4), one
must make a sacrifice with regards efficiency for the sake of adequate mechanical and
other properties.
As shown in Fig. 14 (see also Fig. 3),f is constant for x > 0 and f = 0 for x < 0.

Conversely, g is constant for x < 0 and g = 0 for x > 0. The ratio g/f is arbitrary.
The force and free energy functions for the attached state are taken as

F1 = Kx = (kT/lr2)x
Al = Ap + IKX2. (48)I 2

It then follows from Eqs. 11 and 12 that (Fig. 14)

fe/f = e-reX2/22 (x > 0)

=0 (x < O)

and

g'/f = (g/f)er'e -x2/2,2 (x < 0)
=0 (x> O),
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where the constant f is used as a reference rate constant. The magnitude of g' rela-
tive to g (Figs. 6 d and 6 e) depends on r - A. Fig. 14 is drawn for the case A > r (ex-
cept for the dashed g' curve, which corresponds to r > A). In the numerical calcula-
tions described below (steady isotonic contractions) we take eA = 108 = constant and
vary (somewhat) the remaining independent parameters er, g/f, and v/of
The essence of the model is that at positive x only f, f ' transitions occur while at

negative x only g, g' transitions occur. From a stochastic point of view, in the pass of
an actin site by a cross-bridge, the site approaches the cross-bridge from positive x
(heavy arrow on right, Fig. 14) certainly unattached (n = 0). Only f, f ' transitions
(double arrow) are possible, and these strongly favor attachment, until x = 0 is
reached, at which point n = n(0). The two probability packets, 1 - n(0), unattached,
and n(0), attached (smaller heavy arrows), both then may undergo g, g' transitions but
the packets must eventually end up intact, despite these transitions, with the same
values 1 - n(0) and n(0), respectively, at large negative x (Fig. 14). However, the state
of the packet n(0) switches from attached (state 1) at x = 0 to unattached (state 0) at
x = - mc. That is, there is a net g, g' flux in this interval, proportional to n(0).
Obviously, r = n(0) < 1 since there is no way r (at the end of a pass) can have any
value (e.g., -1, +2) other than r = 0 and r = 1. Since i = iv/d in general, we must
have here J = n(0)v/d (as, in fact, is self-evident). Of course n(0) itself depends on
v. Note that J 0 as v -1 0. This, too, is obvious from the model sincef andf' do
not overlap with g and g' in any interval of x.
The approximate efficiency in the limit of low velocities (v -p 0) can be deduced, by

inspection, for the two special cases shown in Fig. 15. The isometric steady state, at

X_

rkT~~~0 k

(a) AgkT

lIZAl

(b) rrkT AkT

x_ ~~~~~~~~~

FIGURE 15 Section 5 model: basis of approximations, for low velocity (v 0) contractions, that
(a) 7?. r/A for eA >> er and (b) 11-_ I for e >> e . See text for details.
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positive x, amounts to f, f' equilibrium between free energy levels A0 and A 1 (highly
favoring A ,) and at negative x, to g,g' equilibrium between free energy levels A I and
AO - AkT (see Eqs. 11 and 12). The heavy lines in Fig. 15 show the highly favored
free energy level for each x. The circles indicate schematically the regions where the
"highly favored" simplification is inaccurate. It is apparent from the heavy lines that,
for very low velocity passes, the efficiency will be v r/A for the case eA>> er (com-
pare Fig. 7 b) andv 1 for the case er >> e' (negative and positive contributions to
the work, from x' < x < x+, cancel). These estimates will be confirmed below.
We turn now to a more systematic analysis. The differential equations, in dimen-

sionless form, are

(a)d(xs)=-1 - n -(f'/f)n (x > 0) (51)

= (g'/f)(I - n) - (g/f)n (x < 0). (52)

The boundary condition on Eq. 51 is n = Oat x = oo ; on Eq. 52, it is n = n(0), obtained
from the solution of Eq. 51, at x = 0. Because of the presence off'/f and g'/f, the
solutions of these equations for arbitrary v/af cannot be expressed in terms of ele-
mentary functions. Of course n(- oo) = 0. The isometric (v = 0) solutions are

no(x) = f/(f + f') = erl(er + ex2/2,2) (x > 0) (53)
= g'/(g + g') = er-/(er-& + ex2/2f2) (x < 0) (54)

Substitution of either Eq. 51 or 52 into the integrand of Eq. 20 for J allows im-
mediate integration of f dn over 0 < x < X or - X < x < 0, respectively, with the
result

Jd/af = (v/of)n(0), (55)

as already deduced above by another argument. The quantities n(0) and Jd/af depend
on Eq. 51 but not on Eq. 52. Therefore, they are functions of er and v/af but not of
eA org/lf
When er is large (say, > 106), as in practical examples, a good approximation to

n(0) can be obtained by omittingf' and, as compensation, givingf a step down to zero
at x = x+ = a(2r)"/2 (Fig. 14). Integration of Eq. 51, with n = 0 at x = x+, then gives

n(x) _ 1 - exp[-(2r)'/2/(v/af)]exp(xf/v) (O < x < x+). (56)

We can see from this approximation that, for v/afof order unity or less, n(0) 1 and
Jd/af v/af: Exact computer solution of Eq. 51, for n(O), gives Jd/of = 0.5000
for v/af = 0.5 and er = 107, 108, 109, and Jd/af = 0.9971, 0.9980, 0.9986 for v/lf
1.0 and the same values of er, respectively.
The force (Eq. 19) cannot be expressed simply except in the isometric case:
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TABLE II

COMPUTED FORCE, Fd/kT(eA = 108)

v/af 0 0.5 1.0

e 107g/f= 1 16.02 14.04 11.55
108 1 17.73 15.41 12.64
109 1 18.33 15.47 12.07

107 4 16.02 14.29 12.48
107 1 16.02 14.04 11.55
107 1/4 16.02 10.31 -2.76

Fod/kT = In [eA + er (57)

Aeri+le' r
= Ano(O) (A 0) (58)

(er >> eA > 1) (59)

A -ln2 (er = eA >> 1) (60)

r (eA >> er >> 1). (61)

Table II contains a few computed values ofthe force, from Eqs. 19, 51, 52, and 57.
In Eq. 58 and below, when we let A -- 0 (approach to equilibrium), we hold r con-

stant. This amounts to adopting the special case Eq. 14a.
The efficiency is

= Fv/JAkT = (Fd/kT)/n(O)A. (62)

It can be shown analytically (and is confirmed by Eq. 56 and Table II) that, for any A,
n(0) has zero slope while Fd/kT has a finite negative slope, as functions of v/lf, in the

limit v/af O. Hence, for given A, v in Eq. 62 has a maximum at v = 0: vq* = v0
(isometric) and v* = 0. The explicit expression for -q* is

?I* =?= (FOd/kT) I + er e + er] (63)

n0(0)A AAer [ell +erj

-*1 = q (-q(A ) (64)

1 (e'//Aer) (er >> eA 1) (65)
1 - (ln2/A) (er = eA 1) (66)
rr/A (eA >> el >> 1). (67)

Eqs. 65 and 67 confirm the estimates made above on the basis of Fig. 15. Some exact
values ofv are given in Table III; they range between 0.5 and 1.0.
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TABLE III

COMPUTED EFFICIENCY, q (e'& - 108)

v/af 0 0.5 1.0

er _ 107,g/f- 1 0.870 0.762 0.629
108 1 0.962 0.836 0.688
109 1 0.995 0.840 0.656
lo, 4 0.870 0.776 0.680
lo, 1 0.870 0.762 0.629
lo7 1/4 0.870 0.560

The rate of entropy production is

TS, = JAkT - Fv. (68)

It is interesting that, in the isometric state (A arbitrary), TS, = 0. This result is
ordinarily expected only at equilibrium. The reason it is encountered here is that we
have a quasi-equilibrium when v = 0: at positive x, there is an f, f' equilibrium be-
tween states 0 and 1; and at negative x, there is a g, g' equilibrium between these
states (see Eqs. 53 and 54). Correspondingly, the flux is zero at v = 0.

Eqs. 23 and 27-30 apply near equilibrium (r constant, A -w 0). From Eqs. 23 and 58
we find Ad = no(0), and this can be confirmed by use of Eq. 27. From Eqs. 23 and 55,
we have C = 0 and Dd = no(O). Eqs. 29 and 30 verify these latter results. The re-
ciprocal relation, A = D, is satisfied. B must be computed numerically.
The efficiency, near equilibrium, is

v = Fv/JAkT = 1 - [Bdv/nO(O)AkT]. (69)

The maximum q, for given (small) A, occurs at v = 0: v* = 0, q* = 1, in agreement
with Eq. 64. This can also be seen from Eq. 31 since C = 0 and A 2/BC = oo.
The entropy production, near equilibrium, is TS, = BV2.

Approximations. For order of magnitude purposes, one can easily obtain approxi-
mate expressions for F and J in the special cases (a) eA >> er >> 1 and (b) er >> eA > 1. In
both of these cases, since e r >> 1, we omit f ' and cut f off at x = x+ (see above). Then solu-
tion of Eq. 51 gives Eq. 56 as an approximation to n(x) for 0 < x < x+. Also, n(x) = O for
x > x +. Then from Eq. 55 our approximation to J, in both cases, is

(a) and (b): Jd/of- (v/af) II - exp[-(2r)'/2/(v/ f)]j. (70)

In case (a), at negative x, we omit g' since g >> g' even at x = 0. Eq. 52 then gives

(a) n(x) - n(0)efx/v (x < 0) (71)

where n(0) = j in Eq. 70. Eqs. 56 and 71, when substituted into Eq. 19, lead to
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(a) Fd/kT- r - (v/af)(2r)/2 + (v/of)2n(0)[1 - (g/f)-2]. (72)

In case (b), at negative x, we assume that n(x) has the constant value n(0) in the interval
x' < x < 0 (since g' >> g), and that g' may be neglected for x < x' (since g >> g'). Thus

(b) n(x) %,n(0)e-x'lve gxlv (x < x' (73)

where

x = -o[2(r - A)]'/2. (74)

Using the various parts of n(x), we find from Eq. 19 that

(b) Fd/kTT n(0)A + [1 - n(o)]ir - (v/orf)f(2r)'/2
+ n(0) [2(r -A)]1/2(g1f)-lJ
+ (v/of)2n(0)[1 _ (g/f)-2]. (75)

Introduction ofa Podolsky-Nolan Gap. Suppose that the g, g' functions in Fig. 14 are
interrupted at x = -a < 0 and replaced by f, f ' functions for x < -a, as in Figs. 8 and 11.
This generalization is very close to the reduced g models discussed in sections 4(b) arnd 4(c). In
fact, the dashed curves in Figs. 10 and 12 are essentially (but not exactly) examples. The model
shown in Fig. 14, as it stands, is the case a - o. The physical significance of the change (finite
a) is: (1) cross-bridges that are still attached at x = -a, in isotonic contractions of sufficient
velocity, will now be detached via f ' rather than via g (thus reducing J); and (2) new attach-
ments at x < -a, reducing the mean force, may be formed viaf if v is small and if -a is not
much less than x_, or especially if -a > x -.
We mention only a few properties of this system, which we have not investigated thoroughly.

Consideration of the revised Fig. 14 shows that now it is possible to have r = - I as well as
r = 0 and r = + 1, at the end of a pass. Integration of Eq. 52 from x = -a to x = 0 gives,
for any v,

Jd = [n(O) - n(-a)]v, r= n(O) - n(-a) < 1. (76)

Thus the isometric flux is zero. The maximum efficiency is presumably at v = 0 (as in the dashed
curves of Figs. 10 and 12); there is quasi-equilibrium at v = 0 with TSi = 0; and v* = qo 1
as A - 0. These qualitative properties are all unchanged from the a = Xo case.
The isometric force is found to be

Fod _ n(er-a + ez)(er + 1)] 77
kT [(erF- + l)(er + ez) (77)

wherez = a2/2a2, while

nO(O) - no(-a) = [er/(er + 1)] - [erA,/(erA^ + ez)]. (78)

The isometric efficiency, x1o, follows from Eqs. 77 and 78. One can show that qo as a function of
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FIGURE 16 A. F. Huxley (1957) model with minor (or negligible) additions (dashed curves)
needed for completeness, along with F and A values.

a (A and r constant) has a maximum at a X. Introduction of f, f' for x < -a lowers Fo
more than'it lowers no(O) - no(-a); hence 1* = no is larger in the original model (a = x)
than in the modified model (a finite).
Note that, because of the quasi-equilibrium at v = 0, the above isometric properties do not

depend at all on the shapes off,f', g, g' but only on the values of F, A, and z.

A. F. Huxley (1957) Model. The original A. F. Huxley (1957) model re-
sembles the present one to some extent. For the Huxley model to be "legal" (Fig. 16)
as it stands requires: (I) location of x+ = a(2r)'/2 sufficiently to the right of x = h so
that thef' appendage (dashed) will be negligible; and (2) el >> er so that the g' ap-
pendages (dashed) will also be negligible. The latter condition would limit the possible
efficiency (compare Fig. 7 b and Eq. 67). Thus, to complete the model, r and A need
specification (Huxley includes K and d in his equations).

APPENDIX

This appendix is concerned with the form of the dependence of certain rate constants on the
concentrations of ATP, ADP, and P. Actually, except for some incidental calculations near
equilibrium, this question does not arise in sections 4 and 5 because these concentrations are
held constant. But in other experimental and theoretical work, this subject could be of im-
portance.

If we deal with a complete diagram that uses elementary molecular transitions, the situation is
simple (Hill, 1974, 1975 a). If A = eL/kT is the absolute activity of any ligand (ATP, ADP, P),
the first-order rate constant for binding the ligand is proportional to A and the inverse (de-
sorption) rate constant is independent of A. Of course, A is proportional to concentration c if
the activity coefficient can be ignored. We use A - c below.
The above simple relationships can become more complicated if elementary transitions are

not used, that is, if the complete diagram is compressed or reduced to a smaller number of states
(Hill, 1975 a, Appendix 2). Such complications are especially to be expected in the most ex-
treme case of diagram compression or reduction, namely, to two states (as in the present paper).
We confine our comments below to biochemical diagrams in which no cycle of the diagram in-

volves the splitting of more than one ATP molecule per single circuit around the cycle.
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Single Cycle
We consider first the most important special case (in the present state of the subject): only one
cycle of the complete diagram is important. Thus we are concerned here with the reduction of a
single cycle to, possibly, as few as two states.

Let c T T C(orcT) be the elementary first-order binding rate constant for T and let Tbe
the corresponding desorption rate constant (and similarly for D). Then if a sequence (counter-
clockwise in Fig. 1) of two or more successive inverse pairs of transitions in the cycle, including
the pair aT, #T but not including aD, dOD, are reduced to a single pair of effective transitions
(Hill, 1975 a, Appendix 2), the effective first-order rate constants will have a dependence on CT
of the form

a* = [a*e(l + a)(cT/CeT)]/[1 + a(CT/C'T)] (79)
T = [#e(' + a)]/[l + a(CTI/CT)], (80)

where a is a positive quantity (or zero) that depends on the particular case. Eq. 79 has the
form of a Langmuir adsorption isotherm. Similarly, for a sequence (in the opposite direction)
that includes the pair aD, #D but not aT, ,T, we have

-t* [a*e(l + b)(cD/CD)]/[1 + b(CD/C'D)I (81)

D [D (j + b)]/[1 + b(CD/CD)I, (82)

where b > 0.
Actually, a and b are constant with respect to variations in CT and CD, but in general they are

both functions of x (since they involve combinations of more elementary rate constants), as are
also al*e, etc. This feature makes the application of Eqs. 79-82 to a particular model rather
awkward except in the special cases a, b - 0, a, b >> 1, or a, b independent of x.

If the above kind of reduction of a single cycle is carried out all the way to two states, and if
we assign g, g' to the T transitions and f, f ' to the D transitions (this is the case in Eq. 14 b),
then we have, above,

g = a*,g' =
=
a f= IaD (83)

If we put CD/CD 1 (i.e., CD is not varied) and a = 0, so that g = g'(cT/c'j) = gceA and g' =
g", we have the simple special case used in most of our previous work.

Eqs. 79-82 provide an illustration of Eqs. 24. One finds that

b (ACD/CeD) 1 (ACD/C'D)
a, = - , 21 + b A I+b A

(84)
1 (ACT/CT) a (ACTCeTT)

1+ a , 1+a

whereACD- CD - c , etc., and

A = (ACT/CeT) - (1ACD/CD))-
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It would also be possible in the reduction of a sequence of pairs of transitions to include
both of the pairs aT, f#T and (with opposite "polarity") AD, AD. We could then have effective
rate constants of the form

* a*e(1 + a' + b')(CT/CT) (85
1 + a'(cT/cT) + b'(CDICD)

* *'(I + a' + b')(CD/CD)
1 + a'(cT/CT) + b'(CD/CD) (86)

These resemble two-component Langmuir equations. If the reduction leaves only two states,
there are two possibilities (as in Eqs. 14 a and 14 c):

(a) g = a*,g' = f#*; f,f' = independentof CT,CD (87)

(c) f = a*, f' = fl*; g,g' = independent of CT, CD.

In (a), the simple case g = g ee is again obtained if CD/C'D= 1 and a' = 0.

Multicycled Diagram
With more than one important cycle in a diagram, it is possible to get dependences on CT and
CD of higher order than the quotients of linear expressions encountered in the preceding sub-
section. For example, if there are two different paths, in a diagram, from state i to state j
and each path has a reduced first-order rate constant of the form of Eq. 79, then the single
effective rate constant for i - j is the sum of the two linear quotients. But this is equivalent
to a quotient of two quadratic expressions.
The order becomes quartic for i - k if i j, involving CT, iS arranged in series with a similar

diagram loop j k, involving CD (opposite polarity), where j is now also a transient interme-
diate.
The discussion in this appendix is not exhaustive. But it should suffice to show that the pos-

sible dependences of individual rate constants on CT and CD can be various and some-
times complicated.

We are grateful to Dr. A. C. Nolan for helpful discussions.

Receivedforpublication 11 October 1974.
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