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ABSTRACT The nonelectrolyte (/,) and volume (J,) flux across a membrane is usually
described in terms of two equations derived from the theory of irreversible thermo-
dynamics:

wRTAc + (1 - a,)TJ,
J, = L,(AP - ¢,RTAc)

“

where Ac and AP are the concentration and pressure difference; w and L, are the
diffusive and hydraulic permeability; and o, and ¢, are the reflection coefficients.
If Onsager’s reciprocity postulate is assumed, it can be shown that ¢, and o, are
equal. This is an important assumption because it allows one to apply the continuum
theory relationship between o, and the pore radius to experimental measurements of
g,. In this paper, general continuum expressions for both the J, (a new resuit)
and J; equation will be derived and the equality of ¢, and ¢, proved. The proof uses
only general hydrodynamic results and does not require explicit solutions for the drag
coefficients or, for example, the assumption that the solute is in the center of the pore.
The proof applys to arbitrarily shaped solutes and any pore whose shape is indepen-
dent of axial position (uniform). In addition, new expressions for the functional
dependence of w and o on the pore radius are derived (including the effect of the
particle lying off the pore axis). These expressions differ slightly from earlier results
and are probably more accurate.

INTRODUCTION

The nonelectrolyte (J,) and volume (J,) flux that results from an applied concentra-
tion (Ac) and pressure (A P) difference across a membrane can be described by the
following two equations (Katchalsky and Curran, 1965):

J, = wRTAc + (1 - 6,)TJ, (1)
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J, = L,(AP - ,RTAc) (2)

where w is the diffusive permeability, L, is the hydraulic permeability, ¢ is some
average of the concentration on the two sides of the membrane (see below), and o, and
o, are the reflection coefficients for the two equations. These equations follow directly
from the assumption that the two fluxes are linearly dependent on the two driving
forces (AP and Ac). If the theory of irreversible thermodynamics is applied to this
problem and Onsager’s reciprocity postulate is assumed, then it can be shown that o,
and o, are equal.

In order to interpret the parameters in Egs. 1 and 2 in terms of membrane properties
(i.e. pore radius) a mechanistic model must be assumed. The continuum model is the
best available for the relatively large pores that are found in most artificial membranes
and in the intercellular spaces of many biological membranes (capillary endothelium,
intestinal epithelium, etc.). The pores in cell membranes are probably too small to
allow the use of the continuum theory and can be described more accurately by a dif-
ferent model (Levitt, 1974; Levitt and Subramanian, 1974). The theoretical depen-
dence of w and o, on the pore radius for the continuum model was derived by com-
paring a continuum expression for J, with Eq. 1 (Bean, 1972). Since a continuum
expression for J, had not been previously derived, it was necessary to assume that
Onsager’s postulate was correct and that o, was equal to o, in order to relate the
experimental o, to the pore radius. This assumption is especially important because
in many experimental studies o, can be measured much more accurately than o,. In
most cases it is not possible to test the equivalence of o, and o, because of experi-
mental difficulties. It is well recognized that Onsager’s postulate is only a postulate and
that, if possible, it should be verified for the particular case by an exact kinetic deriva-
tion (Fitts, 1962; Duda and Vrentas, 1964). In this paper a general continuum proof of
the equivalence of o, and &, will be presented.

In the first section of this paper a brief continuum derivation of the J, equation will
be described. Recently, Bean (1972) and, independently, Verniory et al. (1973) have
shown that there was a serious error in the earlier continuum derivation for ¢,. The
derivation of the J, equation in this paper is based on the approach of these authors
and is similar to the recent detailed analysis of Anderson and Quinn (1974). In the
second section, a continuum derivation of the J, equation will be obtained and it will
be shown that ¢, equals o,. This equality follows from a general continuum analysis
and does not require explicit solutions to the hydrodynamical equations. This is essen-
tial since a rigorous series solution is only available for the case where the solute is
located on the pore axis. The derivation will be given for the special case of a cylindri-
cal pore and spherical solute particle. It will be shown that the derivation can be easily
generalized to the case of a solute of arbitrary shape and to any pore that is uniform in
the axial direction. Pores whose cross section vary as a function of axial position (non-
uniform) will be considered in a second paper (Levitt, 1975). In the third section, the
best available explicit solutions will be applied to the general results and expressions
for w and ¢ in terms of the pore radius will be obtained.
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LIST OF SYMBOLS

R, T,N, Gas constant, absolute temperature, Avogadro’s number.

a,R, L Solute radius; pore radius and length.

x, b Axial position and distance from pore axis of particle center.

ABL v,k Dimensionless parameters: a/R,, b /a, b/R,, -(1 - 0)J,/wRT.

E\ E,,S; Pore ends and part of surface of particle i that is within the pore.

n Viscosity of water.

uv Linear velocity of solute and average velocity of solvent.

Ap,, Ap, Chemical potential difference of water and solute.

V..V, Molar volume of water and solute.

¢, Ac Concentration and concentration difference (¢, — c,).

w, 0,,0, Diffusive permeability; reflection coefficient for solute and volume equa-
tions.

D Total drag of water on solute.

H,(B), G\(B),J,(B) Drag functions.

o, d°, ® Local frictional dissipation; total pore dissipation in absence and pres-
ence of solute.

Lg, L, Hydraulic permeability in absence and presence of solute.

AP’ AP Pressure difference in absence and presence of solute.

Vo, v, Velocity vector and pressure tensor in absence and presence of solute.

I. DERIVATION OF THE J; EQUATION

It is shown in the appendix that the drag (D) on a particle in a pore can be written in
the form:

D = naH,[U - G, V], 3)

where U is the velocity of the particle, ¥ is the average velocity of the water, 7 is the
viscosity, and a is the radius of the solute particle. The drag coefficients H,(8) and
G,(B) depend on the dimensionless parameters A (= a/R,; where R, is the pore radius)
and B (= b/a; where b is the displacement of the particle from the pore axis). Although
the drag is usually expressed in a form similar to Eq. 3, it has not been previously
recognized that this is a very general result that follows directly from the “creep flow”
hydrodynamic equations (see Appendix).

The J, equation is derived by setting the drag of the water on the solute (Eq. 3)
equal to the thermodynamic force on the solute:

—N;'(du/dx) = —N;'[RTc'(de/dx) + V,(dp/dx)] = naH,[U - G,V].  (4)

It is assumed that the solution is ideal and that the concentration profile is given by
the following relation:

0 A —1<B<A!

c(x,B) = (5)
cx) 0<B <A - 1.
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Although Eq. 5 is usually considered as an additional assumption, it is the only condi-
tion that is compatible with the continuum model. That is, in the derivation of Eq. 3
it is assumed that there is no solute-solute interaction and that the only effect of the
wall is through the boundary condition that the velocity of the water is zero at the wall.
Thus, at equilibrium, the solute moves in a uniform potential bounded by the wall and
must have the concentration profile of Eq. 5. This equilibrium will not be disturbed by
the flows that occur because radial diffusion will be very rapid in pores of the size that
are found in membranes, and because the well known tendency of particles to accumu-
late in the center of a flowing stream is the result of the inertial terms which are not
included in Eq. 3 and are negligible in these small pores.
Substituting Eq. 5 into Eq. 4 and rearranging:

c(x)U(x,8) = —(N,maH,)'[RT(de/dx) + V,e(dp/dx)] + G\Ve. (6)

The solute flux is then equal to:

R -1_
J, [ " cUQ@wb)db = 2xa? [ T (U, B)BAB

A-1og

—2xa(nN,)"[RT(de/dx) + V,e(dp/dx)] f H;'BdB
0

A-log
+ 27a*Ve f G,B8dg. (7)
()

Finally, integrating Eq. 7 across the length of the pore (in the steady state J, is inde-
pendent of x):

J, = w[RTAc + V,cAP] + (1 - o)V, J,C, (8)

where the following definitions have been used:

Pt B Sl
o= @ra/NaL) [ H7pds o= 1-20 [ 7 Ggas,
0 0

¢ = (1/L)foL c(x)dx; ¢AP = (1/L) IL cdP; 9)
and where 7R} V has been set equal to the volume flux of the water (V,J,). Substi-
tuting the relation:

V,J, =J, - VJ, (10)
into Eq. 8:
JI1 + (1 = 6,)¢V,] = w[RTAc + V,eAP) + (1 - 0,)cJ,. (11)

536 BIOPHYSICAL JOURNAL VOLUME 15 1975



Since the integral cAP is of the order cAP and for a dilute solution ¥, « 1, the
terms involving ¥, in Eq. 11 can be dropped and Eq. 1 is derived:

J, = wRTAc + (1 - a,)2J,. (1)

Eq. 9 relates the parameters w and o, of Eq. 1 to the pore radius and it provides a
precise definition of ¢ (which is left rather ambiguous in the thermodynamic deriva-
tions). Actually, Eq. 1 is not really a solution since ¢is not known and is a function of
J,and Ac. For an exact solution, Eq. 7 should be considered as a differential equation
for ¢ (neglecting the pressure term) which can be solved to yield:

J: (1 - ".t)‘]v(c2e‘r - cl)/(e‘ - l)

—(1 - 6,)J,/wRT.

“ (12)
Although Eq. 12 is a more complete solution, it does not allow a separation of J, into
a convective and diffusive term. A more useful expression can be obtained by solving
the differential Eq. 7 for c(x):

c(x) = (c; — e )(1 — e™1L))(1 — e*) + c,e /L, (13)
Substituting this equation for ¢(x) inb the definition of & (Eq. 9):
= (e - ae)/(l - e) + (¢ - &)k (14)

If the exponentials in Eq. 14 are expanded (to third order) a useful approximation to ¢
is obtained:

¢ =3 + ) + (/1) (e, = ). (15)

This is a remarkably accurate approximation. For a « of + 1.5, & (Eq. 15) differs from
the exact ¢ (Eq. 14) by only 19,. For a « of + 2.5, the error is less than 6%. Since in
most membrane studies « is less than 1.5, no significant error is introduced if Eq. 1 with
Z(Eq. 15) substituted for ¢is used in place of the exact expression for J,.

II. DERIVATION OF J, EQUATION

As in the case of the J, equation, the derivation is based on a combination of con-
tinuum hydrodynamics and thermodynamics. Consider the situation where a mem-
brane separates two homogeneous compartments with concentrations and pressures of
¢, Pyand c,, P,. First consider the case in which the transfer of water (J, mol/s)
and solute (J;) between the reservoirs is carried out reversibly by going through some
apparatus W. (A sct of pistons and semipermeable membranes can be set up to carry
out this reversible transfer.) If the system is isothermal then the rate of reversible
work (W) associated with the transfer is:
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W = Ap,J, + Ap,J,, (16)

where Apu, and Ap, are the chemical potential differences on the two sides of the
membrane for the water and solute. During the spontaneous irreversible process, all
this work must be dissipated through frictional loss in the pore. In this section, an
exact expression for the frictional dissipation (®) in the continuum model will be
derived. It will be shown that if this expression is set equal to Eq. 16, the J, equation
can be derived.

The basic ideas of this derivation can be simply illustrated by first considering the
special case where the membrane is perfectly semipermeable (impermeable to the
solute, J, = 0). It will be assumed throughout this section that the solution is dilute
and ideal so that:

Ap, = (AP — RTAc)V,. (17)
Since J, = 0, J, = V,J,, and Eq. 16 becomes:
W =& = (AP — RTAc)J,. (18)

The derivation is based on comparing this expression with the energy that would be
dissipated (®°) for the situation where exactly the same flow of water (J,) occurred,
but there was no solute present in the bulk solution:

3 = APYJ, (19)

where A P° is the pressure difference that would be needed to produce this volume flow.
If the membrane is semipermeable and the pores are uniform, the solute must be com-
pletely excluded from the membrane and the flows occurring in the pore must be the
same in the two cases and ® must equal #°. Then, defining LI by the relation:

J, = LYAP°
and setting Eq. 18 equal to Eq. 19:
J, = LY(AP - RTAc) (20)
Eq. 20 is a special case of Eq. 2(¢ = 1). It is a completely general derivation and does
not depend on any continuum assumptions. If it is assumed that the pore water is a

continuum (and one neglects entrance effects, etc.) then L is given by the Poiseuille
relation:

L} = xRy /8L (21)

where 7 is the viscosity of water.
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The derivation for the general case follows the same procedure. The energy dissi-
pated in the pore (®) is obtained from Egs. 16 and 17:

$ = (AP — RTAC)V,J, + A, J,. (22)

Again, & is compared with the energy that would be dissipated if the same water flow
(J,) occurred and there were no solutes in the bulk solutions (A P° is the pressure
necessary to produce the flow V,J, ):

®° = AP°V,J, and V,J, = L3APC. (23)
Defining ®* as the difference between these two terms:
®* =® — ®° = [AP — AP® — RTAC,|V,J, + Au,J,. (24)

For the creeping or low Reynolds number flow approximation which is applicable for
these pores the local energy dissipation (¢) is given by (Happel and Brenner, 1965):

¢ = V-(V.1I), (25)

where V is the velocity, vector of the water and II is the pressure tensor. The total
energy dissipated in the pore is given by the integral of ¢ over all the water in the pore:

& =[ odv, (26)

where v is the water volume and does not include the volume occupied by the solute.
Applying Green’s theorem to Eq. 26, the volume integral can be converted to a surface
integral:

<1>=f V.1I.ds, (27)
S

where the surface of the water (S) is made up of the pore walls and ends and the surface
of the solute particles contained in the pores. The integral over the pore wall surface is
zero because of the boundary condition that V' = 0 at the pore walls. Thus Eq. 27 can
be written as:

® - f V.11.ds, (28)
£,+E;+Z}SI
J

where E, and E, are the surfaces at the pore ends and are assumed to lie just outside
the pore in the bulk solutions (see Fig. 1) and S, is the surface of the jth solute par-
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FIGURE 1 Diagram of pore used in text. The ends of the pore (E;, E,) lie just outside
the pore in the bulk solutions which have bulk pressures P, and P,. Three particles are
shown. The surface S includes only that part of the particle surface that lies within the pore
(see S;). The surface A (x) is the intersection of E; and particle i.

ticle in the pore. Similarly:
0 = f Vo.11°. ds, (29)
E|+Ey

where the superscript 0 refers to the condition when no solute is present. Subtracting
Eq. 29 from Eq. 28:

<1>+=<1>-<1>°=f V.I-ds — f V. 11°. ds. (30)

E\+Ey+ 3 S; E\+E,

Eq. 30 can be rearranged so that it is the sum of six terms

<1>+=f (V—V°)-II-ds—f (V° — V). II°. ds

E\+Ey E\+Ey

+2 fV~II-ds+ [f VO.M.ds — V.n°.ds]
J Sj El+Ez+ZSj

E|+£2+ZSJ~
+X [rwes-F [veone. 31
J Sj Jj Sj

These six terms will be separately evaluated in the following paragraphs.

(1,2) Since the surfaces E, and E, are just outside the pore in the bulk solutions (see
Fig. 1), the pressure tensor on these surfaces is just the bulk pressures (P, and P,).
Thus, integral 1 can be written as:

f (V - V9.1.ds = P, f(V—V°).ds+P2f(V—V°)-ds. (32)

Ey+E,y E, Ey

Both of the integrals on the right side of Eq. 32 are zero since the velocity field ¥°
was chosen so that it had the same net water flow as in the case when solute was pres-
ent, that is:
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fV-ds= !V"ods, (33)

s

where S’ is any cross-sectional surface in the pore. The second term in Eq. 31 is zero
for the same reason.

(3) On the surface of the solute particle one has the boundary condition that V' = U,
(plus a rotational term that is perpendicular to ds) where U, is the velocity of the jth
particle. Thus the third term can be written as:

> fV.n.ds=ZU,. fn-ds=ZU,D, (34)
i 5;

j Sj
where D; is the drag exerted on the jth particle by the water (see Eq. 74). The average
value of this sum is equal to the following integral:

2 UD, = fUDpdV, (39)

where p(x,b) is the probability per unit volume of finding a particle at a given position
in the pore and is proportional to the concentration. This average can be regarded
either as the value of the sum averaged over a large number of pores or for a single
pore averaged over a period of time. As in the derivation of the J, equation, it will be
assumed that the drag is equal to the thermodynamic force. Substituting N, ¢ for p
and —N;'(dy;/dx) for D,, the third term in Eq. 31 becomes:

R

L
> fV.n-ds=ZU,.D,= -f dx-g—-‘;fchZwbdb=Ap,J,. (36)
0 0

j S;

(4) The fourth term in Eq. 31 (brackets) is zero due to a general theorem which is
valid for “creep” flow. This theorem, which is derived and discussed in detail by Hap-
pel and Brenner (1965) states that:

fds-H’-V" - fds-n".V', (37)
S S

where S is a closed surface bounding any fluid and (V’,11') and (V",I1") are the ve-
locity and stress fields corresponding to any two motions of the same fluid.

(5) Applying the boundary condition that ¥ = U, on the surface of the sphere, the
fifth term in Eq. 31 can be written as:

Z /V.H°-ds=ZIJj fH°-ds. (38)
i j Si
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Now for solute particles that are contained entirely within the pore the surface in-
tegral can be converted into a volume integral by Green’s theorem:

fl'l°-ds= fV-l'IodV=0. (39)
S; (7

J J

The volume integral equals zero because V - I is zero for any creeping flow. Only par-
ticles that are not completely contained in the pore contribute to the sum. Fig. 1 shows
an example of such a particle which intersects the surface E,. Consider the volume
that is bounded by S; (the part of the sphere surface that lies within the pore) and
A(x) where A is the intersection of the sphere and E,. Since, as in Eq. 39, the integral
over any closed surface is zero, the surface integral over S; must be equal to minus the
integral over A(x) and since I1° on the surface 4 is equal to the bulk pressure (P9) the
integral in Eq. 38 can be written in the form:

f n°.ds = P° ds = PA(x). (40)
Sj A(x)

The summation in Eq. 38 is now over only the particles which intersect the ends. As in
Eq. 35 this summation can be replaced by the following integral:

R
2 fII°~ds iy fdxA(x) f’(NAc)U(zrb)db = J7.P. (41)
Jj Sj -a 0

The integral over the particles which intersect E, gives rise to a similar expression
(=J,V, P,) so that the fifth term becomes:

> fV.n°.ds = AP°V,J,. (42)
j Sj

(6) Only the last term in Eq. 31 remains to be evaluated:

Z [V°-l'l-ds. (43)

This term contains all the physics of the problem and an exact expression for it re-
quires a solution of the continuum hydrodynamics. Fortunately, an exact solution is
not needed in order to show that the J, equation has the form of Eq. 2 and to identify
a,. It will again be assumed that the solution is dilute so that solute-solute inter-
actions can be neglected and the integral in Eq. 43 can be evaluated for the case where
no other solute particles are present. Three different conditions of the solute velocity
(U), average water velocity (¥), and pressure tensor (IT) will be considered: condition
LU, = U,V, =0,1,;condition II, U, = 0, V;; = ¥, Il,;; and condition III, no sol-
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utes present, IT;, = I1° and V¥ = V® where V' is given by Poiseuille’s law:

Vo = 2V(1 - B*/R?), (44)

and where the total water flow is equal to ¥,,J,. Since the “creep flow”” hydrodynamic
equations are linear (see Appendix), the pressure tensor (II) is just equal to the sum of
the pressure tensors for the two special boundary conditions (I, + II,). Thus, the
integral in Eq. 43 can be reduced to the sum of the integrals for II, and II,. The
reciprocity theorem, Eq. 37, for the case where the surface consists of the one solute
particle (S), the pore walls, and the ends (E,,E,) in the bulk solution can be
written as:

f V'.".ds = [ v". 1. ds. (45)
E|+Ey+S 1 +E3+8

Since the velocity is zero on the pore walls, this surface has not been included in Eq. 45.
Applying this theorem to the flow conditions I and III defined above:

APV, J, + [V°-H,-ds= U [H°-ds. (46)
Asin Eq. 39, the integral on the right side is zero and:
[ Ve.1I,-ds = —AP,V,J,. 47)
Applying the theorem (Eq. 45) again to the flow conditions I and II:
APV,J, = U [ ds-My = UDy = —naH,G, UV, (48)
where Eq. 3 with U = 0 has been substituted for D;;. From Eqgs. 47 and 48:
f V°.1,.ds = +9aH,G,UV. (49)

s

Unfortunately, the integral involving II,; cannot be evaluated this easily. However,
this integral can be approximated by substituting II; for II,, where II; is chosen so
that the drag Dy is equal to Dy;. That is, the integral can be written in the form:

[vena-as = [ vmids + sa?200), (50)
s s

where
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Dy = fﬂn‘dS = fH{ods = Dy. €1
s S

The second term on the right in Eq. 50 is the correction to the approximation. The de-
pendence of this term on ¥ follows from a dimensional analysis similar to that carried
out in the Appendix. An estimate of J, for the case where A « 1 is given below.
Substituting Eq. 3 for D,; and Dy into Eq. 51:

—1aG,H,V = naH, U". (52)

Solving this equation for U’ and substituting into Egs. 49 and 50:

fV°. I,-ds = —naH,G3V? + naVJ,. (53)

)

The integral in Eq. 43 is then:

/Vo‘n'ds = fVo-(Hl + H")-dS = “ﬂanV(HxU - HxGxV) + T’al—/'z.,x
vs s

= G\ VD + naV?J,, (54)

where D is the total drag (Eq. 3). Substituting the gradient of the chemical potential
for the drag (see Eq. 4) and replacing the summation in Eq. 43 by an integral over the
pore volume weighted by the concentration (see Eqs. 35 and 36), the sixth term in
Eq. 31 becomes (substituting V,,J,,/xR2 for V).

3 f VO.1.ds = 2V,J,NG,\RTAc + 20LN,\(V,J,)?cJ, /xa
J S;

_ A=l _ -1
G, - [ G,8dB; T, = f 7,848, (55)
0

and where the pressure term has been dropped as in Eq. 18 because the solution is
dilute.

Substituting Eqs. 36, 42, and 55 into Eq. 31, equating Eq. 31 to Eq. 24, and re-
arranging terms:

AP°J, — 2qLN N@ay (V,J.)2J,é= [AP — RTAc(1 — 2NG)|V.J,.  (56)
Substituting ¥V, J,, /L9 for AP° (Eq. 23):

J, = 20LN N (xa)"'J,eV,J,L = LOAP — RTAc(1 — 2G,\N)).  (57)
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Since the second term on the left is second order to begin with, ¥V, J, can be approxi-
mated by J, and the final form of the equation is obtained:

J, = LJAP - (1 - 2A\2G,)RTAC]
L, = L2/(1 + K?) (58)
K = —29LN,\J,LY/7a = — {N,a’],,

where in the second quality for K, Eq. 21 has been substituted for LJ. It can be seen
that Eq. 58 is of the same form as Eq. 2 and that g, is:

Sl |
o, =1—2)G, = 1 — 2X? [ G,8dB = o,. (59)

This completes the general proof of the equality of o, (Eq. 9) and o, .

This result is in apparent disagreement with the recent results of Anderson and
Malone (1974). These authors derived an expression for o, which differs slightly from
the value of ¢, obtained by Bean (1972). On the basis of this disagreement, Anderson
and Malone concluded that, in general, ¢, = o,. However, their derivation of o,
is based on a set of assumptions and approximations that are significantly different
from the continuum assumptions used by Bean in the derivation of a,. In fact, con-
sidering the differences in the two approaches, the agreement between the two values
of o is rather surprising. In contrast, I have shown in this paper that within the frame-
work of the continuum theory and its assumptions, g, and o, are identical.

The function K in Eq. 59 can be easily determined for the case where the pore is
much larger than the particle (A « 1). Using Eq. 21, L, can be written in the form:

L, = mR}/8n'L; 7' = 9(1 + K?), (60)

where ' is the *““equivalent viscosity” of the pore fluid. For the case where the particles
in the suspension are small compared to the dimensions of the container, 5’ can be
obtained from the solution (first due to Einstein, see Happel and Brenner, 1965):

' = (1 + (5/2e), (61)
where a is the fractional volume occupied by the particles:
a="Ve (62)

Thus, comparing Eqgs. 60 and 61, the first order approximation for K can be deter-
mined:

K = (5/2)7.
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And, for spherical particles of radius a (see Eq. 58):
J, = 40x/3. (63)

The proof of the equality of ¢, and ¢, can be easily generalized to the case of a non-
spherical particle in a noncylindrical pore that is uniform in the x (axial) direction. For
this general case the drag coefficients H and G would be characterized by some shape
function instead of just the parameter A. The drag coefficients would also become
functions of two center of mass and three orientation variables and the integrals in
Egs. 9 and 59 would be over all these five variables. It will be shown in a second paper
that for the case where the shape of the pore is a function of x (nonuniform) then only
in certain special limits can ¢, and o, be defined and shown to be equal.

III. RELATIONSHIP BETWEEN DRAG COEFFICIENTS AND
PORE RADIUS

The results in sections I and II have only required the knowledge that the drag could
be written in the form of Eq. 3. In order to relate w and o to the pore radius, the hydro-
dynamic equations must be solved and explicit expressions for H,(8) and G,(8) ob-
tained. A rigorous series solution to these equations is only available for the special
case where the particle is on the pore axis (8 = 0) and the problem becomes two-
dimensional. The results of Haberman and Sayre (H-S) (1958) will be used here. Ex-
pressing the results of H-S in the form of Eq. 3, the functions H,(0) and G, (0) can be
identified:

H,(0) = 6xK,,
G,(0) = 2(1 — 2/3 N — 0.20217M%)/(1 — 0.75857 %),
K, = h(A\)(1 - 0.75857 \%),
1/h(A) = 1 — 2.1054 X + 2.0805 > — 1.7068 A* + 0.72603 5.  (64)

In order to determine w and o, H, and G, must be known for all values of 8. Ander-
son and Quinn (1974) approximated H,(8) by empirically connecting the known so-
lution for a particle near a plane wall with the known solution for the particle on the
axis (8 = 0). For the lack of a better solution, it has usually been assumed that G does
not depend on 8.

In this section the solution of Greenstein and Happel (G-H) (1968) will be used to
derive expressions for H,(8) and G,(8) which should be more accurate than previous
estimates. This solution is based on a series of reflections and is supposed to provide a
solution accurate to order A2, The G-S solution for the drag is:

D = 6mnaflU — 2V(1 — ¥)I[1 + f(MX + f2()N*] + 4/3 VA + 0(\?)

¥ = b/R, = B\"! (65)
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where f(7) is tabulated by G-H for v varying from 0 to 1. Since f(0) = 2.105, the fol-
lowing relation is correct to order A\2:

1+ fOA + f2(O)N? = 1/(1 = f(O)A) + O(N®) = A(N) + O(A%).

Using this result, expressions for the drag coefficients can be obtained which are iden-
tical to those of H-S (Eq. 64) for 8 = 0, and, to order A%, are equivalent to the solution
of G-H when 8 = 0:

Hy(B) = H,\(0[g()/2(0),
G,(B) = 2(1 — 2/3N — 0.20217X° — ¥*)/(1 — 0.75857X°),

g() = 1+ f(MA + fAnN. (66)

These expressions for H and G are very accurate for 8 = 0 and should at least provide a
good approximation when 8 = 0. Substituting this result for H, into Eq. 9:

Al
w = 2xa(nLN,)™" f H;'8dB = a(6nLN,K,)"'A2(1 — M)’g(0)/8,
()

where g is defined by:

a1 1o A-lo1
1/g = [ g"ﬁdﬁ/[ BdB = 2(1 — N2\ [ g'pdg.  (67)

The unrestricted permeability (w,) is defined by:
woRTAc = #R}DyAc/L or w, = a/(6nLN,\?), (68)

where D, (= xT/6mna) is the unrestricted (free) diffusion coefficient. The restricted
permeability is then:

wlwy = [(1 = M?/K\](g(0)/8] = [w/wl,[2(0)/2], (69)

where the subscript a indicates the expression for w/w,, that would be found if it
was assumed that H, was equal to H,(0) for all values of 8. The ratio g(0)/g
should provide at least a first order correction to this “axial” approximation. This
ratio can be evaluated by numerically integrating Eq. 67 using the tabulated values
of G-H. These are shown in Table I. It can be seen that this ratio is very close to 1 for
all values of A which indicates that the ‘“axial” approximation is satisfactory. This
conclusion is supported by the observation that experimental measurements of w/w, in
nearly uniform pores are accurately described by the *“‘axial’” approximation (Bean,
1972).
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TABLE 1
CORRECTION TO AXIAL APPROXIMATION AS A FUNCTION OF A (SEE EQ. 69)

A 80)/z A £(0)/z
0.0 1.0 0.33 0.996
0.03 0.968 0.36 1.003
0.06 0.947 0.39 1.009
0.09 0.940 0.42 1.013
0.12 0.940 0.45 1.015
0.15 0.947 0.48 1.019
0.18 0.953 0.51 1.022
0.21 0.962 0.54 1.022
0.24 0.971 0.57 1.022
0.27 0.980 0.6 1.022
0.30 0.990

The expression for ¢ can be obtained by substituting the expression for G, (Eq. 66)
in Eq. 9 (or 59) (neglecting the terms of order A®):

Nl P 1-A
o =1 _2>\2f lG,ﬁdﬁ= 1-4 f (1-%)@-19)7‘17 (70)
() (]

_16,, 20,
—3)\ 3>\.

This result differs slightly from that of Bean (1972) (¢5) who defined G in terms of the
local velocity ¥(8) rather than ¥ and assumed that it did not depend on 8:

2,2 - 2 14 52 3
a,=l—4l—3>\ (l—'y)-yd'y=-3—)\—4)\. (71)
(1}
Although Eq. 70 should be more accurate than Eq. 71 since it is based on a better

estimate of the dependence of G on g, the differences between the two results are so
small that it would be difficult to distinguish between them experimentally.

APPENDIX

All the general results in the text require only the knowledge that the drag can be written in the
form:

D = naH,(U - G, V). (72)

For spherical particles in a cylindrical pore the drag functions H and G depend only on the
two parameters A, 8. If the particles are nonspherical and the pore is not cylindrical (but
uniform in the axial direction) then the functions will depend on additional shape and position
variables. In order to demonstrate the generality of Eq. 72 (which has not been previously
recognized) it is necessary to first provide a brief introduction to the hydrodynamics.
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The inertial terms in the general Navier-Stokes equations can be neglected for the flows that
occur in membranes so that the velocity components of the water (V;, V,, V;) satisfy the dif-
ferential equations for “creep” flow:

aP/aX, = nl(@*V,/0X3) + (@%V,/aX}) + (87V,/oXD); i=1,2,3  (73)

where P is the hydrostatic pressure and » is the viscosity. The development and solution of
these equations for a large number of problems is well described in the monograph of Happel
and Brenner (1965). For the calculation of the drag on a solute particle it is usually assumed
that the solution is so dilute that one can neglect interactions between particles. That is Eq. 73
is solved for the boundary conditions that (1) the velocity on the pore wall is zero, (2) the
velocity at the surface of the sphere is equal to the sphere velocity, and (3) at positions far
upstream and downstream of the particle the velocity profile is described by Poiseuille’s law
(Eq. 44). The drag (D) on the particle is then given by the integral of the pressure tensor
(IT) over the surface (S) of the particle:

D - [H-ds (74)

where
L, = —Pd, + nl(@V,/aX) + OV,/0X); ij = 1,2,3 (75)

'These equations are difficult to solve. The only rigorous solutions available are for the special
case where the solute is in the center of the pore and the problem can be reduced to a two-
dimensional form. The derivation of Eq. 72, however, requires only the following simple
dimensional analysis.

In general, one wants to solve the set of differential equations (Eq. 73) for the following
boundary conditions:

(1) Onporewall(X} + X3 =R?): V,=0; i=1,23;
(2) On sphere surface [X? + (X, — b)* + X? = &*]:
Vi=U+ awg,(0,¢); V, = awg,(8,9); V5 =0;
Q) AsX,— + ©: V, = 27[1 - (X§ + X§)/R:]; V, =V, =0. (76)
The sphere is centered at X, = 0, X, = b, and X; = 0 where b is the distance from the sphere
center to the pore axis. If the sphere is off the axis (b = 0) it will spin with some velocity w

about the X; axis and g, and g, are combinations of sin and cos functions of the orientational
variables 6 and ¢. The drag (D) and torque (7T') on the sphere are given by:

D = fH-Rds; T = foIIds (77)
) )

where II is the pressure tensor and R is the radial vector of the sphere and the integral is
over the sphere surface (4,¢). Since Eq. 73 is linear, the solution can be written as a super-
position of the solutions for the following three simplified boundary conditions: (i) ¥V = 0,
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U=0,0=0,G)V=0,Ux0,0 =0;and(iii) V = 0, U = 0, w = 0. First, consider case
(i) and define the dimensionless variables:

Xi/a; p = P[qu;
A =a/R,; B =0bla. (78)

Vi

r=R/R

Vi/aw; x,
P>

In terms of these variables, Eq. 73 and the boundary conditions (Eq. 76) for case (i) can be
written as:

ap/ax; = [(3*v,/ax}) + (3%v,/8x]) + (8%V/ax3)] (79)
(M Onx2+x2=\2% vy =0
(2 Onxt+(x, - B +x3 =1 v =g0(0¢),v, =8(0¢),v =0

B)x,—+to; v, =0.

The solution to the set of Egs. 79 is in terms of a dimensionless pressure (p,(8)) and velocity
(vA(8)) which are functions of A and 8. The pressure tensor (Eq. 75) can then be written in
terms of a dimensionless tensor (7):

' = nwni(B). (80)

Substituting Eq. 80 into Eq. 77, the drag and torque for case (i) can be written in the form:

D, = nK{(8)d*w; T, = nE{(f)dw
i(RY _ i pdes ENB) = ‘
KB = j’;’) x.rds; E!B) ~:[(p) rxx. ds. (81)

The same procedure can be carried out for cases (ii) and (iii) with the dimensionless vari-
able U/a and ¥V/a substituted respectively for w in Eq. 78 to yield:

Dll
Diil

naKiB)U; T, = nak{(B)U
1aK(B)V; Ty = naEf'(B)V. (82)

Since the general solution is just a linear superposition of these three solutions:

D = na(Klaw + KU + K{'V)
T = na(Elaw + EU. + E¥V), (83)

For the solute in the pore, the torque (T') is zero and the drag (D) will be equated with
the gradient of the chemical potential. Setting T equal to zero and solving for w:

w = —~UE}/E} — VEJ/E}. (84)

If this expression for w is substituted into D (Eq. 83), the drag can be written in the form:
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D = na(H, U + K, V).
Finally, defining the function G, = —K/H, Eq. 72 is obtained.
Received for publication 16 December 1974.
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