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ABSTRACT A general continuum derivation of the nonelectrolyte (J;) and volume
(J,) flux through a pore whose cross section is a function of axial position (nonuni-
form) is given. In general, the flux equations cannot be reduced to the same form as
for a uniform pore and it is not possible to characterize the pore kinetics by three
constants as in the uniform pore case. However, it is shown that under certain condi-
tions, the nonuniform pore equations can be approximated by the uniform pore form
and can be characterized by three constants (@, 7, Z}). The only condition needed
to reduce the J, equation to the uniform form is that the solution be dilute. The
deviation of the J, equation from the uniform form is characterized by an asymmetrical
function of J, whose maximum value is estimated. It is shown that the maximum pos-
sible fractional deviation of the J, equation from the uniform form is given by the
parameter: 0.56/,/@RT. Since this parameter is less then 0.15 for most membrane
studies, the nonuniform J; equation can usually be approximated by the uniform pore
form. The general results are illustrated by explicit calculations on several models of
nonuniform pores. It is shown, for example, that the “equivalent pore radius” de-
fined in the usual way is a function of the experimental parameter that is measured
and is not unique.

INTRODUCTION

It was shown in the first paper (I) of this series (Levitt, 1975) that, if the assumptions
of continuum hydrodynamics are used, then the solute (J?) and volume (J9) flux
through a pore with a uniform cross section (indicated by superscript “0’) can be
described by the following equations:

JO=(1 - o)J,(ce" — ¢})/(e* = 1); x = —(1 — @)J,/wRT (1)
J9 = L(Ap — oRTAC), (2)

where w and L, are the diffusive and hydraulic permeability. (The notation is defined
in paper I.) It was also shown that the reflection coefficient (o) that appears in Eq. 1 is
identical to the o in Eq. 2. Egs. 1 and 2 provide a theoretically rigorous description
of the pore kinetics in terms of three parameters (w, o, L,) which are characteristic
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of the pore and do not depend on the volume flux or the bulk concentrations (if the
solution is dilute).

However, since most biological or artificial membranes which have pores large
enough for the continuum description to be applicable do not have pores with a uni-
form cross section, it is important to determine whether nonuniform pores can also be
described by Egs. 1 and 2. For the case of two membranes in series (a special case
of a nonuniform pore) it has been shown that, in general, the kinetic equations are
very complicated and that the membrane parameters become functions of J, and the
bulk concentrations (Patlak et al., 1963). For example, the membrane parameters de-
pend on the direction of J, (rectification). The complexity is, of course, greater for the
general case where the pore has a continuously varying cross section than it is for the
special case of two uniform pores in series. However, it will be shown in this paper
that these complex equations reduce to the simple and useful form of Eqs. 1 and 2
under either of the following conditions: (/) the volume flux is small enough, or (2) the
pore is large enough. In fact, it will be shown that if the pore is large enough for the
continuum description to be valid, then the membrane kinetics can usually be well ap-
proximated by Egs. 1 and 2 with the three parameters functions only of the pore
structure.

In the first section of the paper the general results will be derived and the reduction
of the general equations to the form of Egs. 1 and 2 will be described. This derivation
requires only a small extension of the methods that were previously used for the uni-
form pore. In the second section, these results will be discussed and illustrated by the
use of three examples. Although the derivation in section I is somewhat involved, the
final results can be simply expressed and will be summarized in section II.

I. DERIVATION OF GENERAL RESULTS

The presence of the varying pore cross section introduces a small modification of the
form of the drag equation that was derived for the uniform pore (I). While the uniform
pore could be characterized by the parameter A = a/R,, (where a and R, are the solute
and pore radius, respectively) it is necessary to use a function of x( f(x) = R,(x)/a) to
characterize the nonuniform pore. Also, the average velocity of the water (¥') be-
comes a function of x and is described by:

V(x) = V.J,/xRA(x), 3)

where ¥, J, is the average volume flux of water and does not depend on x. With these
modifications, the form of the drag equation becomes:

D = naH(8,x)[U - G(B,x)V (%)), (4)

where the subscript findicates that H and G depend on the total function f(x) and the
rest of the notation is the same as in the preceding paper (Levitt, 1975).
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J, Equation
The derivation follows the same general procedure that was used in the first paper of
this series for the uniform pore (Levitt, 1975). That paper should be consulted for de-
tails and the definition of symbols. Equating the drag to the gradient of the chemical
potential and solving for J,:

J, [ T UB)dB = A(x)% + B()J.c,

71
A(x) = —2wakTn™! f H;'Bdg,
o

-1
B(x) = 2f f G, 88, (5)

where V,J, has been approximated by the total volume flux J,.! Eq. § is of the same
form as was found for the uniform pores except that 4 and B are now functions of x.
It is a linear first order differential equation which has the exact solution:

X
c(x) = J,e~t® f e*@4-'da + ¢ et
0

s =7 [ Baida, ©)
(1
where ¢, is the bulk concentration on side 1. Setting ¢(L) equal to ¢, and solving for J,:
'L
J, = (c,e*D — ¢))/ f erM4-1dx, @)
(]

This is the general solution and cannot be simplified. However, by the use of one addi-
tional restriction, Eq. 7 can be reduced to a simpler form as follows: Write B(x) as:

B(x) = B[1 - b(x)] (8)
B = s(L)! fL BA 'dx; s(x) = fx A~ (a)da.
0 (]

It follows from this definition that:

fL bA~'dx = 0. 9)
0

1 One must be careful about making this approximation in the derivation of the J, equation (Eq. 2) since it
can introduce a large error for the case where J, approaches zero and J; = 0. However, since J, enters the
J, equation as an additive convective term which is unimportant for the case where J, approaches zero and
J; # 0, no significant error is introduced by the use of this approximation in the derivation of the J, equation.
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Also, if Bis a constant, than B = Band b(x) = 0.
Substituting Eq. 8 into the definition of g(L) (Eq. 6):

g(L) = J,Bs(L). (10)

The denominator in Eq. 7 can be simplified if it is assumed that:
BJ, f b4-'da < =03 (11)
0

so that the exponential can be expanded as follows:

L L
f efA-'dx = f elvBs o=dvBiyba~"da -1 4,
(] (]

L 'L >4
= [ e"”’A“dx—J,ﬁf evbs [f bA"da]A"dx. (12)
(1] 0

It will be shown below that the inequality expressed by Eq. 11 is satisfied in most mem-
brane studies. Since the derivative of s(x) is equal to A(x) !, the first integral in Eq.
12 is exact and the second can be integrated by parts:

L N L L
f A dx = J;'B-V[eBWD — 1] = ehBsD) f bA-'dx + f eB'hba-1dx,
o o o
(13)

where the second term on the right is zero (Eq. 9). Substituting Egs. 10 and 13 into
Eq. 7 and rearranging the J, equation can be written in the form:

J, = JUcy,c,0,)/(1 + Q(J,)
oU,) = J, f ‘ eBrh -1 dx (eIl — 1) (14)
0

and where J? is given by Eq. 1 and has the same functional form as for the uniform
pore with an average @ and @ defined by:

1/@ = —RTs(L), & =1- 8. (15)

By analogy with the case for the uniform pore, the local permeability (w(x)) and local
reflection coefficient (a(x)) can be defined as follows:

w(x) = —A(x)/RT, o(x) = 1 — B(x). (16)

Substituting these definitions into the expressions for w, , and b (Egs. 8, 15):
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L L
/& = f wx)'dx; F=®& f w(x)'e(x)dx; b = (c(x) — 3)/(1 - ).
0 (1} (17)
It is easy to show that if ¢, and ¢, are interchanged and the sign of J, is reversed,
then the sign of J? is also reversed. Thus J? is symmetrical and all the assymmetry that
leads to rectification of J; is in @(J,). Since Q is a complicated function which cannot
be easily evaluated, the main advantage of the decomposition of J, in Eq. 14 is that it
provides a simple estimate of the deviation of J, from J¢ and a criterion for when
J, can be approximated by J°. Q can be written in the form:

L
oW, = J, f e*Dpa-1dx/(e* — 1)
(1}

x = —(1 — 3)J,/@RT. (18)

The parameter « is a measure of the importance of the convective transport ((1 — 3)J,)
relative to the diffusive (@RT). For most membrane studies « is less than one and it
can be made as small as one wishes by controlling J,. In the appendix, the value of x
is estimated for a uniform pore for the case where there is just one solute present and
J, is obtained from Eq. 2 (Ap = 0). It is shown, for example, that for a glucose con-
centration difference across the membrane as large as 0.2 molar, « will be less than 0.3
for any pore that is large enough to allow the use of continuum theory. If « is small
(less than about 0.3) then the exponential in Q can be expanded and a maximum esti-
mate of Q obtained (s(x) < s(L)):

'L 'L
90, = oL f bA-'dx + f s(x)bds < 0.5J,5(L) | b | e
(] ()}

J,
e -1 L

s(L)

= 05«B | blp =~ 0.55/(1 — ), (19)

where Eq. 9 and the relation dx = Ads has been used and it has been assumed in the
last equality that the maximum value of b (| b |,,,) is approximately equal to @ (see
Eq. 17). This inequality (Eq. 19) shows that, for example, if x = 0.3 and @ < 0.5 then
Qis less than 0.15 so that J, deviates from J? by at most 15%. Furthermore, since «
can be controlled (by varying J,) the deviation of J, from J? can be made insignifi-
cant. An upper bound can be placed on Q even if « is not small:

0, < Jvlb Imux fL eS@WW dy - lbﬁlmax _ IU(X) - ﬁlmax. (20)
' e —1 <% B (1 - 92

Thus even if « is large Q will be small if o(x) is small (the pore is large) for all values
of x.

The reduction of the general equation for J, (Eq. 7) to the form of Eq. 1 was based on
the assumption of the inequality in Eq. 11 which can now be rewritten as:
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B, f bA~'dx < k|b|,, = x& < 0.3. (21)
0

From the above discussion of the relative size of x and , it is clear that this inequality
should be satisfied in most membrane studies.

As in the case of a uniform pore, J? for a nonuniform pore can be written in the
form:

J® = @RTAc + (1 — §)éJ,. (22)

However, as will be shown below, ¢ is no longer equal to ¢ (the mean integrated con-
centration) as is true for a uniform pore. Rather, ¢ is simply defined by setting Eq. 22
equal to Eq. 1 and solving for ¢:

¢ = (ce" = a)f(e = 1) + Ac/«x. (23)

Expanding the exponentials in Eq. 23 the following approximation to ¢ is obtained:

&= (c; + ¢)/2 + x(c, — ¢;)/12. (24)

Egs. 23 and 24 for ¢ are identical to the uniform pore expression for ¢ (Levitt, 1975).
Eq. 24 differs from the exact result (Eq. 23) by less than 59, for absolute values of x
as large as +2.5. It is easy to show that for a nonuniform pore ¢ does not equal C.
Consider the case where J, = 0 (x = 0) so that & = (¢, + ¢,)/2 exactly. However, for
J, = 0, ¢equals (see Eq. 5):

L 'L x
c=1L" f c(x)dx = ¢, + L"'wRTAc f dx f A Y (@)da, (25)
(1} (] (1]

and ¢ may differ greatly from ¢ if 4 is not a constant.

J, Equation
The derivation follows exactly the same procedure as for the uniform pore case up to
the point of the evaluation of the sum (see paper I, Eq. 43 [Levitt, 1975]):

z f VO.Ml.ds = —Z G, VD, + nR,V?J,,

i Vs

where the sum is over all the solute molecules in the pore and D; is the drag on the ith
molecule. As in the case of a uniform pore, the second term on the right contributes a
small concentration dependent term to L, which can be neglected if the solution is
dilute. Substituting the gradient of the chemical potential (neglecting the Ap term)
for D and converting the sum to an integral over the pore volume weighted by the
concentration:
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L
= _RTV,J, f B(x) 9 dx. (25)
o dx
Writing B in the form of Eq. 8:

L
> fV°-H-ds=RTI7.,JW3AC+RTI7,,J,B f b%dx. (26)
(]

i Si

Solving Eq. 5 for dc/dx and substituting into Eq. 26 (using Eq. 9):

'L
> f V°.11.ds = RTV,J,BAc — RT(V,J,}B? f b(1 — b)A~'cdx. (27)
0

i S;

Manipulating Eq. 27 in exactly the same manner as for the uniform pore (see paper I,
Eq. 55 [Levitt, 1975]), the J, equation is obtained:

J,=Lp - 3RTAc); 7=1-B

L =L)/(1 + M(c)); M(c) = RTB*L{ fL b(1 — b)A~'edx.  (28)
0

Thus the 7 in the J, equation is identical to the 7 in the J? part of the J, equation. L is
the hydraulic permeability of the nonuniform pore when no solutes are present. M is a
concentration-dependent term which arises from the second term in Eq. 27. An upper
bound for M can be obtained as follows:

M < RT BT | b pcon [ Al dx = B[ bluncon %@
= Cpu(l — 9?7 L) /. (29)
It is shown in the Appendix (Eq. 42) that for a uniform pore:
(1 - 9)%L)/w < 4V, or M < 4Vc,,. (30)

If the solution is dilute, M can be neglected and L, = LJ.

II. DISCUSSION AND ILLUSTRATION OF RESULTS

The main results obtained in section I can be briefly summarized: The equations de-
scribing the solute and volume flux through a pore with a varying cross section usually
can be well approximated by:
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J,=JY1 + QU)); J, = [_.P(AP — @RTA¢)
_ todx _ t -
/@ = | o’ T= [ w(x) e (x)dx
L = /(1 + M(). (1)

The functions w(x) and ¢(x) are the “local” permeability and reflection coefficient and
are defined by Egs. 5 and 16. J? has the same form as for a uniform pore and can be
well approximated by:

J® = @RTAc + (1 — @)éJ,
C=(c; + ¢))/2 + k(cy — ¢y)/12. (22)

0 (Eq. 18) is an asymmetrical function that provides a measure of the deviation of J,
from J?. It is small in most membrane studies. L} is the hydraulic permeability of the
pore when no solute is present and M is a function of ¢ that can be neglected if the
solution is dilute. Thus, the J, and J, equations for a nonuniform pore can usually be
well approximated by the uniform pore equations with @ and 7 defined by Eq. 31.

In general, w(x) and ¢(x) are functions of f (= R,(x)/a) and, therefore, they de-
pend on the pore radius (R,(x)) at all values of x, not just the local value. However,
in the following examples it will be assumed that, to a first approximation, w(x) and
a(x) are equal to the corresponding functions for a uniform pore that has the same
radius as the local value. That is, the local value of G, and H, will be approximated
by the uniform pore functions G, and H, .

Example 1. The pore has a radiusof R, forO<x < L, and R, for L, < x <
L and is equivalent to two uniform pores in series. For this pore:

Ly 'L
1w = [ w(x)'dx + _[: w(x)'dx = o' + w;' or
@ = ww,/(w, + w,)
7 = &lo,07' + 0,05'] = (6,0, + 0,0))/(w0, + w,), (32)

where w,, o, and w,, o, are the values for the two uniform parts of the pore. This ex-
ample is identical to the case of two membranes in series that Patlak et al. (1963) solved
by the application of the uniform pore equations (1 and 2) to the two parts of the mem-
brane. It is easy to show that for the case where « is small their general solution reduces
to the form of Eq. 31 with @ and 7 defined by Eq. 32.

Example 2. The pore radius varies linearly from a A(=a/R,) of 0.03 (¢ =
0.005)atx = OtoaAof0.3(c = 048)atx = L:

a/R,(x) = A(x) = 0.03 + 0.27x/L; dx = Ld\/0.27. (33)
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It will be assumed that w(x) and o(x) are equal to the corresponding equations for the
equivalent uniform pore (neglecting the small “off axis” correction, see I, Egs. 69, 70)

w()/wo(x) = (1 = W/Ki; () = 20N

K, = (1 - 0.75857 \%)/
(1 = 2.105X + 2.0805 A* — 1.7068 A® + 0.72603 A°). (34)

Substituting #R? D, for w, and using Eqs. 31 and 33:

'L 0.3
xaDy [ = f (1 = N2NK,dx = L f (1 = A2NK, dA
(1] 0'27 0.03

=0.108 L, (35)

where the integration in Eq. 35 and in the rest of this section has been obtained nu-
merically. Usually, one can only measure the value of @ relative to some other value,
for example @,:

L 0.3
SR
a’w D,y /w, 027 J, A*dA = 0.0333L (35)

Thus, for the pore described by Eq. 33:
& /&, = 0.308. (36)

Similarly, one can determine the value of :

L L 16 03
T=a f w(x)'o(x)dx = 7% 3 f w(A)7'A2dA = 0.325. 37
0

0. 0.03

One can also define a A, and X, which correspond to the values of A that would give a
uniform pore the same value of &/@, and 7, respectively, as the nonuniform pore. For
the results of Eqgs. 36, 37, X\, = 0.236 and X, = 0.247. These values are different be-
cause w and ¢ do not have the same functional dependence on A. One can also define a
A 1, Which corresponds to the similar average for L,:

< 1
A‘ = ——
L 027

03

f MdA or X, = 0.206. (38)
0.03 4

These values of X are the experimental values of A that one would assign to this pore

(Eq. 33) if it was assumed to be uniform. This calculation demonstrates that the experi-

mental value of the “equivalent (uniform) pore radius” is a function of the parameter

(w, o, L,) that is measured experimentally.
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Example 3. The asymmetry function (Q(J,); Eq. 18) will be determined for
the pore of example 2 (Eq. 33). In order to simplify the calculation w(x) will be
approximated by wy(x). This approximation should not significantly effect the relative
value of Q. Integrating Eq. 18 numerically, it can be shown that for « of + 1, Q is
+ 0.074. That is, for this relatively large « the assymetry in J, is only about 7% for
this pore. For « of + 4, the assymetry becomes + 0.24. These errors are significantly
less than the maximum estimate obtained in section I (Eq. 19).

CONCLUSION

It was shown in section I that, under rather general conditions, the solute and volume
flux through a nonuniform pore can be described by the uniform pore equations 1 and
2 (and @, 7, I—.,). Although general relations between @, and the pore structure
were derived, they will not be of much practical use since the actual shape of the pore is
not usually known. These results are important, however, because they show that the
behavior of a nonuniform pore (i.e. J, and J,) can be completely characterized by
three parameters that depend only on the pore shape and do not depend on the bulk
concentrations or J,. These parameters (@,,L,) can be determined experimen-
tally from Egs. 1 (or 22) and 2 by exactly the same procedure that is used for a uniform
pore. Since a variety of pore shapes will have the same values of @, & or L,, these
experimental parameters cannot be used to determine the shape of a nonuniform pore.
In fact, as was illustrated in example 2, one cannot even define a unique “equivalent
pore radius” for a nonuniform pore.

Received for publication 16 December 1974.

APPENDIX

Most of the results in the text are based on the assumption that « (Eq. 18) is “small”. In
this section the magnitude of « (and also the inequality appearing in Eq. 30) will be estimated
for a uniform pore. The value of x depends on J, which, in general, will be affected by the
membrane concentration differences of many different solutes (i.e., a sodium gradient estab-
lished by active transport). However, if only one solute is present (and AP = 0), then Egs. 1
and 2 form a closed set that can be solved exactly:

—-(1 - 0)J,/&RT = (1 — 0)oLRTAc/@RT
o(1 - o)L3Ac/w. (39)

x
[

Using the uniform pore approximations for w and ¢ (Eq. 34), Poiseuille’s law for Lg, and ¥, =
4/3xa’N,:

k= KAcV; & = 3(1 — 16A/3)K, /(1 — N2 (40)

It will be assumed that the maximum value of A is 0.3 since this is roughly the upper limit of the
validity of the continuum assumptions and the explicit expressions for w and ¢. Thus, «'
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ranges from a limiting value of 3 for A = 0 to a maximum of 7.55 for A = 0.3. For a glucose
concentration difference of 0.2 molar:

x < 7.55(0.2 mol/liter) (0.18 liter/mol) = 0.27 (41)
The inequality in Eq. 30 can be similarly evaluated:
(1 — o)?eL)/@ = 3(1 — 16A%/3*K,/(1 = N)? <39V, (42)
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