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ABSTRACT Computations show that cathodal rheobase increases with temperature
from 0°C to 30°C. Anodal rheobase (stimulation at the end of an indefinitely long
anodal pulse) also increases with temperature, but goes to infinity at a critical tem-
perature 17.13°C, above which such excitation is impossible. For a stimulus consisting
of any step change of current from I, to /,, a threshold curve of 1, is plotted against
Iy. As the temperature increases, this curve rises. Its intersection with the hori-
zontal axis, which determines the anodal rheobase, goes to infinity at the critical tem-
perature. This phenomenon is caused by the saturation of the variables m, h, n for
strongly hyperpolarized potentials, combined with the relative speeding up of the in-
hibitory process with increasing temperature. The threshold charge Q in an instan-
taneous anodal current pulse (of zero duration) goes to infinity at the same tempera-
ture, with a similar explanation in terms of threshold curves in the I, vs. Q plane.
The fact that the critical temperature for both cases is the same is generalized by the
conjecture that, for any anodal current waveform whatever, as its amplitude ap-
proaches infinity, the trajectory in the phase space following its cessation approaches
the same limiting trajectory. This limiting trajectory changes from suprathreshold to
subthreshold at the critical temperature.

INTRODUCTION

A space-clamped squid axon membrane can be excited by a sufficiently strong rec-
tangular pulse of applied current of either sign. By present convention, an outward,
cathodal, depolarizing current is called positive; an inward, anodal, hyperpolarizing
current is called negative. The response to a long-lasting positive current occurs during
the stimulus pulse (cathodal make response), but that to a negative current occurs only
after the end of the pulse (anodal break response). In both cases there is a positive step
change of current, the difference being that it occurs at the beginning of the cathodal
pulse, but at the end of the anodal pulse. The nerve impulse is a response to this posi-
tive step.

The shorter the duration of the pulse, the higher the current needed to excite the
membrane, as shown in a strength-duration curve. Strength-duration curves for both
cathodal and anodal pulses have similar shapes, but anodal curves show greater ampli-
tudes than cathodal curves (Fig. 5).

Guttman and Hachmeister (1972) measured strength-duration curves for anodal
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break excitation in space-clamped squid axons at various temperatures. The present
computations with the Hodgkin-Huxley (HH) model were initiated for comparison
with their experiments, and some of the preliminary results were published in their
paper. The equations used differ from the original ones given by Hodgkin and Huxley
(1952) only in that — ¥ and —1I have been substituted for ¥ and I everywhere, to agree
with the present sign convention for membrane potential and current (see above). The
present equations and notation have been published elsewhere (FitzHugh, 1969, Egs.
4-1 to 4-8) and are not repeated here.

In over twenty years of experimental work on axons, enough data have been collec-
ted to permit important revisions in the Hodgkin-Huxley equations (e.g., Goldman
and Schauf, 1973; Adelman and FitzHugh, 1975). It may seem unnecessary to make de-
tailed computations on the temperature dependence of the threshold of a model which
will probably continue to undergo considerable modification. In an earlier paper
(FitzHugh, 1966), the original equations were compared with several modified ones in
which the ionic conductances were increased, with and without temperature depen-
dence. This has not been done in the present paper, in the belief that what is eventually
needed is a much more thoroughgoing revision of the HH equations, based on the best
available experimental data. The present paper attempts only to determine certain
properties of the original 1952 HH model.

Anodal and cathodal excitation in the standard HH model are analyzed in this paper
and explained in terms of the properties of the equations, in particular the saturation
of the conductance variables m, h, n as the membrane potential ¥V approaches minus
infinity. This explanation is not mathematically rigorous, but appeals primarily to
mathematical intuition of the reader. Such explanations will be relevant to later modi-
fications of the HH equations if, as is likely, the latter also have these mathematical
properties.

COMPUTATION TECHNIQUES

The HH equations were solved numerically with a FORTRAN program on a DEC
system-10 time-sharing computer. The numerical method was that of C. W. Gear
(1971a, b), whose subroutine DIFSUB provides a choice of two methods, (/) an Adams
predictor-corrector method with automatically controlled order and step size, and
automatic starting, and (2) a method designed for stiff equations. Stiff differential
equations are those which have a wide range of relaxation times (FitzHugh, 1969).
When ordinary methods are used to solve stiff equations, the step size must be de-
creased so much to maintain accuracy for the fastest variable that excessive computa-
tion time is required. The stiff method used only 15-85% as much computation time
as the Adams method. For high temperatures and V very negative, ,, (the relaxation
time of the sodium activation) became very small and the equations very stiff. The stiff
method was routinely used. The version of DIFSUB used, a later version than those
given in the above references, was sent to me by Professor Gear (27 Nov. 1973).

For computation of the response to a step change of current at the end of a long
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nonzero current pulse, all variables of state were assumed to have reached stationary
values at the end of the pulse. These values were computed directly and used as initial
conditions at ¢ = 0, without actually solving the differential equations during the pulse.
This procedure is of course meaningful only if the stationary state is stable. To insure
this, the maximum value of the current used was 15 A /cm?.

For reasons described below, the method used for calculating threshold was to
search for the inflection point of the stimulus-response curve (SR curve: peak V plotted
against stimulus strength). Such a search was started with a pair of bracketing values
of stimulus, assuming one to be below and the other above threshold. The peak value
V, of ¥V was computed for each. For a subthreshold stimulus, the active subthreshold
response provided a low V,, while for a suprathreshold one, ¥, was at the top of the
action potential. A new stimulus midway between the bracketing pair was then tried,
and the new peak computed. The slopes of the two straight line segments connecting
these three points, one segment on each side of the middle stimulus, approximate the
slope of the SR curve. The segment with the smaller slope was discarded, and the end-
points of the other segment retained as the new bracketing pair. This process was con-
tinued, halving the separation between the bracketing pair at each step, until the de-
sired separation (usually 0.01 uA - cm~2) is reached. If, at the end of the search, one
of the bracketing stimuli had still been retained, it was possible that the true point of
maximum slope lay beyond that bracket and had been missed. To check this, a new
search was made with that bracket replaced by one further away on that side. (For
such work an interactive program, controlled from a keyboard terminal, is most
useful.)

This method requires sufficiently accurate values of ¥,. The latter was computed
from the polynomial approximation to the solution, produced by the array Y in
DIFSUB, using Newton’s method to converge to the point of zero slope of V as a
function of ¢.

Gear’s program is written to compute in double precision. A single precision version
used only 70-75% as much computer time as the double precision one, and was ade-
quate for most threshold searches. With Gear’s accuracy parameter EPS set to 1076,
¥V, was computed to an accuracy of about +0.001 mV. Solutions very near threshold
are however particularly unstable, and for these the single precision program produced
larger errors, causing irregularities in the SR curve. In such cases, the double precision
version was used. Even the single precision program has an accuracy far beyond what
is attainable through experimental measurements, but it is still desirable, in studying
the properties of the model itself, to be able to diminish the effects of errors in nu-
merical approximation by using increased precision.

For the highest temperatures, the SR curve is so nearly straight near its point of in-
flection that it was not always possible to locate the latter to the desired accuracy, be-
cause of errors in computing ¥, from which the slopes between adjacent stimuli are
found. When the estimated error in the difference between the slopes of two adjacent
segments of the SR curve, from errors in V,, became equal to the average slope, it was
impossible to choose which slope was greater, and the search was stopped. Since 4 is
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near 1 for these solutions, the quantity 1 — h was computed directly, instead of &, to
obtain greater relative accuracy. The ratio of the estimated error in each variable was
compared with the maximum magnitude of that variable, as stored in the array
YMAX. In order to ensure proper error control for the variables m, 1 — h, and n
when they were extremely small, it was necessary to reset YMAX to a comparably
small value at the start of those solutions which correspond to strong anodal pulses of
long duration. As the variables increase, YMAX was automatically increased by
DIFSUB to keep pace with them, but never decreased. For solutions following strong
pulses of zero duration, in which m, 1 —h, and n initially decrease to very low levels
initially, it was necessary to modify the program to keep adjusting YMAX downward
to keep pace.

A magnetic tape containing the FORTRAN programs used in this paper, together
with instructions for their use, can be purchased from the National Technical Infor-
mation Service, Springfield, Va. 22161.!

STIMULUS-RESPONSE CURVES AND DEFINITIONS OF THRESHOLD

A stimulus-response (SR) curve shows ¥, the peak value of the membrane potential V,
plotted against the stimulus strength. This is the peak potential for the first impulse
only; repetitive responses are not considered. Fig. 1 shows SR curves for a stimulus
consisting of a step change of total applied membrane current from zero to I, for four
temperatures. For the three lower temperatures, there is a part of the curve which rises
so sharply that it appears to have an infinite slope. The sudden increase of ¥, with in-
creasing stimulus is called a threshold phenomenon, and the value of stimulus at which

100 | 10—

FIGURE 1 Stimulus-response curves for cathodal constant current stimuli at different tempera-
tures (°C). The peak value of ¥ (mV) following the stimulus is plotted against current
(uA-cm‘z). Threshold is defined as the current at the inflection point of a curve. The sharp-
ness of the threshold is the (maximum) slope value there.

lSpecify NTIS Accession No. PB243847/AS, with title “Nerve Membrane Model.” The tape is 9-track,
800 bits per inch, and is written in IBM’s EBCDIC character code, for widest use in different computers.
The programs are designed for interactive use on a time-sharing DEC system-10 computer, but can be
modified for use on other computers, including batch processors if desired. The price is $150 (domestic)
or $190 (foreign).
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this occurs is the threshold stimulus. Although the curve may appear discontinuous,
mathematical considerations indicate that such curves are actually continuous, though
with a very high maximum slope (FitzHugh, 1955, 1969; FitzHugh and Antosiewicz,
1959).

The usual method of computing thresholds is to set a critical value V, of V (e.g.
V. = 50 mV), and define threshold as the stimulus at which the curve of ¥, crosses the
level ¥,. This level definition of threshold works well at 10°C. Any value of V, be-
tween 15 and 70 mV would give the same threshold value, to the accuracy of a single-
precision computation.

At 30°C, the SR curve has a maximum slope that is clearly finite. This kind of SR
curve corresponds to a graded response, rather than what is usually called a threshold
phenomenon (Cole et al., 1970). However, the above-mentioned mathematical con-
siderations also indicate that as the temperature is raised, the form of the curve changes
in a continuous way, so that the maximum slope decreases continuously as a function
of temperature. Since there is no temperature at which one can say that the threshold
phenomenon suddenly disappears, it seems more reasonable to consider all the SR
curves of Fig. 1 as differing quantitatively rather than qualitatively. The maximum
slope of the SR curve provides a convenient parameter for characterizing this quan-
titative difference between the curves.

If the level definition were used for the 30°C curve, the resulting value of threshold
would vary widely, depending on the chosen value of V,. If the threshold stimulus is
defined as that value of stimulus at which the slope is maximum, i.e. the inflection point
of the curve, one obtains a unique definition for each temperature. This is called the
inflection definition of threshold; the maximum slope is the sharpness. This method was
used to compute the thresholds for this paper, as described in more detail in the pre-
vious section.

For the 10°C curve, the search for the maximum slope was continued until the
bracketing values of I differed only in the last bit of the 27-bit mantissa of the single-
precision floating point number in the DEC system-10. During the final steps of this
search, the maximum slope attained was still approximately doubling at each step, as
would be expected if the curve were truly discontinuous. A somewhat more convenient
parameter is the reciprocal of the sharpness, called the gradedness (7y). When the
sharpness approaches infinity, the gradedness approaches zero. Expressed in units of
mV~'-puA-cm~? the last computed value of vy at 10°C was 0.718 x 10~°. Once the
gradedness has fallen below about 10~* in these units, it can be considered for practical
purposes to be zero, in comparison with the much larger values at higher temperatures.

At 30°C, the search for threshold was stopped when the errors in computing the
slopes made it impossible to decide which slope was greater, as described in the pre-
vious section. That part of the curve is so nearly straight that its inflection point
cannot be computed accurately. At 30°C the slope appeared to be converging to a
finite limit. The final computed value of iy was 0.0564, much larger than at 10°C.

Another possible way to define threshold uniquely for all temperatures is provided
by the observation that the latency, the time of occurrence of the peak V, increases as
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threshold is approached from either above or below. This can be seen in Fig. 2 of
FitzHugh and Antosiewicz (1959). A bounded maximum latency is characteristic of a
continuous (or quasi) threshold phenomenon, such as is found in the HH equations
(FitzHugh, 1955, 1969).

RESPONSE TO A STEP CHANGE OF CURRENT

Assume that a current of amplitude J, has been applied to the membrane for so long a
time that all variables of state have reached stationary values. Att = 0, the current is
increased discontinuously to a new value /,. There are two important special cases.
For cathodal make excitation, [, = 0, and /; is varied. The threshold value of I,
is the rheobase, as usually defined. It is called cathodal rheobase here. For anodal
break excitation, /; = 0, and ], is varied. The threshold value of I, is called the
anodal rheobase.

Fig. 2 shows curves of cathodal and anodal rheobase (absolute value), computed as
functions of temperature. The cathodal curve rises gradually with increasing tempera-
ture (FitzHugh, 1966), but the anodal curve rises more sharply and appears to ap-
proach infinity at 17.13°C.

This difference in response to anodal and cathodal threshold stimuli can be made
clearer by considering the more general case in which both /, and /; are nonzero. If
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FIGURE 2 Threshold rheobasic currents 1 (xA-cm~2, absolute values) for cathodal and
anodal stimulus pulses as functions of temperature ("C), computed from HH equations.

FIGURE 3 Threshold curves for different temperatures (°C), for a stimulus consisting of a
step change of current from / to /, (quem'z). Intersection of each curve with vertical axis
gives cathodal rheobase; intersection with horizontal axis gives anodal rheobase.
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the threshold value of the difference I, — I, is plotted against I, the result is a
threshold curve of the type first measured experimentally by Chweitzer (1937). In this
paper different coordinates are used; /, is plotted against J,. The Chweitzer diagram
can be obtained from this by a linear transformation of axes.

Fig. 3 shows threshold curves computed from the HH equations for different tem-
peratures. The straight broken line through the origin with slope +1 corresponds to
I, = I,. Since this line is always subthreshold, all curves lie above it. Cathodal and
anodal rheobases can be read from this diagram. The cathodal rheobase is given by the
intersection of the threshold curve with the vertical axis ([, = 0). The anodal break
rheobase is given by the intersection of the curve with the horizontal axis (I, = 0).

From Fig. 3 it can be seen that all the curves have the first of these intersection
points, but not all have the second one. The higher the temperature, the higher the
curve lies in the diagram. As I, becomes more negative, each curve approaches, from
above, a horizontal straight line asymptote which passes either above or below the ori-
gin, depending on the temperature. For 17° and below, the asymptote lies below the
origin, and the threshold curve therefore intersects the horizontal axis, determining
the anodal break rheobase. For 18° and above, however, the asymptote lies above the
horizontal axis and does not intersect it. As the temperature is increased continuously
above 17°, the intersection point travels farther and farther to the left, until at a critical
temperature (about 17.13°) the asymptote coincides with the horizontal axis, and the
rheobase becomes infinite. Above the critical temperature there is no intersection, and
anodal break excitation does not occur.

To understand why a critical temperature exists, above which anodal break excita-
tion does not occur, one must explain (/) why the threshold curve as a whole is raised
by increasing the temperature, and (2) why each curve approaches a horizontal
asymptote for negative values of ;.

Consider how the variables of state of the model interact to produce a response to a
stimulus (FitzHugh, 1969). Stimulation by a positive change of applied current drives
V positively. If the stimulus is strong enough, ¥ and m tend to increase further through
mutual interaction, which constitutes the excitatory process. The variables # and » are
also changing as a result of the change in ¥V, but more slowly than ¥ and m, and tend to
oppose excitation. This is the accommodation-recovery process. Whether an action
potential occurs or not depends on the relative strength and rapidity of these two op-
posed processes. For a weak stimulus, the decrease in 4 and the increase in n can re-
verse the rise of ¥ and bring it quickly back down toward its steady-state value. If the
stimulus is stronger, ¥ and m are able to escape momentarily from the retarding effect
of h and n. V rises nearly to the sodium equilibrium potential, to form the peak of the
action potential. Only then are the delayed changes of & and n able to bring ¥ back
down again, producing recovery.

As the temperature is increased, the relaxation times 7,,, 7,, and 7, decrease with
a Oy, of 3. This accelerates the accommodation process more than the excitatory
process, because the rate of the latter is limited by the electrical relaxation time (C/g)
of ¥, which does not change with temperature. This increase in accommodation can,
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however, be overcome by simply increasing 7,. Thus the threshold curves tend to rise
with increasing temperature. This explains point (/) mentioned above.

In explaining point (2), the way that the steady-state values of the variables, defined
by the functions m_(V), h,(V), and n_(V), depend on V is important. Graphs of
these functions can be found in several places (Hodgkin and Huxley, 1952, Figs. 5,
8, 10; Cole, 1968, Fig. 3:32; FitzHugh, 1969, Fig. 4-2). As V changes more and more
negatively from its resting value, these steady-state functions tend to saturate: m,,
and n. approach zero, and k., approaches one. As the initial current I, becomes
more and more negative, it tends to push 4 toward one and n toward zero, decreasing
their accommodative effects. The sudden increase of the current to a higher value I,
makes ¥ and also m increase. Since the inhibitory effects of 2 and n have been de-
creased by the previous hyperpolarization, an action potential can occur, even though
m started from a small value. Making I, more negative favors excitation, and the value
of I, needed to produce excitation at threshold decreases. But, because of saturation,
as I, becomes more and more negative, it has less effect on excitation, which depends
more on 1, alone. The latter therefore approaches a fixed value from above, which is
represented in the threshold diagram by a horizontal line. Thus the threshold curve
approaches such a line asymptotically as f, approaches minus infinity. This explains
point (2).

This explanation is of course intuitive; a more rigorous, mathematical treatment
might be worth attempting.

The above explanation has a minor flaw. It assumes that there is a single curve in
the I, I, plane which represents threshold for either of two cases: (1) I, fixed, I,
varying, or (2) I, fixed, I, varying. If the level criterion of threshold is used, this
assumption is true. For the inflection method, however, the two curves, one for
fixed I, and the other for fixed /;, do not necessarily coincide exactly. Actually, at
temperatures at or below 17.13°C, the two criteria when tested gave identical computed
results, since the threshold phenomenon is sufficiently sharp. For another model which
had a more graded response, however, it is possible that the above assumption would
be less accurate.

RESPONSE TO INSTANTANEOUS SHOCK

Instead of a step change of current, which corresponds to a current pulse of infinite
duration, the opposite extreme is a pulse of zero duration (instantaneous shock).
Mathematically, an instantaneous shock is proportional to a Dirac delta function in
time. It contains an electric charge Q and displaces ¥ by an amount Q/C, where C is
the membrane capacitance. (Since in the HH equations C = 1uF - cm~2, the dis-
placement of ¥, in millivolts, is numerically equal to Q in nanocoulombs-cm~2).

Fig. 4 shows threshold values of Q (absolute value) plotted against temperature for
both cathodal and anodal shocks. The shapes of the curves are similar to those for
rheobase (Fig. 2), except that at the lowest temperatures they have negative slopes, and
minima appear near 5°C. This is because the stimulating current, being applied all at
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FIGURE 4 Threshold charges (nC-cm'z, absolute value) for instantaneous cathodal and
anodal stimulus shocks, as functions of temperature (°C).

one instant, instead of continuously for an indefinite period, must produce initially a
change of V that lasts long enough to excite. Since the relaxation times of m, h, n
increase with decreasing temperature, the initial change of ¥ must be greater, the lower
the temperature, in order to do this. Thus the threshold stimulus increases for very low
temperatures.

The critical temperature at which the anodal threshold goes to infinity is the same
(17.13°C) as for rheobase. At first sight, there seems to be no reason why the threshold
charge Q and the rheobase R should go to infinity at the same critical temperature,
since the response to an instantaneous anodal pulse has a very different time course
from that to an indefinitely long pulse. This result however becomes more reasonable
if pulses of intermediate durations are also considered.

STRENGTH-DURATION CURVES

Fig. 5 shows computed strength-duration (SD) curves for both cathodal and anodal
stimuli. The threshold amplitude I of a stimulus current pulse of fixed duration D is
plotted against D, with logarithmic scales on both axes. As D approaches zero
(abscissa approaches minus infinity), the curve approaches a straight line asymptote
with slope —1. This agrees with the constant quantity law, which says that the total
electric charge contained in a threshold pulse approaches a constant quantity Q, as its
duration approaches zero (instantaneous shock). As D increases, the curve approaches
a horizontal asymptote; its level is the rheobase R. These two asymptotes are shown as
connected broken lines in Fig. 5.

For anodal stimuli, R approaches infinity at the critical temperature (Fig. 2). Since
this makes the entire SD curve rise, it is reasonable that Q should also become infinite
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FIGURE 5 Strength-duration curves for different temperatures (°C), for (a) cathodal, and
(b) anodal stimulus pulses. Threshold amplitude (nA-cm'z) of a rectangular pulse plotted
against its duration (ms). Both axes logarithmic.
at the same temperature (Fig. 4). To clarify this problem further, a more complicated
stimulus current wave form was tried, as described in the next section.

Besides their temperature dependence, it was noticed also that the anodal curves
differ from the cathodal ones in that they fall somewhat below their straight line
asymptotes in places. Thus, by choosing appropriate anodal pulse durations, it is pos-
sible to stimulate with either a charge smaller than Q or a current smaller than R. This
effect is small and was not investigated further.

RESPONSE TO A STEP CURRENT PLUS AN INSTANTANEOUS SHOCK

The stimulus used was a step change of current from zero to I, with an instantaneous
shock of charge Q added at the beginning of the step. Fig. 6 shows threshold I plotted

-2 |

1 1 1 Il
-150 -100 -50
Q

-250 -200

FIGURE 6 Threshold curves for a stimulus consisting of an instantaneous shock of charge
Q(nC-cm’z) applied at the same time as a step change of current from 0 to 1 (uA-cm™2).
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against Q for different temperatures. The intersection of the threshold curve with the
vertical axis is the cathodal rheobase. The intersection with the horizontal axis deter-
mines the threshold charge for an instantaneous shock. For 10°C, there are two such
intersections, one positive (cathodal) and one negative (anodal). As Q becomes more
negative, this curve approaches a horizontal asymptote lying below the horizontal axis.
As the temperature increases, the whole curve rises. As in Fig. 3, the asymptote
coincides with the horizontal axis at the critical temperature, and the anodal threshold
point goes to infinity. Above that temperature anodal excitation by an anodal in-
stantaneous shock is impossible.

As stated above, the computed value of the critical temperature for an anodal in-
stantaneous shock turns out to be the same as that for an infinitely long pulse
(17.13°C). The reason for this becomes clearer on examination of the trajectories in
phase space.

THE LIMITING TRAJECTORY

Any solution of the HH differential equations can be represented by a curve (trajec-
‘tory) in the four-dimensional phase space with coordinates V, m, h, n. The following
conjecture is proposed. Suppose that the membrane is in its resting state, with zero
applied current. An anodal current pulse of long duration and of adjustable amplitude
is applied. During the pulse, ¥ approaches a new negative steady-state value, and
m, h, and n approach their steady-state values for that value of V. As the amplitude
of the pulse approaches minus infinity, the steady-state values of m, h, n approach 0, 1,
0. At the end of the stimulus pulse, when the applied current becomes zero again, the
state point, starting from its steady-state position reached during the pulse, returns to-
ward the resting point along some trajectory. Now as the stimulus pulse amplitude is
increased, this trajectory is assumed to approach a certain limiting trajectory. As the
limiting trajectory is followed backward for negative ¢, ¥ approaches minus infinity,
and m, h, n approach 0, 1, 0 on that trajectory. Finally, it is assumed that the same
limiting trajectory is approached following increasingly strong anodal stimulus pulses
of any duration, whether instantaneous, rectangular, or of any pulse shape whatever,
since any such pulse would, if strong enough, make V¥ very negative and have similar
effects on m, h, and n. The existence of such a limiting trajectory has not been rig-
orously proved, but it provides a reasonable and useful working hypothesis for ex-
plaining the critical temperature.

With ¥ sufficiently negative on the limiting trajectory, the sodium and potassium
conductances are negligible compared to the leakage conductance g,. The differential
equation for ¥ becomes approximately

dv/dt = —g,(V - V,)/C.
Its solution is
V() = Vo — [V — V(0)] exp(—g.t/C),
where V(0) < V.
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FiGURe 7 Time course of membrane potential for strong anodal stimulus (infinite duration
pulse, —100 nA-cm’z). This solution approximates the limiting trajectory. (@) ¥(mV) plotted
against ¢(ms). (b) —log (V, — V)/V_ plotted against ¢. The broken line indicates the expo-
nential approximation given in the text. Temperature 17°C.

An anodal stimulus current pulse of any duration and waveform, if strong enough,
sends ¥ very negative. Since the relaxation times 7,,, 7,, 7, are small for very nega-
tive ¥V, the variables m, h, n come close to their steady states quickly. It is reason-
able to expect that the resulting trajectory will lie close to the limiting trajectory, and
that the stronger the stimulus, the closer it will lie.

To test this conjecture, solutions were computed with zero current, following strong
anodal current pulses of both zero and infinite duration.

Fig. 7a shows V plotted against ¢ following a strong anodal stimulus pulse of in-
finite duration and amplitude 7 = —100 gA-cm~2. Two other cases tried were an
infinite duration pulse of —20uA-cm-? and a zero duration pulse of —200 nC-
cm~2, When shifted horizontally along the ¢ axis, these curves nearly coincided with
the above curve, and are therefore not shown.

Fig. 7b shows the same solution with —log[(V, — V)/V,] plotted (solid curve)
on the vertical axis (“log”” means logarithm to the base 10). The exponential function
of time appears as a broken straight line, which approximates the limiting trajectory
well, until ¥ comes close to zero. For V sufficiently negative, the solid curve is in-
distinguishable from the straight line and the limiting trajectory. As V approaches
zero, m and n increase, the sodium and potassium conductances become appreciable,
the limiting trajectory diverges from the straight line, and an action potential follows
(Fig. 7a). This curve was computed for 17°C, just below the critical temperature.
Above the critical temperature, there is no action potential. It seems natural to say
that the limiting trajectory is suprathreshold below the critical temperature and
subthreshold above it. However, in this paper, the term “threshold” has been defined
only in terms of the location of an inflection point of an SR curve, that is, for a finite
stimulus. On the other hand, a limiting trajectory is defined only in the limit as the
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FIGURE 8 Trajectories projected from the four-dimensional HH phase space. Trajectories for
increasing current strengths approach a limiting trajectory. Temperature 17°C. Horizontal
short-dashed lines show steady-state value as afunction of ¥ (mV). (a) log m vs. V. (b) —log
(1 —h)vs. V. (c) lognvs. V. Logarithms are to the base 10.

amplitude of the stimulus goes to infinity or, so to speak, for an “infinite stimulus.”
Below the critical temperature, there is an inflection point in the SR curve, and there-
fore a finite threshold value of the stimulus. In this case the limiting trajectory shows
an action potential and is called “suprathreshold.” As the critical temperature is
passed, this threshold approaches infinity and disappears; the limiting trajectory then
shows no action potential and is called “subthreshold.”

Fig. 8 shows the trajectories projected from the four-dimensional phase space
(V,m,h,n) onto three different planes, to show m, k, and n each plotted against V.
Instead of plotting the three variables directly, logarithmically transformed vertical
coordinates were used to make the trajectories more visible.

The separate trajectories can be seen most clearly in Fig. 8¢, where log n is plotted
against V. The sloping long-dashed curve shows steady-state n (the HH function
n,(V)). This curve intersects the horizontal short-dashed line labeled RESTING n
at the resting state point (upper right). A strong anodal instantaneous shock displaces
the state point horizontally to the left from the resting state along the short-dashed
line, for a distance proportional to the charge Q of the shock. Then it travels down-
ward and to the right, crosses the steady-state curve, and appears to merge with the
limiting trajectory.

The curve for the limiting trajectory was computed to a good approximation (as in
Fig. 7) by imposing a strong (—100uA - cm~2) anodal current pulse of infinite dura-
tion. The initial part of this trajectory, which departs somewhat from the limiting tra-
Jjectory, lies off the diagram to the left and is not seen.

Following infinite duration pulses of amplitude /, the trajectories start on the steady-
state curve and again approach the limiting trajectory. Three such cases are shown,
for I = —40, —20, and —10uA-cm~2 (there was not room to label the last one in
the figure).

The trajectory curves appear different in Figs. 8a and 8b from those in Fig. 8¢, be-
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cause the relaxation times of m and h are smaller than those of n. The following asymp-
totic expressions can be derived from the HH functions and give good approximations
forV < —100 mV:

log 7, ~ 0.02413 ¥ — 0.6021
log 7, ~ 0.02171 V + 1.1549
log 7, ~ 0.00543 ¥ + 0.9031

If log 7 is plotted against ¥V from these expressions, it is seen that the straight line for
7,, lies below the other two. The line for 7, lies below that for 7, to the left of their
intersection point at ¥ = —15.46 mV (the intersection point for the exact expressions
isat —17.19 mV). Thus for very negative V, m is the fastest variable, n is the slowest,
and A is in between.

In Fig. 8, it is seen that the curves for & return more abruptly to the limiting trajec-
tory than those for n, while those for m are still more rapid. In Fig. 8 b the limiting
trajectory hides the steady-state curve on the left, but they diverge slightly at the right.
In Fig. 8a these two curves appear to coincide. The only trajectory for an infinite dura-
tion pulse is an unlabeled one (hard to see) at the very right of Fig. 8b for I =
—10 #A -cm~2; none at all are visible in Fig. 8 a.

Other forms of anodal stimuli were not tried, but it is reasonable to expect them to
behave similarly to the two extreme cases considered above, and to have trajectories,
following the stimulus, which approach the limiting trajectory.

For 17°C the limiting trajectory is suprathreshold. By increasing the anodal stimulus
amplitude sufficiently, a trajectory is reached which is close enough to the limiting
trajectory to be suprathreshold also. The limiting trajectory changes to subthreshold
as the temperature passes 17.13°C. For higher temperatures, an anodal stimulus
cannot excite, no matter how strong, since increasing the strength only brings the tra-
jectory closer to the subthreshold limiting trajectory. 17.13°C is thus a universal
critical temperature for anodal stimuli, of any shape or duration, which are followed
by a return to zero current.

If one considers anodal stimuli which are followed by a return to some other current
value than zero, each such value has a corresponding limiting trajectory. Figs. 3 and 6
show what to expect for their critical temperatures. If the final current value ], is posi-
tive (or negative), the anodal break threshold goes to infinity at a higher (or lower)
temperature than 17.13°C.

DISCUSSION

The difference between cathodal and anodal excitation in a space-clamped membrane
can be summarized as follows. For extreme values of the potential V, the steady-state
values of the variables m, h, and n (m,,h,,n.) approach limits (1,0, 1 for positive
V; 0,1,0 for negative V). In other words, they saturate for large V of either sign.
During a cathodal current pulse, as ¥ changes positively from the resting potential, the
decision whether excitation takes place or not depends on what happens in the po-
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tential range from 0 to 10 mV (FitzHugh, 1969, Fig. 4-6). The outcome depends on the
relative strengths and speeds of the excitatory (¥, m) process and the recovery or ac-
commodative (h,n) process. In this V range, m, h, and n are far from saturation.
Sincem,, h.,, and n, are changing rapidly as functions of V, the variables m, h, and
n can undergo wide changes, depending on the stimulus current /. Thus the inhibitory
effect of increasing temperatures can always be overcome by increasing I sufficiently,
and the curve of cathodal rheobase or threshold charge rises steadily with temperature
(Figs. 2, 4). Note that this argument applies only to a space-clamped membrane.
Block does occur above a certain temperature for cathodal stimulation of a prop-
agated impulse (Huxley, 1959), but the cable properties of the axon play a role there.

An anodal current pulse makes V negative and ‘“‘de-accommodates” the membrane,
by resetting h and n to new values. Together with the new m, they determine whether
excitation takes place or not after the end of the pulse (by postinhibitory rebound), as
V returns toward zero. As the strength of the anodal pulse is increased, V enters the
range where saturation occurs, and 4 and n are driven toward their anodal limits (1 and
0). Once nearly there, further current increases are less and less effective in overcoming
the inhibitory effect of raising the temperature. A critical temperature is reached at
which, no matter how big the current is, excitation fails.

This critical temperature is the same for both very long and very short current pulses.
It appears that all anodal stimuli of sufficient strength push the state point close to a
particular limiting trajectory in phase space, which is suprathreshold below the critical
temperature, but subthreshold above it. Thus all strong anodal stimuli have the same
critical temperature, regardless of their duration or wave form.

Although this paper deals only with the standard Hodgkin-Huxley model, its re-
sults can be expected to apply qualitatively to any model for which the conductance-
determining variables of state approach finite limits (saturate) as ¥ becomes very
negative. Since changes of conductance seem to be determined by the motion in an
electric field of charged constituents of the membrane, such saturation would be ex-
pected in any physically reasonable model.

The anodal break thresholds measured experimentally by Guttman and Hachmeister
(1972) are hard to compare with the theoretical predictions of this paper, for two
reasons. As they say, “it was difficult to study the effect of temperature upon the
anode break strength-duration curve of real axons since the experimental procedure
was so drastic that repeated runs at different temperatures could usually not be car-
ried out on the same axon.” Moreover, although their strength-duration curves were
similar to the computed ones for durations up to about 10 ms, for longer pulses the
current values dropped to far lower values, apparently as a result of slow processes
which increase excitability during very long anodal pulses, but which are not de-
scribed by the HH equations. They obtained anodal break excitation in some axons
for 20 and 25°C, which are above the computed critical temperature. From their Fig. 3
it is clear that the rheobase number 1 (which corresponds to the computed HH rheo-
base) increased for these higher temperatures. In the only axon which they succeeded
in testing at three different temperatures, the rheobase increased with temperatures up
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to 20°C (their Fig. 6), but unfortunately this was their rheobase number 3, which
corresponds to pulses of much longer duration, roughly 1 s.

Introducing slower processes into the HH model might drastically change or even
eliminate the critical temperaaure. Nevertheless, since the phenomenon of a critical
temperature arises from the saturation of the steady-state values of the conductance-
determining variables for strongly hyperpolarized membrane potentials, it is likely (see
for example Chandler and Meves, 1970a, b) that such saturation would also occur for
other, slower variables in the membrane. It is therefore still worth looking for ex-
perimentally, though the difficulty of getting reproducible results on squid axons under
such conditions are formidable.

Whether or not the phenomenon of a critical temperature for anodal stimuli can be
substantiated by experiment, it is still important to understand these mathematical
properties of the HH model. It is interesting that this previously unsuspected phenom-
enon should turn up in such a well-known set of equations.

The critical temperature arises in the HH model as the result of the interaction of
three conditions: (/) a response with a sharp threshold following the end of an in-
hibitory stimulus, (2) a net decrease of excitability as the temperature is increased, be-
cause of the speedup of the inhibitory process relative to the excitatory one, and (3) a
limitation of the excitatory effect of increasing the stimulus amplitude, due to satura-
tion.

The critical temperature is that at which the threshold stimulus goes to infinity.
Another way to state this is in terms of response and the all-or-none law, instead of in
terms of stimulus, and say that at the critical temperature the maximum obtainable re-
sponse changes from a high (all) to a low value (none). If condition (/) is relaxed to
permit a more graded response, the critical temperature would be replaced by a critical
range of temperatures over which the maximum obtainable response changes from high
to low. In the HH equations, as mentioned above, the threshold is, in a strict sense,
graded at all temperatures, but still looks quite sharp at 17.13°C. Thus the “critical
temperature” does not have an exact value, but corresponds to a very narrow critical
range of temperatures. If the threshold phenomenon were much more graded, then the
width of the critical temperature range might become large enough to be apparent in
the computed results. It might also be measurable experimentally, if a graded anodal
break response existed in a real nervous system.

Does anodal break excitation occur as a normal physiological phenomenon?
Guttman and Hachmeister (1972) mention visual off-responses as a possibility. These
result from inhibition either in a single photoreceptor or at a subsequent inhibitory
synapse. The former case occurs in photoreceptors of the scallop Pecten (McReynolds
and Gorman, 19704, b) and in the hardshell clam Mercenaria (Wiederhold et al., 1973).
Background firing of the receptor in the dark can be either absent or present. When
absent, the burst of firing which follows the flash of light would have a sharp threshold
(ignoring random fluctuations). However, if background firing is present, the burst
would be a graded response with no sharp threshold.
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An anodal break response might also occur at an inhibitory synapse. A recent ex-
ample, studied by recording from single cells, is given by Alkon (1973, 1975) in the
mollusc Hermissenda.

In any of the above cases, it would be worth trying to measure the effect of varying
the temperature on the threshold of off-responses, to see if anything like a critical tem-
perature or temperature range occurs.

It has also been suggested to me (by Dr. William A. Hagins) that a critical tempera-
ture might help explain the sharp temperature set point of thermoreceptors in the
hypothalamus. It might be worth looking for a neural model based on this idea.

Mr. John Shaw helped in developing and running an earlier threshold search program on which the pres-
ent one was based. Prof. C. W. Gear kindly provided a recent version of his program DIFSUB for solv-
ing differential equations numerically.

The figures for this paper were prepared using the modeling program MLAB on the DEC system-10 com-
puter at National Institutes of Health.

Doctors Gerald Ehrenstein, Harold Lecar, and John Rinzel made useful suggestions for improving the
manuscript.

Received for publication 6 June 1975.
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