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ABSTRACT The potential distribution within the internodal axon of mammalian nerve
fibers is derived by applying known node potential waveforms to the ends of an
equivalent circuit model of the internode. The complete spatial/temporal profile of
action potentials synthesized from the internodal profiles is used to compute the node
current waveform, and the extracellular action potential around fibers captured within
a tubular electrode. For amphibia, the results agreed with empirical values. For
mammals, the amplitude of the node currents plotted against conduction velocity was
fitted by a straight line. The extracellular potential waveform depended on the location
of the nodes within the tube. For tubes of length from 2 to 8 internodes, extracellu-
lar wave amplitude (mammals) was about one-third of the product of peak node cur-
rent and tube resistance (center to ends). The extracellular potentials developed by
longitudinal and radial currents in an anisotropic medium (fiber bundle) are compared.

INTRODUCTION

Single unit recordings from nerve fibers are often made by dissecting small bundles free
from the surrounding tissue and placing them in contact with a macroelectrode (e.g. a
wire hook) in a confining insulating medium (e.g., air, mineral oil, plastic sleeves). This
facilitates the recording by stabilizing the spatial relationship of nerve fiber and elec-
trode, amplifying the action potential by forcing the current through a high extracellu-
lar resistance, and permitting a metal contact of large surface area and low junction
impedance and thermal noise. Several investigators are developing this configuration
to record chronically from multiple fibers confined to solid insulating tube electrodes
either by dissection and insertion (Brindley, 1972; Hoffer et al., 1974) or by regenera-
tion of cut tracts (Mannard et al., 1974; see also Marks, 1965).
An understanding of the influence of the size of the fibers and of the fiber bundle,

and of the tube length and diameter, on the amplitude and waveform of the recorded
potentials is needed to guide experiments and the design of electrodes. Stein and Pear-
son (1971) have calculated the potentials to be expected from invertebrate unmye-
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linated fibers in tubes, and they have also derived a simple proportional relationship
between the extracellular potential within a tube and the spatial profile of the intra-
axonal potential of unmyelinated fibers. This relationship applies to myelinated fibers
as well (see below). Thus we require the spatial profile of the intra-axonal potential of
myelinated fibers. For amphibian fibers, this has been measured by Huxley and Stamp-
fli (1949) and derived from voltage clamp data by Fitzhugh (1962) and Goldman and
Albus (1968). Such data are not available for mammalian fibers.

This paper presents an alternate method for calculating the spatial profile of the
internodal intra-axonal potential from the time course of the action potential at a
node, which has been determined for a large range of mammalian myelinated fiber sizes
(Paintal, 1966, 1967). This spatial/temporal profile of the action potentials is then
used to predict the node currents (for myelinated mammalian fibers having conduction
velocities from 8 to 100 m/s), and the amplitudes and waveforms of action potentials
which would be recorded from these fibers in tubes of varying length and position with
respect to the nodes. The validity of this method is discussed by comparing the theo-
retical with experimentally determined action currents for mammalian and amphibian
myelinated fibers.
The following list of symbols gives the variables used, and the constants together

with their sources.

LIST OF SYMBOLS

Variables
C Conduction velocity
Cm Myelin capacitance per unit length
D Tube diameter
d Axon diameter = myelin i.d.
di Fiber diameter = myelin o.d.
E(t) Empirical intra-axonal potential at node
i Myelin or membrane current per unit length
inode Node current
Ie Longitudinal current outside fiber
Ii Longitudinal current within fiber
Jx Longitudinal current density outside fiber
L Internode length
LI Tube length
r Radial coordinate within tube electrode
rm Myelin resistance times unit length
Re Extracellular resistance per unit length within tube
Ri Intra-axonal resistance per unit length within tube
RI Tube resistance, center to ends
r* Radial distance from node
Sx Longitudinal extracellular conductivity
t Time
Td Duration of action potential
T, Rise time of action potential
u (r*, x) Potential distribution about node
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V(t, x) Intra-axonal potential
VO (t, x) Intra-axonal potential along 0th internode
v (x) Average of w (r, 0, x) over cross section of tube
w (r, 0, x) Extracellular potential distribution about axis of tube
x Distance along axon

Constants

Ko Capacitivity of vacuum = 8.85 (10)- 'F/cm
Km Dielectric constant of myelin = 5-10 (Hodgkin, 1964, p. 53)
K2 Specific resistivity of myelin = 5-8 (10)14 0-cm (Hodgkin, 1964)
Ki Axoplasmic resistivity = 110 0-cm for frog (Stampfli, 1952), = 110(65/80) = 90

Q-cm for cat
Kx Longitudinal resistivity of nerve trunk = 2.5 (65 0-cm) = 163 0-cm (Tasaki, 1964,

corrected for mammalian saline)
K, Transverse resistivity of nerve trunk = 120 (65 Q-cm) = 7800 Q-cm (Tasaki, 1964)

INTRA-AXONAL POTENTIALS

Theory

With Fitzhugh (1962), we model the internode as a linear distributed leaky cable: an
intra-axonal resistance per unit length R, shunted by the distributed myelin capacitance
Cm and resistance rm to the external medium, which we place at ground potential,
ignoring the extracellular potential drops for the present. The resistance of the parallel
extracellular paths is less than 0.02 times that of the intracellular paths, even though
they are constricted by the anisotropy of the extracellular medium (see below). Clark
and Plonsey (1966, 1968) have shown that transverse voltage differences within axons
can be ignored for most purposes, so that the intra-axonal potential can be represented
along a single length coordinate. The intra-axonal potential V(t, x) then obeys the
following equation in the internode (i is myelin current per unit length):

i = CmJ V/6t + Vlrm = (/Ri) 62 V/6x2. (1)

The boundary conditions at the nodes x = 0, L are

V(t, 0) = E(t), V(t, L) = E(t - LIC), (2)

where E(t) is the empirical node potential. The resting potential was ignored.
Eq. 1 was converted into a difference equation and solved by iterative relaxation

from the initial condition V(t, x) = (1 - x/L) V(t, 0) + (x/L) V(t, L) as follows. In
each iteration the new value of Vat each point on the (t, x) plane was calculated using
Eq. 1 from the old values at the four adjacent grid points. Initially dx = L/5. When
each series of iterations converged (i.e., did not change, so that Eq. 1 was satisfied), dx
was reduced by 1, and a new series of iterations made until dx < 25 Am. Throughout,
dt = wave duration/(number of samples); there were 72 samples for cat, 80 for frog.
The resulting internodal potential was taken as that for internode 0, Vo(t, x), valid
for 0 < x < L. For t odtside the duration of the wave, 0 < t < Td, V0 (t, x) = 0. The
value of V(t, x) for x perhaps outside the calculated interval, but within the kth
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internode, was computed from

V(t,x) = Vo(t + kL/C, x - kL), (3)

where 0 < x - kL < L, k an integer. Expressed as a difference equation in which t and
x occurred only at sample points, this relation required (third order) interpolation be-
tween the calculated sample points, since the required positions and times in Eq. 3 fell
between those calculated for internode 0. Thus we obtained the value of V(t, x) for a
range of x and t equal to the entire duration, Td, and wavelength 0 < x < C Td,
of the action potential. The (inward) node current was calculated from

ino& = lim(e - 0)(l/Ri)[6V/6x(x = e) - 5V/Vx(x = -e)]. (4)

Node Potentials
Paintal (1966; 1967) dissected the vagus and saphenous nerves of the cat, and recorded
monophasic unit potentials under oil on hooks. The amplifier frequency range was
0.06 Hz to 37 kHz. One hook was in contact with the cut end of the fiber, and the
other one was 1 mm distant from the end. The latter hook was a ground for the out-
side of the fiber, while the hook on the cut end was resistively connected to ground and,
through the inside of the fiber, to the first node, 0-2 mm away. It therefore recorded
an attenuated copy of the node potential, except for capacitatively coupled myelin
currents which flowed in the intra-axonal resistance, and except for the possibility of
damage to the first node. The capacitance, and damage probably also, would tend to
make the recorded waveform slower than the waveform of a normal node. However,
these records are not slower than intra-axonal potentials recorded by Eccles and

TABLE I

FIBER PARAMETERS AND ACTION CURRENTS

C d' d dyd L Tr Td/Tr inodc

m/s rn AM wrn lS nA
Frog

23 14.0 10.0 0.72 2,000 0.18 5.7 4.09
Cat

8 2.1 0.6 0.29 200 0.20 5.0 0.13
16 3.3 1.4 0.43 313 0.13 3.7 0.44
64 11.5 6.9 0.60 1,092 0.10 3.6 3.31 2.37C 3.17R

3.67E 0.77L
80 14.2 8.5 0.60 1,344 0.09 3.7 4.44
100 17.4 10.3 0.59 1,634 0.08 3.9 5.88

The fiber (d') and axon (d) diameters are from Sanders and Whitteridge (1946) and Williams and Wendell-
Smith (1971), the internodal lengths from Lubinska (1960), and the rise times (T,) and spike durations (Td)
from Paintal (1966) for cat, and Goldman and Albus (1968) for frog. For the 64 m/s fiber, computed node
currents for four modified conditions are added: for the dielectric constant Km set to 6 instead of 10 (C);
for the myelin resistivity K2 increased 10 times (R); for an accelerated node potential waveform (E) (see
Fig. 1), and for L - 200 jm (anticipated internode after regeneration) (L). These currents also appear in
Fig.4.
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Krnjevic (1959) from dorsal root fibers after their entrance into the spinal cord of cats.
Measuring times from these records in the manner of Paintal, i.e. extrapolating from
the point of fastest slope to the base line, one finds a rise-time of about 0.1Ims, and a
duration of 0.4 ms. The data of Paintal (1966) yield 0.08 ms for the rise-time and 0.31
ms for the duration of action potentials conducted at the same velocity (100 m/s,
extrapolating from his maximum value of 80 m/s; see Table I).
Although Paintal measured many rise and fall times, he only published a few wave-

forms, and these all resembled that for his 64 m/s fibers. Since the ratio of rise-time
to duration of all the spikes with velocity between 8 and 100 m/s were approximately
constant (see Table I), we have adopted the 64 m/s waveform for all velocities, except
to scale them to fit the data for rise-time.
The amplitudes of the action potential waveforms from cat were adjusted to 130 mV.

This estimate of the intracellular amplitude was obtained by Horakova et al. (1968)
from single nodes of rat sciatic nerve fibers using an air gap and current clamp. The
resulting node potential waveform labeled "cat" is shown in Fig. 1 for two conduction
velocities. The dashed waveform in Fig. 1 was obtained by adding to the node po-
tential for cat its own time derivative multiplied by 16.6 As. This "accelerated" wave
was used to check the effect on our results of a possible capacitative slowing of the
empirical node potential.
The action potential in Fig. 1 labeled "frog" was recorded by Hodler et al. (1952),

also from a cut end. This curve, too, may be slower than the underlying node potential.
Its rise-time (0.20 vs. 0.15 ms) and duration (1.1 vs. 1.2 ms), are similar to the propa-
gated action potentials of Xenopus computed by Goldman and Albus (1968) from volt-
age clamp data, but its foot and peak are more rounded. Its amplitude was scaled to
115 mV (Huxley and Stampfli, 1949; Frankenhaeuser and Huxley, 1964).

150
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0
O 400 800 1200 1600 FROG 6 8 M/S CRT
0 200 400 600 800 64 M/S CRT

NOOE WRVEFORM IN TIME. IJS

FIGURE 1 Empirical waveforms which were used as node potentials. The dashed curve is the
waveform for cat augmented by its time derivative times 16.6 us.
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The Properties ofthe Internode
Among the other quantities required for computation, the internodal length, myelin
thickness, and fiber diameter are known for the full range of mammalian fibers. How-
ever, the internodal myelin capacity and resistance, and the internal longitudinal re-
sistance of the axon had to be adapted from those of amphibia.
Those properties which vary with conduction velocity (C), namely axon diameter

(d), fiber diameter (d'), length of internode (L), waveform rise-time (T,), and dura-
tion/T,, appear in Table 1 with associated sources. Note that did' is not constant, but
drops below 0.60 for C < 16 m/s. The myelin capacitance per unit length was com-
puted from the relation

Cm = 2w KOKm/ln (d7d). (5)

(Eqs. 5, 6, and 7 can be found in physics texts.) The values and sources of the con-
stants are given in the list of symbols. Km. the dielectric constant of myelin, was
assumed to be that of amphibia, 6-10. The effect of reducing it from 10 to 6 was in-
vestigated, and the amplitude of the resulting node current appears in line 4 of Table I.
The transmyelin resistance times unit length was given by

rm = (K2/2X) ln (d'/d), (6)

where the specific resistance of myelin, K2, was assumed to be the same as for am-
phibia. The effect of uncertainties in K2 was gauged by recalculating the amplitude
of the node current for K2 increased by a factor of 10. This appears in Table I, line 4.
The axoplasmic resistance per unit length was given by

Ri= Ki/7r(d/2)2. (7)

23 M/S FROG

200 M/S

150

tOO~~~~~~~~ M/S\_
-30 -25 -20 -15 -10 -5 0 5 10

INTRA-AXONAL POTENTIAL IN SPACE. MM

FIGURE 2 Spatial profiles of intra-axonal potential at the moment when the node potential at
x = 0 is maximum, for fibers of several sizes, calculated from the node potentials by solving Eq. 1.
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Derived Intra-axonal Voltage Profile
V(t, x) was calculated for the nine varieties of cat nerve fiber and one of the frog listed
in Table I. Some of these profiles are illustrated in Fig. 2 for waves propagating to the
right at the moment when the node at x = 0 is at maximum depolarization. The dips
in the amphibian internodes resemble those measured by Huxley and Stampfli (1949)
and calculated by Fitzhugh (1962) and by Goldman and Albus (1968), all for the same
large amphibian sciatic nerve fibers to which our curve applies. For each, the maxi-
mum amplitude of the dips was about 5.0 mV, except for the curves of Goldman and
Albus (1968), who assumed a shorter internode and found 3.3 mV.

Derived Node and Myelin Currents

Fig. 3 shows node current waveforms calculated from the gradients of the potential
profiles of Fig. 2 immediately adjacent to a node (Eq. 4). Inward currents are plotted
upwards. The solid curve labeled "23 m/s frog" is our frog node current, and the
curve in small dots, scaled to the same height for comparison, is the average of several
measurements of node current from a frog nerve by Huxley and Stampfli (1949). The
actual amplitude of the inward phase of the node current waves shown by Huxley and
Stampfli was 1-3 nA; Tasaki (1964) found amplitudes of4-6 nA. All results from frog
are for large (about 14 ,m) fibers. For mammals, Maruhashi and Wright (1967) have
published a single measurement made in passing of the node current of a "large"
sciatic nerve fiber in the rat. They found an amplitude of 6.4 nA. We find that our cat

I 0.06;
6-

100 200 30 40 X0

1-

NOOE CURRENT IN TINE. USN I

0O 10 20 30 40 50 6 0 0 9

CONOUCtIOlnVELOCITY . fl/S

FIGURE 3 FIGURE 4

FIGURE 3 Node current waveforms calculated from the intra-axonal potential profiles using
Eq. 4. The waveform in large dots was calculated from the 64 rn/s node potential which was aug-
merited with its time derivative '(Fig. 1). The waveform in small dots is the amphibian node cur-
rent measured by Huxley and Stampfli (1949). The 8 in/s waveform has been multiplied by a
factor of 10 for clarity.
FIGURE 4 Node current amplitudes for several mammalian fiber sizes fitted by least squares to a
straight line. Letters denote currents for the fibers having modified parameters listed in Table
I. F is the calculated current of the frog node, bracketed by the range of published measurements.
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fibers with diameters in the size range which is large for the rat (10- 14 ,m) have current
amplitudes of 3.3-4.4 nA (Table I).

Fig. 4 shows the amplitude of the node current of five mammalian fibers plotted
against their conduction velocity. The fit to a proportional relation is good, and better
with a small offset. The lettered point F indicates the frog node current, and is
bracketed with the range of measured values. For the 64 m/s fiber, E indicates the
current after the node voltage waveform is modified by adding to it its time derivative
times 16.6 its; C shows the effect of reducing the myelin capacity by 40%, and R, of
increasing value of rm 10-fold. As discussed above, these changes were suggested by the
degree of uncertainty of the data from which they were taken.

EXTRACELLULAR POTENTIALS

Theory
Since the extracellular current densities have transverse and longitudinal components
(call them J. and J,), the extracellular voltage w within the nerve trunk (and within
the space between the nerve trunk and tube wall) has transverse as well as longitudinal
gradients. Let us ignore the transverse gradients for the present and work with the
weighted average of w over the cross section of the tube. Let v(x) be the average at
the section x. In the following derivation we show that v(x) is determined by the total
longitudinal extracellular current I, and that I, is determined by V(x), the intra-
axonal potential, so that V(x) determines v(x). The derivation is modified from Stein
and Pearson (1971). For a rigorous treatment of the currents and fields around nerve
fibers, see Clark and Plonsey (1966; 1968) and Plonsey (1974).

Let w be a function of r and 0, the radial and angular coordinates about the center
of the tube, so that the nerve trunk can lie eccentrically within the tube: w =
w(r,0,x). Then sx, the longitudinal conductivity of the nerve tissue or the space
between nerve and tube, will also be a function of r and 0. All integrals are over the
cross section of the tube, excluding the fiber under study. Then

I, = Jxr dr d0 = - sx (6w/lx) r dr d0
= -(6/6x)Jsxwrdrd0. (8)

Now define v(x) and R,.
v(x) =fsxwrdrd0/Jsxdrd0, (9)

R-1 =fsxrdrd0. (10)

Thus v(x) is the average of the potential over the section x, weighted by sx(r, 0), and
R, is the longitudinal resistance per length within the tube outside the fiber. Then from
Eq. 8

I, = -(11/R,)v/6x. ( 11)
The longitudinal gradients of the intra- and extracellular currents are equal and
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opposite:

6I/6x = -bIib/x = i, (12)
(i is outward myelin current) and the intra-axonal current is proportional to its po-
tential gradient:

I, = -(1/Rj)6V/6x, (13)

where Ri from Eq. 7 is the intra-axonal resistance per length. From Eqs. 11, 12, and 13,

62V/6X2 = -(Re/Ri)62V/6X2. (14)

Assume that v (x) is held at ground potential at the tube ends:

v(O) = v(L') = 0. (15)

Integrating Eq. 14 twice and then evaluating the two constants of integration using
Eq. 15 as boundary conditions, we find

v(x) = -(R1/R,)[V(x) - (1 - x/L')V(O) - (x/L')(V(L')]. (16)
Thus this relation, which was derived by Stein and Pearson (1971) for an unmyelinated
fiber in a tube, applies as well to a myelinated fiber in an anisotropic nerve eccentrically
placed within a tube, if v(x) is interpreted as the weighted mean potential at x. (All
functions of r and 0 must be independent of x.) Although departures of the actual
potential from v(x) within the section at x will have 0 mean, they will only vanish in
the absence of transverse currents. Potentials arising from transverse currents will be
treated briefly in a later section.
(Graphically Eq. 16 is obtained by placing a cord, of horizontal extent equal to a

tube length, on the graph of V(x) and subtracting this straight line from the contained
portion of the waveform. This "cord potential" is then multiplied by -R,/Ri.)

RESULTS

Fig. 5 shows v(x = L'/2), the average extracellular potential at midtube, divided by
the factor (Re/Ri), versus time, for tubes of various lengths, and for various dis-
placements of the central node from midtube for the 64 m/s fiber. These curves were
calculated using Eq. 16. The node displacements are given as percentages of the length
L of the internode; positive displacements are in the conduction direction. Tube
lengths are also given in units of L in the left margin. For a tube of length L/2 (top
line), a 0% displacement gives a waveform similar to the node current. An effect of
the internodal dips is seen for the 50% displacements for tube length L/2 and L: the
recorded voltage would be identically 0 in the absence of the dips, since no nodes
would be within the tube. These voltage waveforms resemble those of the myelin cur-
rent; the differences in amplitude are related to the resistance associated with tube
length.
The signals from tubes of length 1.5L and greater are biphasic. For the shorter of
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CAT 64 m/s

SIGNAL WAVEFORMS FOR VARIOUS TUBE L AND NOOE. OFFSETS:

-50% -30%' -1DO. 0% +30%
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FIGURE 5 Extracellular potential waveform (average across tube) at the midpoint of tubes of
various lengths (L'), divided by (Re/Ri) (Eq. 16). Tube lengths in units of internodal length (L)
are given in the left margin, and the displacements ofthe central node, as percent of L, are shown
at the top ofeach column.

these tubes, the longitudinal position of the nodes and dips affects the waveform of the
potential at midtube. For the longer tubes, the waveform is no longer affected by the
longitudinal position of the internodal dips, and the temporal phases of the wave occur
as the overall spatial profile of the intracellular potential within the tube has a positive,
then negative, then positive, curvature. The notch in the trailing edge of the negative
phase is a reflection of a reduction in curvature in the empirical node potential ("cat"
in Fig. 1) just before its peak, which induces a notch in its second derivative, and is
probably caused by noise.

Fig. 6 shows the amplitude of these potentials, divided by R¢, for centrally placed
nodes (solid lines) and the range of amplitudes for other placements (vertical bars),
plotted against tube length. The course of the central line is disturbed when nodes fall
at both the center and both ends (lengths 2L, 4L, etc.), but is essentially linear for short
lengths. In Fig. 7 the log of v/Re is plotted against length on a log axis, for tubes up
to a wavelength long. For tubes shorter than an internode (see Table I for values of L)
the maximum amplitude (centrally placed node) is proportional to tube length. There
is a dip at 2L, and, for lengths longer than the wavelength, an approach to the value
130 mV/Ri (115 mV/Ri for frog) (Stein and Pearson, 1971). The recorded amplitudes,
as indicated by Eq. 16, are obtained by multiplying the ordinate of Fig. 6 or 7 by

BIoPHYSICAL JOURNAL VOLUME 16 1976664



I -

Anz Iw' 0 X

LOGT EnGI
E.G 64 TM/S CAT V.UMI/MEGOHMIS 1 R

*GfM/MEGOIAM

3 -1

2 -2

-3

o -4 1
0 2 4 6 8 to 12 0.1 0.3 1 3 to 30

PEAK SIGNAL AMPLITUOE VS. TUNE LENGTH. MM PEAK SIGNAL AMPLITUDE VS. TUBE LENGTH. MM
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FIGURE 6 Extracellular potential amplitudes at midtube, divided by tube resistance per unit
length, plotted against tube length. The line shows the potential when a node is at midtube; the
bars show the excursions of this for other positions of the central node. The triangles are calcu-
lated from the relation v/&R = inodc / 12, i.e., v= inodc RI /3, where R, is tube resistance.
FIGURE 7 Extracellular potentials as in Fig. 6 for other fibers, plotted as log vs. log. Tri-
angles as described under Fig. 6.

Re = Kx/(7rD2/4), where D is tube diameter, and Kx is typically 2.5 times the resistivity
of saline (Tasaki, 1964).

In Figs. 6 and 7, which plot v/Re vs. L', notice that a portion of each curve to the
right of the notch at L' = 2L is straight and proportional to L'. Furthermore, the
height of the curves in this range is proportional to inode for each fiber type; the tri-
angles in these figures lie on the lines v/R, = inode L'/ 12. The fit appears to be
useful for the larger mammalian fibers. Since the tube resistance, center to ends, is
given by R, = L' R/4, one can summarize the curves for the larger mammalian fibers
in this range of tube lengths, 2L < L' < 8L, with the approximation v(L72) =
'node R, /3.

The Transverse Currents
Within the nerve trunk, the voltages generated by the transverse component of the cur-
rent from a fiber are augmented by the transverse resistivity, which Tasaki (1964) finds
to be approximately 50 times greater than the longitudinal resistivity (K,/KX = 50).
Plonsey (1974) derives equations for the fields around fibers in anisotropic media.
From them one concludes that the equipotential surfaces around a point source within
a nerve trunk of infinite diameter are ellipsoids of revolution whose longitudinal axes
are the square root of (K,/Kx) times as long as the radial axes, and that the potential
at the coordinates r*, x from such a source would be
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u(r*, x) = (K/47r)IInod/(x 2+ (K/KX)r* 2) 1/2(

For the 64 m/s fiber we find a node current amplitude of 3.3 nA, most of which re-
enters the fiber through the myelin within one internodal distance of the node. Let us
neglect this reentry locally, and assume that within 100 ,m longitudinally of the node,
the current pattern is that of a point sink with source at infinity. Then Eq. 17 predicts,
using K,/KX = 50, that at a radial distance of 30 gm from the fiber, u(30.0) = 98 MV.
The voltage induced by the longitudinal current can be read from Fig. 6. Within a

4 mm long tube of diameter D = 200 um, the figure predicts for the voltage at the
midpoint

v = 1 (V-,gm/MQ)(K./(rD2/4) = 52uV (18)

and for a 1 mm long, 1(00,um diameter tube, v(x = L'/2) = 114 MV.
Eq. 17 is only approximate, since it omits the myelin currents, the current return at

adjacent nodes, and the boundary condition at the walls of the tube. In cross sections
of a nerve in this size range for x near a node, the extracellular potential w (r, 0, x)
will be obtained by adding to its average value v(x) a curve u(r*, x) - a(x), where
u (r*, x) resembles Eq. 17 and has magnitude grossly comparable to v (x), and a (x)
biases u (r*, x) to have zero mean across the tube. Thus u (r*, x) - a (x) would
augment the magnitude of v(x) near the node, and reduce it slightly at larger radial
distances. Since u and v are comparable in amplitude we conclude that the potential
at the surface of the nerve due to fibers near the surface should be grossly the order of
twice that of fibers near the center for tubes in this size range.

Since the local potentials induced by node currents depend strongly on radial dis-
tance, their amplitude at the recording contact should be strongly affected by the
amount of space outside the nerve and by the proximity of the nerve to the recording
contact. The estimates of the longitudinal potentials are unaffected by this space, ex-
cept through its affect on R, and the tube resistance, center-to-ends. Although local
potentials may be more susceptible to the space outside the nerve trunk, as tube length
diminishes or tube diameter increases, the longitudinal potential v(x) decreases and the
local potentials from transverse currents may come to dominate a nearby contact.

In Eq. 1, the extracellular voltages were ignored by comparison to the intracellular.
The maximum extracellular voltage just outside a node is u(d/2, 0) from Eq. 17. For
the 64 m/s fiber this equals 0.83 mV, in comparison with the intracellular amplitude
of 130 mV. The total extracellular node-to-node voltage drop is about 2u (d/2, 0), since
the drop occurs largely near the nodes. Therefore the ratio of node-to-node resistance
of the extracellular to the intracellular pathway is this quantity divided by (i..d.L Ri),
which is (K,/Ki) (Kx/K,) I"2(d/8L) < 0.02 for the mammalian fibers.

CONCLUSIONS

The relation between node current and conduction velocity of Fig. 4, combined with
the approximate relation v(L'/2) = A'nodc R, obtained from Figs. 6 and 7, gives a sim-
ple approximation for the midtube potential in terms of the conduction velocity and
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the tube resistance (center to ends). The recorded potential should vary as discussed
above depending on the radial position of the fiber and of the nerve bundle, and should
vary with longitudinal node position as shown in Figs. 6 and 7.
Although the details of the current and voltage waveforms are subject to revision

because only one waveform was available for the mammalian node potential, the mag-
nitudes of these potentials are determined largely by the amplitude and rise-times of
these potentials, which are relatively secure. The mammalian myelin resistance may
differ considerably from the amphibian value adopted here, but it is probably so great
that uncertainties in it have little effect (see Table I). The most serious uncertainty
appears to be in the myelin capacitance; the known degree of uncertainty in the am-
phibian data causes a 40% variation in our predicted node currents.

The graphs were composed using the computer language MLAB written by G. D. Knott.
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