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For Aristotle, the subject matter of physics
was motion, which he understood as change
in a very broad sense. In his Physica, Aristotle
identified changes of quality (like color),
changes of quantity, and changes of place
or spatial location as varieties of motion. He
regarded change of place as the principal type
of motion and subdivided it into natural,
forced, and voluntary changes of place, or
motions (Aristotle, Physica; Pedersen & Pihl,
1974). According to Aristotle, the nat. al
motions are circular, upward, and downv .rd,
and are exhibited by bodies in the he.vens,
fire and air, and earth and water, respectively.
Forced motions are those that are initiated
by an external mover and that contravene
the natural motion of an object. The natural
downward motion of a thrown clod of earth,
for example, is contravened by an horizontal
impulse imparted by the thrower. Voluntary
motions are those exhibited by animate beings
and their parts. The disciplines that study
these three types of motion came to be called
astronomy (including the study of mass at-
traction), mechanics, and psychology.

There are many similarities between the
development of astronomy and the devel-
opment of mechanics, and, as is well known,
the two were unified by Isaac Newton in
his celebrated Principia. But little attention
has been paid to the development of psychology
as the third branch of Aristotle’s physics. The
purpose of this review is to show that the
development of psychology has been similar
to the development of the other two branches
of Aristotle’s physics in at least three important
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ways: all three disciplines rejected Aristotle’s
teachings regarding motion, developed a pro-
ductive graphical method to represent the
motion in question, and used mathematics
to describe the motion. In the.case of psy-
chology these developments came together in
B. F. Skinner’s important book, The Behavior
of Organisms (1938).

ARISTOTLE’S PHYSICS

Aristotle’s teachings regarding motion were
very influential (Sarton, 1952) and survived
for a long time: roughly 17 centuries in the
case of natural motion and forced motion,
and at least 22 centuries in the case of vol-
untary motion. The central tenet of Aristotle’s
doctrine on motion is summarized in the
following passage:

[Things that exist by nature, viz., animals and
their parts, plants, and the simple bodies (earth,
fire, air, water) and their compounds] present
a feature in which they differ from things
which are not constituted by nature. Each of
them has within itself a principle of motion
and of stationariness. (Aristotle, Physica, p.
192%)

Thus, Aristotle taught that natural objects,
whether animate or inanimate, possess an
internal motive principle. Natural motions,
for example, occur because the bodies that
exhibit them have an “innate impulse” to
do so. “Now, necessarily, everything which
moves either up or down possesses lightness
or heaviness . . .” (Aristotle, De caelo, p. 269").
Similarly, Aristotle taught that objects that
undergo forced motion have within themselves
the potential of being so moved, and that
contact with a mover activates the potential.
This “actualization” theory (Koyré, 1978)
permitted Aristotle to speak of forced motion
as occurring in virtue of “the impulse which
the body that is carried along or is projected
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possesses” (Aristotle, Physica, p. 216%). Hence,
one may speak of velocity, or the intensity
of forced motion, as a property of the object;
a body is swift or slow in the same sense
that it is black or white (Pedersen & Pihl,
1974). Voluntary motions are exhibited by
entities that “being animate, have a principle
of movement within themselves” (Aristotle,
Physica, p. 284%). Generally speaking, “nature
means a source of movement within the thing
itself” (Aristotle, De caelo, p. 301").

THE DEVELOPMENT OF
ASTRONOMY AND MECHANICS

Rejection of Aristotelian Doctrine

Astronomy made considerable progress in
antiquity, although it remained under the
influence of Aristotelian internalism. For ex-
ample, by the 5th century B.C., empirical
astronomy had provided much information
about the motion of celestial bodies, and by
the end of the second century A.D., Ptolemy’s
geocentric system of the universe, as set forth
in his Almagest, had become influential. The
Almagest endured as the principal astronom-
ical authority for well over 1,000 years, and
Aristotle’s internal-motive-principle theory
survived with it. In the late 16th and early
17th centuries, however, the Aristotelian the-
ory began to encounter difficulties. In Ptole-
my’s geocentric universe, all natural motions
occurred with respect to a single point, namely,
the center of the earth. But in Copernicus’
heliocentric universe, circular motions oc-
curred with respect to many points. The moon,
for example, revolved about the earth, which
in turn revolved about the sun. Kuhn (1957)
argues that those who gave credence to Cop-
ernicus’ theory (although there were not many)
may have found circular motion about many
centers considerably less “natural” than that
about a single center. Kepler’s discovery,
around this time, that elliptical orbits simpli-
fied the celestial system may also have dis-
turbed Aristotelians because the ellipse, which
cannot be defined with respect to a single cen-
ter, does not share the “perfection” of the circle
(Kuhn, 1957).

Kepler also suggested that the motion of
celestial bodies might be caused by an external
force rather than by the natures of the bodies
themselves. Galileo ignored this and most
other ideas of his German contemporary (de
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Santillana, 1955), but it reappeared not long
after in the writings of Robert Hooke. Amid
much controversy, but ultimately with much
success, Isaac Newton turned Kepler’s idea
into the force of universal gravitation. In so
doing, he moved the cause of the circular
or elliptical motion from inside to outside
the celestial bodies. According to Newton
(quoted in Koyré, 1965),

These [gravitational attractions] are manifest
qualities. ... And the Aristotelians gave the
name of occult qualities to such qualities only
as they supposed to lie hid in bodies, and to
be the unknown cause of manifest effects. . ..
Such occult qualities put a stop to the im-
provement of natural philosophy, and therefore
of late years have been rejected. (p. 145)

In rejecting the Aristotelian doctrine, Newton
was able to unify celestial and terrestrial
mechanics.

Unlike astronomy, mechanics (i.e., the study
of the motion of sublunary bodies) progressed
little in antiquity; Aristotle’s authority on
mechanics was not seriously challenged until
medieval times. The Aristotelian legacy in
the Middle Ages had two components. The
first was the idea that velocity was a property
of a body, like its color. The second dealt
with the cause of projectile motion and was
more confused. Aristotle is sometimes said
to have subscribed to the antiperistasis theory
of his teacher, Plato (Clagett, 1959; Koyre,
1978), which states that a projectile continues
to move in the absence of contact with the
mover because the air that it displaces travels
behind it and impels it forward. However,
Clagett (1959) and Kuhn (1957) note that
Aristotle contradicted himself on this point.
In fact, certain passages in the Physica (e.g.,
p. 2162, quoted above) suggest an incompatible
“impetus” theory, whereby projectile motion
is said to persist in virtue of the impetus
that it receives from the mover. Fourteenth-
century schoolmen by and large held to the
impetus theory and tended either to attribute
it to Aristotle or to reconcile it with his teach-
ings (Clagett, 1959; Koyré, 1978). It is fair
to say, then, that early medieval scholastics
subscribed to a two-fold Aristotelian inter-
nalism: Motion was an inherent property of
a moving body, and forced projectile motion
continued in virtue of an internal impetus
that was communicated to it by the mover.

In the case of mechanics, the objection to
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Aristotelian internalism was voiced by the
English Franciscan, William of Ockham, in
the first half of the 14th century. This cel-
ebrated Oxford logician led the Nominalist
school of philosophy, which held that velocity
and impetus, for example, were mere names,
not actual entities possessed by bodies. Ac-
cording to the Nominalists, one does not see
a body’s velocity or impetus; instead one sees
the body at Point A at a particular time and
at Point B at some later time. According to
William of Ockham (quoted in Clagett, 1959):

I say that local motion is ... nothing else
but the fact that the moving body is in different
parts of space in such a manner that it is
not in any one part. ... [T]he moving body
... remains the same in itself, so that it neither
acquires anything new nor loses anything ex-
isting in it [like velocity or impetus]. But the
moving body does not remain always the same
with respect to its surroundings, and so it is
possible to assign “before and after,” that is,
to say: “this body is now at A and not at
B,” and later it will be true to say: “this body
is now at B and not at A.” (pp. 589-590)

In this passage, William of Ockham suggests
that projectile motion should be treated ex-
actly, and only, insofar as it is perceptible
to the senses. This project was taken up by
a group of logicians and natural philosophers
at Merton College, Oxford (Thomas Brad-
wardine, William Heytesbury, Richard
Swineshead, and John Dumbleton). Influ-
enced by the anti-Aristotelian nominalist phi-
losophy, these scholars proposed to treat sen-
sible motion per se, and their work marked
the beginning of modern mechanics (Pedersen
& Pihl, 1974).

Graphical Methods and Mathematical
Description

In the case of astronomy, the development
of a graphical method and the use of math-
ematical description were closely related. The
groundwork for the application of mathe-
matics was laid by Pythagoras and his fol-
lowers in the latter half of the 6th century
B.C. The Pythagoreans promulgated the doc-
trine that the visible world had a mathematical
structure, and that natural events could be
described mathematically. This doctrine of
Pythagorean philosophy powerfully influ-
enced Greek and Hellenistic science during
the last 5 centuries B.C. Before Pythagoras,
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mathematical methods were either purely
practical or purely abstract (Pedersen & Pihl,
1974). After Pythagoras, mathematics became
a way of understanding nature, at least in
principle.

Around 400 B.C., Plato suggested a ru-
dimentary graphical method that linked the
Pythagorean doctrine with the well-developed
geometry of the day. He suggested that the
motion of a celestial body might be represented
by a circle. Eudoxus of Cnidos (c. 405-355
B.C.), Plato’s mathematical colleague at the
Academy, was the first to take up Plato’s
suggestion. The task set by Plato was to show
that celestial phenomena could be accounted
for by a system of regular circular motions.
Eudoxus’ system was not very successful in
this respect, but it marked the beginning of
a serious effort to apply geometry, by means
of the circle, to astronomical phenomena. This
effort culminated 5 centuries later in Ptolemy’s
Almagest, which realized the Platonic goal.

In the case of mechanics, the Merton schol-
ars had decided to treat sensible motion per
se. They had also decided to treat it quan-
titatively (Pedersen & Pihl, 1974). Their most
important contribution was the so-called Mer-
ton relation, or mean-speed theorem, which
is the now familiar “distance equals rate times
time” formula. The Merton relation, which
was probably discovered in the early 1330s
(Clagett, 1959), marks the beginning of math-
ematical description in mechanics.

The Oxford logic (i.e., Nominalism) and
mechanics rapidly became known in other
parts of Europe (Clagett, 1959). The new
mechanics influenced the Parisian scholastic,
Nicole Oresme, who developed a graphical
method for representing the Merton school’s
“sensible motion.” Oresme represented the
velocity of a body at a given time by a vertical
line, the length of which corresponded to the
magnitude of the velocity. For each instant
of the motion a vertical line representing the
velocity could be drawn on the horizontal
time line. The set of all vertical lines defined
a plane figure that Oresme referred to as
the configuration of the motion. By the end
of the 14th century Oresme’s graphical method
had become widely known; it continued to
be influential through the 17th century and,
with various improvements, on into modern
times (Clagett, 1959). Oresme’s method was
important to mechanics because it led Galileo



300

to the solution of the problem of free fall,
which in turn made Newton’s mechanics pos-
sible (Clagett, 1959, 1968). In contemporary
physics, Oresme’s method survives in the well-
known position versus time graph and its first
two derivatives (velocity and acceleration ver-
sus time graphs). The velocity versus time
function is an Oresmean configuration.

To summarize, the three developments in
astronomy were the use of circles to represent
celestial motions, the application of geometry,
and the abandonment of Aristotelian “in-
ternalism” in favor of an external force. Plato’s
circles made Ptolemy’s geometrical appli-
cations possible. Ptolemy’s universe, as mod-
ified by Copernicus and Galileo, was the
foundation for Newton’s important achieve-
ment, which entailed rejecting Aristotelian
doctrine.

In mechanics, the three developments were
the Nominalist rejection of Aristotle, the math-
ematical work of the Merton school, and
Oresme’s graphical method. The Nominalists
influenced the Merton scholars (and later
philosophers [Koyré, 1978]), who initiated
an anti-Aristotelian mathematical mechanics.
Oresme’s graphical system furthered the
mathematical work, which ultimately led to
Newtonian mechanics.

THE DEVELOPMENT OF
PSYCHOLOGY

Internalist Doctrine

As in the case of mechanics, the first de-
velopment in psychology was the rejection
of the dominant internalist doctrine. Over the
centuries the name of the internal motive
principle had changed from soul (seated, ac-
cording to Aristotle, in the heart) to mind
(seated in the head), but the faculties remained
the same, as did the idea that the internal
entity was responsible for the movements of
animate beings and their parts. As is well
known, the initial objection to the internalist
perspective was voiced by Watson (1913,
1930), whose polemical writings were re-
markably similar to those of his Nominalist
forebears. Watson (1930) argued that “vol-
untary motion” should be treated insofar as
it is perceptible to the senses, the same program
that Ockham had suggested for forced motion
6 centuries earlier. To account for behavior
from outside the organism, Watson (1930)
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proposed a kind of comprehensive reflexology,
but this ultimately proved unsatisfactory. Wat-
son’s theory was eventually replaced, via
Thorndike’s law of effect, by Skinner’s system
of behavior.

Since Watson’s time, the externalist per-
spective on behavior has become synonymous
with Skinnerian psychology, and many ex-
amples of this perspective can be found in
The Behavior of Organisms. For example, in
discussing discrimination Skinner asserts that

An organism can be said to “tell that two
stimuli are different” if any difference what-
soever can be detected in its behavior with
respect to them.... What “learning to tell
the difference” refers to ... is the widening
of the difference in strength in related reflexes
through alternate conditioning and extinction.
(pp- 169-170)

In the second chapter of The Behavior of
Organisms (p. 44), Skinner refers to his system
of behavior as positivistic and confined to
description, but this is an overstatement. Many
elements of Skinner’s system are more con-
sistent with realism. These include reflex
strength, the reflex reserve (including the
immediate reserve), drive, and emotion. For
example, consider the following, which is
highly critical of nominalist positivism and
strongly supports realism:

The materialist, reacting from a mentalistic
system, . . . is likely to regard conceptual terms
referring to behavior as verbal and fictitious.
... [For example, Holt’s] objection to such
a term as “instinct” seems to be reducible to
the statement that you cannot find the instinct
by cutting the organism open. A similar ar-
gument is commonly advanced against the
concepts of “intellect,” “will,” “cognition,” and
so on.... But the objection to such terms is
not that they are conceptual but that the anal-
ysis which underlies their use is weak. The
concepts of “drive,” “emotion,” “conditioning,”
“reflex strength,” “reserve,” and so on, have
the same status as “will” and “cognition” but
they differ in the rigor of the analysis with
which they are derived and in the immediacy
of their reference to actual observations. (pp.
440-441)

In this passage Skinner endorses the central
tenet of most versions of realism, namely,
that it is possible in principle to infer the
existence of unobservable entities from mea-
surements on observables. This is exactly what
Skinner does in the case of the reflex reserve:
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In one sense the reserve is a hypothetical entity.
... But I shall later show in detail that a
reserve is clearly exhibited in all its relevant
properties during the process that exhausts
it and that the momentary strength [of the
reflex] is proportional to the reserve and there-
fore an available direct measure. The reserve
is consequently very near to being directly
treated experimentally. (p. 26)

In several places, Skinner discusses instances
in which behavior that has produced a smooth
curve on a cumulative record is interrupted,
and then compensates for the interruption
by returning to the projected course of the
smooth curve. According to Skinner, “this
compensatory effect ... is fairly strong evi-
dence of an underlying reserve wherever it
occurs” (p. 298; but cf. Skinner, 1950). This
is an exceptionally good example of realist
epistemology.

The strands of realism in The Behavior
of Organisms indicate that its epistemological
foundation is more complicated than might
be supposed. Although positivism has enjoyed
a renaissance of sorts in recent years (Church-
land & Hooker, 1985; van Fraassen, 1980),
late 20th-century philosophy of science has
tended to favor realism (e.g., Leplin, 1984).
This does not mean, of course, that realism
should be encouraged in contemporary be-
havior analysis. It does suggest, however, that
the proper epistemological foundation of be-
havior analysis merits closer examination,
especially in light of contemporary philosophy
of science. Interesting work on this problem
has been begun by Coleman (1984), Smith
(1986), and Zuriff (1985).

In spite of the realist strands in The Behavior
of Organisms, it is clear that Skinner favored
a broadly conceived, albeit somewhat tainted,
positivism, and that he saw it as an antidote
to the metaphysics of internalist theories of
behavior (pp. 3-6; see also Smith, 1986).
Similarly, nominalism and Newton’s objection
to “occult” causes served as antidotes to meta-
physics in the development of mechanics and
astronomy.

Graphical Method

The research tradition in psychology that
rejected internalist metaphysics also made
productive use of a graphical method. The
method is the cumulative record of responding,
which Skinner used extensively in The Be-
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havior of Organisms. The cumulative record
represents sheer description of ‘“‘sensible” vol-
untary motion in the same way that Oresme’s
configurational system represented sheer de-
scription of sensible forced motion. Moreover,
the two graphing systems convey identical
information about their respective types of
motion. Because the slope of a cumulative
record represents the rate of responding, its
first derivative is a rate versus time function,
or an Oresmean configuration (cf. Figures
58 and 59 in The Behavior of Organisms).
Skinner remarked on the importance of rate
versus time functions (p. 60), and used them
in his discussions of discrimination (pp. 208,
248, 255) and the effects of drugs on behavior
(pp. 411, 413).

Just as the first derivative of a cumulative
record of responding is an Oresmean con-
figuration of behavior (i.e., a rate vs. time
function), the integral of an Oresmean con-
figuration of motion is a cumulative record
of displacement (i.e., a position vs. time func-
tion). This isomorphism between the position
versus time graph in mechanics and the cu-
mulative record in behavior analysis has been
discussed by McDowell (1979), and has been
put to use in at least one experiment
(McDowell & Sulzen, 1981).

Just as the circle (and later the ellipse)
played an important role in astronomy, and
just as the Oresmean configuration played
an important role in mechanics, the cumulative
record played an important role in Skinner’s
system of behavior. This graphical method
was developed to represent an organism’s rate
of responding (pp. 57ff), which Skinner iden-
tified as the principal dependent variable in
his system (pp. 20-21). It is important to
recognize that Skinner’s chief interest was
in dynamic phenomena, such as extinction
and the development of discriminations, in
which response rate changes with time. The
cumulative record is well suited to the visual
representation of these changes in rate, as
Skinner noted (p. 60). Furthermore, “the
cumulative curve has a special advantage in
dealing with the notion of a reserve [e.g.,
it can show the time course of the reserve’s
exhaustion] and with its subsidiary effects
(such as compensation for temporary devia-
tions)” (p. 60). It is difficult to imagine how
Skinner’s system of behavior could have been
effectively developed or persuasively com-
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municated without a graphical method like
the cumulative record.

Mathematical Description

Skinner recognized the importance of quan-
titative accounts of behavior (e.g., pp. 85, 189,
432), and his system in The Behavior of Or-
ganisms entails the beginnings of mathematical
description. Skinner first used mathematics
to describe the time course of extinction (p.
88). He found that the logarithmic equation,
N = klogt, described a cumulative record of
extinction (actually, its “envelope”) after one
reinforcement. This equation expresses the
cumulative number of responses emitted, N,
as a function of time, ¢ Its first derivative
gives the rate of responding as a function
of time, and its second derivative gives the
change in rate of responding (i.e., the response
acceleration) as a function of time. Of course,
this relationship between the original loga-
rithmic function and its derivatives is identical
to the relationship in mechanics between the
position versus time function and its deriv-
atives (McDowell, 1979). Notice that the
mathematical description is closely tied to the
graphical method, just as was the case in
astronomy and in postmedieval mechanics.

Later in The Behavior of Organisms, Skinner
used the somewhat more complicated loga-
rithmic equation, N = klogat + bt + ¢, to
describe extinction following responding that
had been both reinforced and punished. The
more complicated equation reduces to the
simpler form when a = 1, 5 = 0, and ¢ =
0. Skinner comments:

The curve is ... the same type of equation
used to describe simple extinction.... Al-
though the fit is not perfect, we are perhaps
justified in concluding that in spite of the ...
[punishment] the reserve presents itself for
emission in essentially the same fashion. (p.
158)

In this passage Skinner suggests that it may
be reasonable to conclude that simple ex-
tinction and extinction following punishment
are the result of the same process, because
both can be described by the same function.
If so, it would then follow that punishment,
even though it may temporarily suppress re-
sponding, does not affect the reflex reserve.
Although this argument can be questioned,
and Skinner’s tentativeness in advancing it
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was justified, it nevertheless represents a note-
worthy application of mathematical descrip-
tion in Skinner’s system. As was the case
for simple extinction, the mathematics in this
instance is used to describe the cumulative
record. This is in fact true of every instance
of mathematical description in The Behavior
of Organisms.

Skinner used mathematical description in
a similar way in treating discrimination (pp.
186ff). He shows cumulative records during
the development of a discrimination. All re-
sponses were recorded, including those emitted
when the discriminative stimulus was absent.
These records (e.g., Figure 54) are concave
downward because responding comes to occur
less frequently when the discriminative stim-
ulus is absent. Skinner again used the more
complicated logarithmic equation (with, how-
ever, a = 1) to describe these curves. Because
he thought that discriminative responding was
the result of extinction when the discriminative
stimulus was absent, he subtracted from the
cumulative records those responses emitted
in the presence of the discriminative stimulus.
The somewhat simpler logarithmic form, N
= klogt + ¢, described the resulting data,
averaged across rats. Now “if the present
interpretation of a discrimination is correct,
[these] curves should resemble those obtained
during extinction. . .” (p. 189). Skinner showed
that this was the case. Here again, he took
the similarity in function forms as evidence
that the processes responsible for the behavior
were similar.

Skinner also used mathematical description
in discussing drive (chapter 9) and the in-
teraction of drive and conditioning (chapter
10). He showed (p. 344) that a power function
with an exponent of 0.7 described the time
course of satiation in his rats. That is, when
food was continuously available, the cu-
mulative number of pellets of food eaten was
a power function of time. The same function,
with the same exponent, was found to describe
the cumulative record when a lever press was
required for each pellet of food (p. 354).
Skinner also discussed Bousfield’s (1934) con-
tradictory finding that the exponential, y =
a(l — e~%), provided a better description of
the time course of satiation, although he did
not attempt to reconcile his findings with
Bousfield’s. Coleman (1987) has provided a
more detailed discussion of Skinner’s use of
a power function to describe satiation.
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The mathematics in The Behavior of Or-
ganisms can be criticized (e.g., Verplanck,
1954). For example, the logarithmic and power
functions are not asymptotic, which means
that they cannot adequately describe phe-
nomena, like extinction, in which the rate
of responding approaches zero with time.
Moreover, these function forms have no ra-
tional basis. Other concave-downward forms
(e.g., Bousfield’s exponential) might provide
as good a description of the data. In the absence
of a rational foundation for the mathematics,
it is difficult to select a particular function
form from a variety of similar forms. Skinner
recognized this limitation:

The equation [for the discrimination curve]
is wholly empirical, and no significance is to
be attached to its constants. It might be possible
to derive a rational equation for this and the
extinction curve from the notion of a reflex
reserve but I see no reason to press too eagerly
toward this natural conclusion, since all the
factors entering into the curve have not by
any means been identified. (p. 189)

The suggestion that a rational equation might
be derivable from the notion of a reflex reserve
has been taken up by Killeen (1988).

Difficulties with mathematical description
are not unique to behavior analysis. For ex-
ample, the form of the ballistic curve was
a troublesome problem in mechanics, and
many arbitrary function forms were proposed
before the rational basis of mass attraction
was discovered. Nevertheless, as Skinner noted,
a rational mathematics is a natural conclusion
to his system of behavior. The initial steps
toward this goal were taken in The Behavior
of Organisms.

CONCLUSION

The development of the three branches of
Aristotle’s physics was similar in at least three
important ways. All three disciplines entailed
the rejection of internalist theories of motion,
the development of a productive graphical
method to represent the motion, and the ap-
plication of mathematics to describe the mo-
tion.

The only claim being made in this review
is that the three events mentioned above oc-
curred in the histories of astronomy, me-
chanics, and psychology. In particular, it is
not claimed that identical lines of development
can be traced in the actual histories of as-
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tronomy, mechanics, and psychology. For ex-
ample, in the cases of astronomy and me-
chanics it is clear that the rejection of internalist
theories was a rebellion against Aristotle. In
the case of psychology this is not clear. The
success of anti-Aristotelian mechanics, rather
than opposition to Aristotelian doctrine per
se, may have given rise to Watson’s rejection
of internalist theories of behavior. Historians
of science may be able to clarify this sort
of detail.

Astronomy and mechanics have developed
into highly successful disciplines. It would
be illogical to conclude that behavior analysis,
because it bears some similarity to these dis-
ciplines, must be on the right track. The
ultimate value of behavior analysis will not
be known for many years. Nevertheless, the
similarities are interesting and, it must be
admitted, provocative. According to Ernst
Mach (1883/1960):

They that know the entire course of the de-
velopment of science, will, as a matter of course,
judge more freely and more correctly of the
significance of any present scientific movement
than they, who, limited in their views to the
age in which their own lives have been spent,
contemplate merely the momentary trend that
the course of intellectual events takes at the
present moment. (pp. 8-9)
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