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The publication, in two volumes, of Parallel
Distributed Processing (McClelland, Rumel-
hart, & the PDP Group, 1986; Rumelhart,
McClelland, & the PDP Group, 1986) has
been heralded as a major potential contri-
bution to the understanding of complex human
behavior. For example, the review published
in Contemporary Psychology begins: “These
two volumes may turn out to be among the
most important books yet written for cognitive
psychology. They are already among the most
controversial. . . . This new paradigm chal-
lenges the fundamental assumption underlying
the currently dominant symbolic paradigm;
namely, that mental processes can be modeled
as programs running on a digital computer”
(S. E. Palmer, 1987, p. 925). Even those who
have expressed principled reservations con-
cerning certain aspects of the PDP approach
“believe this realm of work to be immensely
important and rich” (Minsky & Papert, 1988,
p. vii). (See Bechtel, 1985, and Miller, 1986
for other reactions to the PDP approach.?)
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Parallel distributed processing is a term
used to encompass a number of related models
of cognition featuring networks of units (loosely
analogous to collections of neurons) whose
interconnections are modified through a feed-
back mechanism (loosely analogous to re-
inforcement). These models are fundamentally
different from typical models of cognitive
psychology in that they are selectionist rather
than essentialist in flavor (cf. Donahoe, 1984).
That is, the functionality of connections among
the units is the result of selection by the
environment rather than design by the theorist.

Behavior analysts—as students of behavior,
including complex human behavior—should
closely examine the approach presented in
Parallel Distributed Processing (hereafter PDP)
for several reasons: (a) the PDP approach
is explicitly critical of many of the same
constructs of mainstream cognitive psychology
that are regarded as unhelpful in behavior
analysis. (b) The general approach repre-
sented by PDP falls within the same broad
conceptual framework—historical science—
that encompasses behavior analysis. (c) Some
of the specific accounts of complex behavior
proposed in PDP functionally parallel the
corresponding accounts advanced by behavior
analysis.

To list but a few criticisms of cognitive
constructs, PDP questions whether the cu-
mulative effect of experience is usefully de-
scribed as the storage of memories (e.g.,
McClelland, Rumelhart, & Hinton, 1986,
p- 31), whether regularities in verbal behavior
may be taken as unambiguous evidence of
control by syntactic rules (e.g., McClelland,
Rumelhart, & Hinton, 1986, p. 32), and
whether discontinuities in the development
of complex behavior require the postulation
of critical periods (Munro, 1986, pp. 471-
472). (References to material in PDP conform
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to the convention of citing the author or au-
thors of the chapter followed by the relevant
page numbers.) Thus the PDP approach
makes common cause with behavior analysis
in questioning the utility of the storage met-
aphor, syntactic rules, and critical periods in
understanding complex behavior (cf. Skinner,
1974). But common objections to such notions
are perhaps the least important reasons for
behavior analysts to explore the PDP ap-
proach.

HISTORICAL SCIENCE AND THE
ORIGINS OF COMPLEXITY

More compelling than the sharing of com-
mon criticisms is the fact that the PDP ap-
proach and behavior analysis are both in-
stances of historical science and, as such,
assume a common stance in their efforts to
understand complexity. For present purposes,
two salient features of historical science are
recognized. First, historical science views com-
plex phenomena as the by-products of the action
of lower level processes and not as the directed
outcome of processes operating at the level
at which the complex phenomena are ob-
served. (As the term level is used here, it
denotes not only more grossly differing levels
such as the physiological and behavioral, but
also finer gradations such as the microbe-
havioral and macrobehavioral. See Campbell,
1974a, for a discussion of reductionism in
historical science.)

As an illustration from the best known of
the historical sciences—evolutionary biol-
ogy—the complex characteristics that are ob-
served in existing species are interpreted as
the result of the cumulative action of genetic
processes, summarized by principles such as
natural selection, and not as the expression
of higher order processes such as special cre-
ation. Cosmogony is another historical science,
one which seeks to understand the origin of
the universe as the cumulative product of
physical processes summarized by principles
such as those of Newtonian mechanics. Within
behavior analysis, the lower level processes
of which complex behavior is the product
are those associated with selection by re-
inforcement (e.g., Donahoe & Wessells, 1980;
Skinner, 1953, 1974). (For extended dis-
cussions of historical science in evolutionary
epistemology see Campbell, 1974b; in biology
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see Mayr, 1982, and Sober, 1984; in behavior
analysis see Skinner, 1966a, 1981, and Don-
ahoe, Palmer, & Carlson, in press.)

A second characteristic of historical science
is that the basic processes, whose cumulative
effects yield complex phenomena, act in a
particular order upon a given set of initial
conditions—but both the initial conditions and
the order of action of the processes are imperfectly
known. Returning to the example of evo-
lutionary biology, the processes responsible
for selection acted on the chemical compounds
of the lifeless environment of the early earth
and, subsequently, on the products of prior
selections. However, a precise specification
of the environment of the early earth and
of the order in which selection processes acted
on that environment is not perfectly known.
Such uncertainities are central to the nature
of historical science because their existence
imposes inescapable limitations on the account
of complexity that is possible: Even if the
principles describing the basic selection pro-
cesses were known with certainty, uncertainty
in their implications would remain because
of incomplete knowledge of the initial con-
ditions and of the order in which the various
processes operated.

In a mature historical science, the principles
that summarize the action of basic processes
are sufficient to account for complexity, but
they cannot be shown to be necessary for
its occurrence. For example, the historical
science of evolutionary biology may be com-
petent to describe how a given species might
have evolved but be unable to demonstrate
that only that particular species could have
arisen. With slightly different initial con-
ditions acted upon in a slightly different order,
the same selecting processes could have pro-
duced a different species (cf. Dawkins, 1986).
The test of the adequacy of an historical science
is its ability to provide a plausible account
whereby a wide variety of complex phenomena
could have been produced by the action of
a small set of basic processes. In summary,
because of limitations in knowledge of the
complete history of selection, the power of
historical science must often be evaluated by
the sufficiency of its account of complexity
and not by the necessity of that account.
(Although this limitation of historical science
has not been generally acknowledged within
cognitive psychology, it has been clearly ar-
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ticulated by some workers, most notably An-
derson, 1978, 1983.)

The Analysis and Interpretation of Behavior

Behavior analysis has explicitly recognized
the inescapable difficulties in understanding
complex behavior because of its status as one
of the historical sciences. This recognition is
most apparent in Skinner’s (1957, 1974) dis-
tinction between the experimental analysis and
the interpretation of behavior. In the exper-
imental analysis of behavior, (primarily) lab-
oratory methods are used to manipulate en-
vironmental variables with the goal of
identifying the functional relations between
those variables and behavior (e.g., Skinner,
1935, 1938, 1966b). The functional rela-
tions—especially those expressing the effects
of the contingencies of reinforcement—pro-
vide, in turn, the basis for establishing “sim-
plifying uniformities” (Skinner, 1966b, p.
216). The endpoint of experimental analysis
is the statement of these “uniformities” in
the form of principles that summarize the
action of the basic processes identified by the
science.

Interpretation begins where experimental
analysis leaves off. That is, interpretation
begins with principles derived from exper-
imental analysis and, then, explores the im-
plications of those principles for the under-
standing of complex behavioral phenomena.
As with other historical sciences, if the pro-
cesses described by these principles are suf-
ficient to produce the observed complex be-
havior (i.e., the occurrence of the behavior
is consistent with the principles) then the
behavior is said to be understood (interpreted)
in terms of the principles. (Of course, there
are also important reciprocal relations between
interpretation and behavior analysis: “The
interpretation of human affairs is a rich source
of suggestions for experiments’” Skinner,
1966b, p. 216.)

The distinction between the experimental
analysis and the interpretation of behavior
is a fundamental one in behavior analysis,
and the failure to appreciate that distinction
has led to misunderstandings vis-a-vis other
approaches to complex behavior. Perhaps the
most unfortunate instance of this misunder-
standing occurred with Skinner’s Verbal Be-
havior (1957). At the outset of that work,
Skinner states: ‘“The present extension to
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verbal behavior is thus an exercise in in-
terpretation rather than a quantitative ex-
trapolation of rigorous experimental results”
(p. 11). This effort to interpret verbal behavior
was widely viewed by cognitivists as an in-
appropriate application of inadequate lab-
oratory principles to complex behavior (e.g.,
Chomsky, 1959). Attempts to understand other
complex behavior have been similarly received,
although they too follow the path of inter-
pretation—the means whereby historical sci-
ence accounts for complex phenomena. For
example, in About Behaviorism, Skinner (1974)
notes: “Much of the argument goes beyond
the established facts. I am concerned with
interpretation rather than prediction and con-
trol” (p. 21). ““. . . Our knowledge. . . is limited
by accessibility, not by the nature of the facts.
... As in other sciences, we often lack the
information necessary for prediction and con-
trol and must be satisified with interpretation,
but our interpretations will have the support
of the prediction and control which have been
possible under other conditions” (p. 194). “We
cannot predict or control human behavior in
daily life with the precision obtained in the
laboratory, but we can nevertheless use results
from the laboratory to interpret behavior else-
where” (p. 251).

Whatever one thinks of experimental-an-
alytic principles, the effort to interpret com-
plex behavior in terms of laboratory-based
principles is entirely in keeping with the
practice of other historical sciences, and not
a peculiarity of behavior analysis. It is the
practice in evolutionary biology where the
evolution of a peacock’s tail feathers is traced
to the action of natural selection on primordial
hair cells. It is the practice of cosmogony where
the development of the solar system is traced
to the action of processes described by New-
tonian mechanics on a swirling cloud of in-
terstellar dust particles. The uncertainty in
these accounts of complexity is an inherent
and inescapable characteristic of historical
science; it cannot be circumvented by any
alternative formulation because the uncer-
tainty arises from irremediable lapses in our
knowledge of the initial conditions and the
selection history (Donahoe et al., in press).

PDP as Historical Science

A reading of PDP makes is abundantly
clear that behavioral complexity is viewed
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as the cumulative product of lower level pro-
cesses. In this respect, PDP falls squarely
within the conceptual framework of historical
science. The point is made in many places,
often in the context of discussions of such
molar constructs as rules or schemata. Both
of these constructs are central notions within
mainstream cognitive psychology. “The idea
of parallel distributed processing [is] that
intelligence emerges from the interactions of
large numbers of simple processing units . . .”
(Rumelhart, McClelland, & the PDP Group,
1986, p. ix). And later, in the same vein,
“the apparent application of rules could readily
emerge from interactions among simple pro-
cessing units rather than from application
of any higher level rules” (Rumelhart &
McClelland, 1986, p. 120). “Many of the
constructs of macrolevel descriptions such as
schemata, prototypes, rules, productions, etc.
can be viewed as emerging out of interactions
of the microstructure of distributed models”
(Rumelhart & McClelland, 1986, p. 125).
“Schemata are not ‘things.” There is no rep-
resentational object which is a schema. Rather,
schemata emerge at the moment they are
needed from the interaction of large numbers
of much simpler elements all working in
concert with one another.... In the con-
ventional story, schemata are stored in mem-
ory. ... In our case, nothing stored corresponds
very closely to a schema. What is stored is
a set of connection strengths which, when
activated, . . . generate states that correspond
to instantiated schemata” (Rumelhart, Smo-
lensky, McClelland, & Hinton, 1986, pp. 20-
21). “The fact that our microstructural models
can account for many of the facts about the
representation of general and specific infor-
mation . . . makes us ask why we should view
constructs like logogens, prototypes, and sche-
mata as anything other than convenient ap-
proximate descriptions ...” (Rumelhart &
McClelland, 1986, p. 127). The effort within
PDP to account for complexity in terms of
simpler processes has not escaped other cog-
nitivists. A reviewer remarked, “The im-
portance of PDP models stems mainly from
their unexpected emergent properties. . . . The
schemata themselves are not explicit data
structures at all, but rather implicit structures
distributed over the mass of interconnections
among the units. They exist explicitly only
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theoretically ...” (S. E. Palmer, 1987, pp.
926-927; cf. Skinner, 1977).

Although both PDP and behavior analysis
conform equally to the view of historical sci-
ence that complexity emerges from the action
of lower level processes, the approaches depart
fundamentally in the means whereby those
processes are identified. In behavior analysis,
as in other historical sciences, the processes
that lead to complexity are the direct result
of independent experimental analyses. That
is, the validity of these processes is not de-
pendent on the extent to which they are suf-
ficient to interpret complex behavior, although
their competence to do so contributes to their
validity. In the PDP approach, unlike his-
torical science generally, the basic processes
are typically inferred from the complex be-
havior that they seek to interpret. Further-
more, the description of these processes is
more often constrained by logical and math-
ematical rather than experimental-analytic
considerations (e.g., Rumelhart & Mc-
Clelland, 1986, p. 133; see also Klopf, 1988).

Thus far, we have described the salient
features of historical science and the means
whereby complex phenomena are interpreted
in such sciences. We have seen that behavior-
analytic and PDP approaches are both in-
stances of historical science and, therefore,
have a number of characteristics in common,
such as their denial of the utility of many
molar constructs from normative cognitive
psychology. However, we have claimed that
PDP fails to conform to the practice in other
historical sciences that interpretation is based
solely upon principles established by inde-
pendent experimental analyses. In the re-
mainder of this paper, we present the PDP
approach in sufficient detail to permit this
claim to be examined, and then make several
suggestions toward an integration of the PDP
approach with behavior analysis.

ADAPTIVE NETWORKS AND
INTERPRETATION

Three complementary strategies of inter-
pretation have been implemented in behavior
analysis—verbal interpretation, organismic
interpretation, and formal interpretation
(Donahoe et al., in press). In the verbal in-
terpretation of complex behavior, the impli-
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cations of experimental-analytic principles are
pursued using the conventions of ordinary
language. What distinguishes verbal inter-
pretation from mere speculation is that, like
all interpretation in historical science, it ap-
peals only to processes that have been iden-
tified in prior experimental analyses. Verbal
interpretation is by far the most commonly
employed interpretative strategy in behavior
analysis, with Science and Human Behavior
(Skinner, 1953), Verbal Behavior (Skinner,
1957), and About Behaviorism (Skinner, 1974)
providing notable examples.

Although verbal interpretation is a useful
method for understanding complex phenom-
ena, it has distinct disadvantages. Very often,
especially with more complex phenomena,
a number of processes are involved—acting
simultaneously and in many different se-
quences—and a purely verbal account cannot
effectively keep track of them all. Although
verbal interpretation will always play an im-
portant role in behavior analysis and other
historical sciences, particularly during their
earlier phases of development, more precise
methods are desirable.

In organismic interpretation, complex be-
havior (or some aspect of it) is observed in
one organism and simulated in another or-
ganism by exposing that organism to a se-
quence of conditions thought to produce the
complex behavior in the first organism. As
examples, the sequence of responses described
by Kohler (1925) as demonstrating “insight”
with chimpanzees has been functionally re-
produced with pigeons (e.g., Epstein, Kirshnit,
Lanza, & Rubin, 1984), behavioral inter-
changes between chimpanzees said to reveal
“communication” (Savage-Rumbaugh, 1984,
1986) have been simulated with pigeons
(Epstein, Lanza, & Skinner, 1980), and some
aspects of generalization by children of num-
ber inflections in nouns (Berko, 1958) have
been simulated with pigeons (Catania & Cer-
utti, 1985). In each of these organismic in-
terpretations, the test organism has been the
focus of a particular sequence of selection
processes all of which had been identified
and directly studied in prior experimental
analyses. It should be noted that most human
experimentation—whether conducted within
the behavior-analytic tradition or otherwise—
falls into the category of organismic inter-
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pretation. This is so because, with very few
exceptions, the processes contributing to com-
plex behavior are not all under the control
of the experimenter. Although research with
human subjects may very carefully control
the variables within the experiment, the dif-
fering preexperimental selection histories of
the subjects outside the study cannot be com-
pletely controlled or even described.

In the third interpretative strategy, formal
interpretation, logical and/or mathematical
techniques are used to explore the implications
of experimental-analytic principles for com-
plex behavior. Included here would be efforts
to use computer simulations of basic rein-
forcement processes to interpret choice be-
havior (e.g., Hinson & Staddon, 1983; Shimp,
1969), and it is this strategy of interpretation
that the PDP approach most resembles.

Not all computer simulation is an instance
of formal interpretation. Often, the goal of
computer simulation is to devise a program
whose output simply mimics some aspect of
complex behavior, but in which the instruc-
tions of the program do not implement ex-
perimental-analytic principles. Strictly speak-
ing, simulations of this type fall within the
rubric of artificial intelligence. However, it
must be noted that unless the processes im-
plemented in PDP or other types of computer
simulations have some independent experi-
mental foundation, the distinction between
simulations in artificial intelligence and in
cognitive psychology is chiefly that the former
are constructed by computer scientists and
the latter by cognitive psychologists.

In comparison to verbal interpretation, for-
mal interpretation has the advantage of being
precisely stated in the instructions of the pro-
gram and of being able to keep track of many
simultaneously interacting processes. In com-
parison to organismic interpretation, formal
interpretation has the advantage of imple-
menting a selection history that might require
many months or years in a living organism.
A disadvantage of computer simulation as
a means of formal interpretation is that the
initial conditions from which the computer
program begins are often imperfectly specified.
That is, information comparable to the evo-
lutionary history of the organism is un-
available. It is in this respect—a shared evo-
lutionary history—that organismic simulations
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Fig. 1. A network composed of input units in contact

with the environment, hidden units that are not in direct
contact with the environment, and output units that
constitute the behavior of the network. If a unit is activated,
it will probabilistically activate all those units to which
it is connected. The possible pathways between units
are indicated by lines, with activation propagating along
a pathway in only one direction (here, from left to right).

have an advantage over computer simulations
of complex behavior (Epstein, 1984).

The PDP Approach

PDP describes a subset of a more general
approach to interpretation known as adaptive
network theory. (For surveys of this field,
see Nilsson, 1965, and Minsky & Papert,
1988, pp. 247-287.) Adaptive network theory
is described by the authors of PDP as “neurally
inspired”’ (Rumelhart, Hinton, & Mec-
Clelland, 1986, p. 75). In keeping with this
inspiration, a network consists of a number
of units, analogous to neurons or groups of
neurons, that are interconnected (see Figure
1).

It is useful to distinguish among three types
of units—input units, output units, and so-
called “hidden” units. Input units are in direct
contact with the environment of the network;
output units constitute the behavior of the
network; hidden units lie between the input
and output units. Hidden units are analogous
to interneurons. The environment activates
one or more of the input units to provide
an input pattern to the network. The activated
input units then probabilistically activate the
hidden units to which they are connected and
these, in turn, activate some .of the output
units. The activated output units define the
output pattern obtained from the network.
The extent to which a unit activates sub-
sequent units in the network depends upon
the strength of the connection, or connection
weight, between the units. Connection weights
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are analogous to the synaptic efficacies with
which one neuron activates the neurons with
which it is in proximity. That is, the larger
the connection weight, the greater the prob-
abilty that activity in a “presynaptic” unit
will activate a “postsynaptic” unit.

In typical simulations using adapative net-
works, the initial connection weights are as-
signed small, randomly determined values.
Thus, the network is most often a tabula rasa,
although this is not a requirement for such
simulations. The competence of the network
to simulate some complex environment-be-
havior relation is demonstrated if the con-
nection weights can be modified such that
an input pattern from the environment reliably
activates an appropriate output pattern and
does not activate inappropriate output pat-
terns. In behavior-analytic terms, complex
behavior is simulated when the network has
formed a discrimination.

With adaptive networks, the connection
weights are modified as a result of the “ex-
perience” of the network. That is, if an input
pattern activates an appropriate output pat-
tern, the weights tend not to change. However,
if the obtained output pattern does not cor-
respond to the appropriate output pattern,
then the weights are changed in proportion
to the difference between the obtained pattern
and the appropriate pattern. A large difference
produces a large change in the connection
weights; a small difference produces a small
change in the weights. It is clear, then, that
adaptive networks simulate complex behavior
through a selection process (i.e., “learning”)
and that the selection process is a function
of the consequences scheduled for the output
of the network. In behavior-analytic terms,
complex environment-behavior relations in
adaptive networks are the product of selection
by reinforcement.

The PDP approach primarily exploits one
method, the generalized delta rule (Rumel-
hart, Hinton, & Williams, 1986, pp. 318-362;
Stone, 1986, pp. 444-459), to implement the
selection process for changing connection
weights. As mentioned previously, changes
in the connection weights occur when there
is a discrepancy between the output pattern
produced by an input pattern and the output
pattern that is appropriate for that input
pattern. Adjustment of the connection weights
is relatively straightforward when there are
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direct connections between the input and out-
put units (i.e., no hidden units). (An adaptive
network with only input and output units
is called a perceptron; Rosenblatt, 1962.) The
connection weights are unchanged along paths
that are active when appropriate output pat-
terns occur; the weights are decreased along
paths that are active when inappropriate pat-
terns occur. Eventually, as shown by the
perceptron convergence theorem, there are
some classes of environment-behavior relations
for which appropriate weights will be found
(Minsky & Papert, 1969). However, when
there are hidden units—which are required
to represent some classes of environment-be-
havior relations—then the method for ad-
justing the connection weights throughout the
network is less clear. Minsky and Papert
(1988) have put the matter succinctly. ...
Until recently, [adaptive network theory] has
been paralyzed by the following dilemma: Per-
ceptrons could learn anything that they could
represent, but they were too limited in what
they could represent. Multilayered networks
were less limited in what they could represent,
but they had no reliable learning procedure”
(p. 256).

The generalized delta rule extends the basic
thrust of the perceptron convergence theo-
rem—the reduction of the discrepancy be-
tween the obtained and approprite output—
to multilayer networks (i.e., to networks con-
taining hidden units). The goal is to select
connection weights throughout the network
that minimize the discrepancy between the
obtained and the desired output patterns. The
generalized delta rule accomplishes this goal
by activating the network with an input pat-
tern and then, working backward from the
obtained output pattern, adjusting the con-
nection weights of increasingly earlier layers
of the network. The adjustments are pro-
portional to the discrepancy between the ob-
tained and the appropriate output pattern.
Because the discrepancy is “passed back” to
the connection weights of earlier units in the
network, the generalized delta rule is said
to “back-propagate” the discrepancy. Back-
propagation exploits the known mathematical
relation between the derivative of a function,
here changes in discrepancy with changes in
the connection weights, and derivatives of
components of that function, here changes
in the discrepancy with changes in the output
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of the network and changes in the output
of the network with changes in the weights.
This is the so-called chain rule of composite
functions (see Rumelhart, Hinton, & Wil-
liams, 1986, pp. 322-328). Although the gen-
eralized delta rule for multilayered networks,
unlike the convergence theorem for percep-
trons, does not guarantee that a solution will
be found for all solvable input-output (en-
vironment-behavior) relations, it is reported
that “our analyses and results have shown
that, as a practical matter, the [back-]prop-
agation scheme leads to solutions in virtually
every case” (Rumelhart, Hinton, & Williams,
1986, p. 361).

The PDP volumes contain applications of
adaptive networks to a variety of content areas.
To give some sense of the approach, consider
the following example of the use of an adaptive
network to simulate the formation of a dis-
criminative stimulus class (Goldiamond, 1962),
what, in the vernacular, is referred to as a
concept (McClelland & Rumelhart, 1986, pp.
170-215). Suppose that a child sees a number
of dogs that differ somewhat from one another,
but that share certain features. Many dogs
are brown, but there are occasional black dogs
or white dogs; most dogs have a tail, but
some do not; and so on. In the adaptive network
used to simulate these conditions, there were
16 features with each of the features rep-
resented by an input unit. An input unit was
activated if the feature was present and was
not activated if the feature was absent. Suppose
further that the child’s parents say “dog” and
reinforce the child’s verbal response, “dog,”
in the presence of canine input patterns of
the features of particular dogs, while other
responses are reinforced in the presence of
noncanine input patterns. In the simulation,
there were eight output units, with a particular
pattern of activation of the units corresponding
to the verbal response, “dog.” Other output
patterns corresponding to other verbal re-
sponses (e.g., “cat”) might be reinforced in
the presence of different input patterns.

The goal of the simulation was to determine
whether the connection weights in the network
could be changed so that only canine input
patterns evoked the output pattern corre-
sponding to the verbal response, “dog.” The
effect of reinforcement was simulated by ad-
Jjusting each connection weight in proportion
to the discrepancy between the output pattern
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on that trial and the “dog” output pattern.
The network was repeatedly exposed to 50
different canine input patterns and 100 input
patterns corresponding to other stimuli. After
each exposure, the connection weights were
adjusted so that when one of the canine input
patterns occurred, the discrepancy between
the obtained output pattern and the “dog”
pattern was reduced. The cumulative effect
of these adjustments was that the network
“recognized” canine input patterns; that is,
canine patterns applied to the input units
of the network caused the “dog” pattern to
appear on the output units.

Three characteristics of the discriminative
stimulus class simulated by the adaptive net-
work are worthy of special comment. First,
the stimulus class had “fuzzy boundaries”
(Rosch & Mervis, 1975). That is, no single
canine feature needed to be present in an
input pattern in order for the “dog” output
pattern to be activated. For example, suppose
that one of the input features corresponded
to has four legs. Although the connection weights
linking the unit activated by this feature with
the output pattern corresponding to ‘“dog”
might be relatively strong, input patterns not
containing this feature would also be able
to evoke the “dog” response. Thus a dog
unfortunate enough to have lost a leg through
an accident, but possessing other canine fea-
tures, would still be called a dog.

Second, the values of the connection weights
by which input units were linked to output
units depended on the particular examples
of canine and noncanine inputs that were
used to train the network and on the order
in which the inputs were applied. Thus, the
strengths of the weights in the network were
path-dependent—that is, determined by the
details of the selection history of the network.
Networks, like living organisms, reflect their
unique selection histories. To illustrate, the
pathways activated by a feature such as has
four legs would have large connection weights
in a network that had been trained to dis-
tinguish dogs from fire hydrants, but would
have smaller and more complexly arrayed
weights in a network that had been trained
to distinguish dogs from cats. Fire hydrants
do not have legs, but cats do; hence, the feature,
has four legs, would be helpful in distinguishing
dogs from hydrants but not from cats. (Note
that path dependence is inherent in all his-
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torical-science approaches to complexity, and
is not unique to the PDP and behavior-an-
alytic approaches. For example, production
systems—whatever their other characteris-
tics—also have this property, as persuasively
demonstrated in accounts of the acquisition
of verbal behavior, e.g., Anderson, 1983.)

Third, by the end of training, the network
was capable of responding more strongly with
the “dog” output pattern to some new input
patterns than to any of the input patterns
to which it had been exposed. The new input
patterns to which the network responded more
vigorously might be described as the more
“typical” canine input patterns. Thus, the
network responded as if it had formed a pro-
totype of the canine inputs, where a prototype
may be thought of as the most common com-
bination of input features (Posner & Keele,
1968). Note that the prototype is not a “thing”
that is stored at some place within the network;
it is not an “ideal representation of reality”
that is waiting to be retrieved by the stimulus.
Networks, and the living organisms whose
functioning they are intended to simulate, act
as if there were prototypes, but what exist
are sets of connection weights and synaptic
efficacies, respectively. Responding as if there
were a prototype is simply how a trained
network or an experienced organism functions
after training.

The PDP Approach as Interpretation in
Historical Science

To qualify as an interpretation in historical
science, an account must draw upon only
principles derived from findings established
through prior experimental analyses. Inter-
pretations are consumers, not producers, of
principles. How well does the PDP approach
conform to this criterion?

To begin, the PDP approach—asa “neural-
ly inspired” effort at interpretation—must
draw upon experimental analyses of the neu-
rosciences as well as of behavior. Experimental
analyses of neuroscience and of behavior are
complementary undertakings, both of which
contribute to understanding the functioning
of the organism. As Skinner (1938) has noted:
“What is generally not understood by those
interested in establishing neurological bases
is that a rigorous description at the level of
behavior is necessary for the demonstration
of a neurological correlate” (p. 422). “...
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I am not overlooking the advance that is made
in the unification of knowledge when terms
at one level of analysis are defined (‘ex-
plained’) at a lower level” (p. 428). Although
our focus is upon the PDP approach as a
means for exploring the implications of find-
ings from the experimental analysis of be-
havior, a few comments on the relation of
PDP to the neurosciences are in order.

PDP and the neurosciences. Reaching an
accommodation between the PDP approach
and the neurosciences has been the subject
of considerable discussion and controversy
both within the PDP volumes (Crick & Asa-
numa, 1986, pp. 333-371; McClelland &
Rumelhart, 1986, pp. 327-331; Norman, 1986,
pPp- 531-546) and elsewhere (e.g., Smolensky,
1988). A major focus of contention has been
the lack of correspondence between the struc-
ture of PDP networks and the structure of
the nervous system (cf. Segal, 1988). In gen-
eral, the interconnections postulated within
networks have not been closely guided by
neuroanatomical findings (Crick & Asanuma,
1986, pp. 370-371; Minsky & Papert, 1988,
P 266). Only one inconsistency is examined
here, but it is one that pertains to the central
issue in adaptive networks—the means by
which reinforcers adjust the connection weights
within networks.

In order for the nervous system to im-
plement back-propagation as a means of ad-
justing the connection weights, large numbers
of specific back-connections from the output
units to units in all of the earlier layers of
the network are required. In fact, there is
no neuroanatomical evidence that such rich
back-connections exist. On the contrary, the
neural systems mediating selection by re-
inforcement appear to be nonspecific systems
that project diffusely within the brain areas
they serve (for reviews, see Carlson, 1986,
and Olds & Fobes, 1981). How can these
diffuse, reinforcer-activated systems alter the
specific connections between the input and
output units that mediate a particular en-
vironment-behavior relation?

An adaptive network in which a diffuse
reinforcement system is capable of adjusting
the connection weights is shown in Figure
2. We call a network of this architecture a
selection network. Suppose that the environ-
ment places a given pattern on the input units
of the selection network. The activated input
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units are indicated by filled circles in Figure
2. Dependent on the values of the connection
weights prior to the input, an activated input
unit will then probabilistically activate some
of the hidden units with which it is connected
and they, in turn, will activate some of the
output units. Paths that might be activated
by the input pattern shown in Figure 2 are
indicated by the heavier lines. Some activated
paths are “dead ends” in the sense that they
are not constituents, in this instance at least,
of paths that activate output units upon which
the reinforcer is dependent. However, other
paths do lead to the critical output unit(s),
and their activation causes the reinforcer to
occur. In Figure 2, the critical output unit
is shown as a filled circle. When this output
unit is activated, causing the reinforcer to
be presented, a diffuse signal is sent through-
out the network. The effect of this diffuse
signal is to strengthen all of those connections
that happen to be active at that moment. Some
of the active connections will be part of “dead-
end” paths, and the strengthening of these
paths may not benefit the appropriate func-
tioning of the network. However, the set of
active paths must necessarily also include some
paths that activate the crucial output unit(s)
because, without their involvement, the rein-
forcer would not have occurred. Over time,
it is the connection weights of these latter
pathways that will be strengthened most re-
liably.

Adaptive networks and behavior analysis.
There are a number of striking consistencies
between the behavior-analytic account of the
acquisition of environment-behavior relations
and the interpretation of those relations by
means of selection networks. First, an operant
is conventionally defined as a class of re-
sponses, all of which have a partially common
effect on the environment (cf. Reynolds, 1968,
p. 17; Skinner, 1935). In an adaptive network
with a diffusely projecting reinforcement sys-
tem, selection produces a number of different
output patterns but all of them include ac-
tivation of the crucial output unit(s) upon
which the reinforcer is dependent. The class
of output patterns activated by the input pat-
tern is analogous to the class of responses
that constitute the operant.

Second, with operant as contrasted to re-
spondent conditioning, the critical response
class is said to be emitted rather than elicited.
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Fig. 2. A selection network consisting of input, hidden,
and output units. The solid circles represent units that
are activated as the result of the environmental input
at that moment. Because of an environmentally mediated
contingency between a particular output of the network
and a reinforcer, the occurrence of the designated output
pattern causes the reinforcing stimulus to be presented.
The reinforcing stimulus activates an input unit having
diffuse projections throughout the network. The diffuse
projections increase the strength of a connection to the
extent that the connection is from an active unit and
the connection terminates on an active unit.

That is, the environment acting on the or-
ganism permits the response to occur. At other
times or under other organismic conditions,
the same environment might occasion other
responses. Similarly, an input pattern to a
network does not so much elicit the required
output as the network permits that output
to occur. Depending upon the initial state
of the network and its selection history, the
connection weights at that moment determine
the range and probability of the specific en-
vironment-behavior relations that it can me-
diate.

Third, by whatever means the designated
output (operant) occurs, it is those means
that are strengthened. Thus, conditioning with
both selection networks and living organisms
is essentially superstitious in nature (Skinner,
1948). At heart, operant conditioning is a
procedural arrangement whereby the pre-
sentation of the reinforcer is dependent on
the occurrence of a specified response, whereas
respondent conditioning is an arrangement
whereby the reinforcer is dependent on a
specified stimulus that already evokes a par-
ticular response (cf. Donahoe, Crowley, Mil-
lard, & Stickney, 1982). Both of these pro-
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cedures may be simulated with a selection
network having a diffuse projection system
activated by the reinforcer, and initial work
indicates that such networks are competent
to learn a variety of environment-behavior
relations (e.g., Barto & Arandan, 1985).

Fourth, there are important similarities
between the behavior of organisms and the
output of adaptive networks after selection
has occurred. After an organism’s behavior
has been subject to differential conditioning
in which a response has been reinforced in
the presence of one environment and a dif-
ferent response during a second environment,
intermediate test stimuli (following intradi-
mensional training) or compound test stimuli
(following interdimensional training) occasion
a mixture of the two discriminated operants
(e.g., Bickel & Etzel, 1985; Donahoe & Wes-
sells, 1980, pp. 176-196). That is, the test
stimuli evoke only the responses that have
been reinforced in the presence of the training
stimuli, and not new responses. After an
adaptive network has been differentially con-
ditioned, an analogous phenomenon may oc-
cur. When a new input pattern is applied
to the network, the output pattern tends to-
ward one of the two trained output patterns.
This property of adaptive networks is the
result of what are called attractor dynamics
(Jordan, 1986; Sejnowski, 1986, p. 389; Smo-
lensky, 1986, pp. 424-429).

ADAPTIVE NETWORKS AND THE
EXPERIMENTAL ANALYSIS
OF BEHAVIOR

The accounts of differential conditioning
provided by adaptive networks and experi-
mental-analytic findings are strikingly and
persuasively congenial. Because, from the
behavior-analytic perspective, complex be-
havior is the cumulative product of extensive
differential conditioning, adaptive networks
provide a potentially powerful means for for-
mal interpretation.

Some of the possible contributions of be-
havior-analytic findings to adaptive-network
interpretations may be illustrated by returning
to the central issue of reinforcement. Re-
gardless of whether the connection weights
in the network are adjusted by back-prop-
agation or by a nonspecific projection system
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as we have proposed, the event that triggers
the adjustment procedure must be well spec-
ified. According to the back-propagation pro-
cedure, the weights are adjusted as a function
of the discrepancy between the obtained output
pattern and the appropriate output pattern.
Thus, in order for back-propagation to occur,
the environment must provide detailed in-
formation about the appropriate output pat-
tern. This precondition is often denoted by
saying that back-propagation requires a
“teacher.” Quite reasonably, biologically ori-
ented critics of the PDP approach have com-
mented that this assumption is inconsistent
with the conditions under which most complex
behavior is acquired (e.g., Minsky & Papert,
1988, p. 264; Segal, 1988, p. 1107). More
often, complex behavior—such as verbal be-
havior—is discovered, not instructed. How-
ever, because the environment usually does
not provide an all-knowing ‘“teacher,” some
of these same critics have mistakenly concluded
that selection by consequences cannot play
a major role in modulating synaptic efficacy
in the nervous system. (Much of the difficulty
arises from a failure on the part of both
adaptive-network theorists and their critics
to distinguish between contingency-shaped
and rule-governed behavior, but that im-
portant matter will not be pursued here; see
Skinner, 1974).

The belief that naturally occurring con-
tingencies are insufficient to bring about com-
plexity has been a long-standing, but mis-
conceived, impediment to selectionist accounts
of complexity in the historical sciences. This
mistaken belief was reflected in the criticisms
of Darwin’s contemporaries who argued that,
although artificial selection by animal hus-
bandrymen could produce progressive changes,
natural contingencies could not do so without
the intervention of a Designer. The same
mistaken belief is reflected in the present-day
criticism of linguists that the verbal envi-
ronment is too impoverished for “language”
to be acquired without the intervention of
a Language Acquisition Device (Chomsky,
1980; see also Pinker & Mehler, 1988).

Within behavior analysis, the problem of
accounting for the emergence of complex en-
vironment-behavior relations from the op-
erant level of simpler behavior and in the
absence of an all-knowing teacher falls within
the extensive literature on shaping, chaining,
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and fading. In shaping, the response topog-
raphy necessary for the occurrence of a rein-
forcer progressively approximates the topog-
raphy ultimately required for the reinforcer.
With adaptive networks, this arrangement
may be simulated by progressively changing
the criterion output pattern. In chaining, re-
sponding alters the stimuli available to the
organism with the result that these new stimuli
serve as conditioned reinforcers with respect
to the responses that produce them and as
discriminative stimuli with respect to sub-
sequent responses in the sequence. With adap-
tive networks, this arrangement may be sim-
ulated by having the output pattern affect
the subsequent input pattern to the network.
In this way, a feedback loop is implemented
that is mediated by the environment rather
than by recurrent connections within the net-
work itself. We are unaware of any work
within the PDP framework that exploits the
literature on shaping and chaining.

Fading is also critically important to the
acquisition of complex environment-behavior
relations within the behavior-analytic frame-
work. In fading, the complex stimuli that
ultimately control behavior are progressively
approximated as training proceeds. With
adaptive networks, fading may be simulated
by progressively changing the input pattern
to the network in the direction of the final
input pattern. There has been only some very
preliminary work on fading with adaptive
networks. In the one case known to us, the
input patterns that were to be discriminated
were initially very dissimilar, but were pro-
gressively shifted toward the highly similar
patterns required by the final discrimination.
Using fading, the adaptive network achieved
criterion performance with only 25% of the
trials that were required when the highly
similar input patterns were used throughout
training (Jacobs, 1988)!

Some Shared Orienting Attitudes

We have seen that both behavior analysis
and adaptive-network theory deny the func-
tionality of the molar constructs of information
processing and assert the centrality of the guid-
ance and selection of complex behavior by the
environment. Moreover, experimental analy-
sis appears to have much to offer adaptive-
network theory in the simulation of selection;
namely, findings concerning the behavioral and
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neural processes responsible for reinforcement.
Likewise, adaptive-network theory appears to
have much to offer experimental analysis;
namely, a means for integrating these findings
so that their implications for the interpretation
of complex behavior may be pursued more
precisely. These specific mutual benefits are
possible because both the behavior-analytic and
adaptive-network approaches share a number
of general orienting attitudes toward the origins
of complex behavior. We conclude this paper
by describing three of these shared orienta-
tions—the preeminence of the environment,
the ubiquity of multiple causation, and the
disenthronement of consciousness.
Preeminence of the environment. Perhaps,
the characteristic that most clearly distin-
guishes the behavior-analytic approach from
information-processing approaches to complex
behavior is the effort to ferret out the en-
vironmental antecedents of complex behavior
and to resist the temptation to attribute be-
havior to inferred organismic events that are
beyond the reach of the environment. Although
the organism is the locus of environmental
action, it is the environment, and not the
organism, that is the initiator and shaper of
behavior (Skinner, 1974). Adaptive-network
theory takes a similar stance; complex behavior
occurs when the environment activates the
input units of the network. Rumelhart, Hin-
ton, and McClelland, in their summary of
“eight major aspects of a parallel distributed
processing model,” list “... an environment
(sic) within which the system must operate”
(1986, p. 46). The reliance upon the en-
vironment (i.e., upon “experience”) as the
origin of complexity is especially clear in the
treatment of verbal behavior from a PDP
perspective: “the greater the amount of ex-
perience, the more independent the system
should be from its start state and the more
dependent it should be on the structure of
its environment. . . . To the extent that stored
knowledge is assumed to be in the form of
explicit, inaccessible rules of the kind often
postulated by linguists, . . . it is hard to see
how it could ‘get into the head’ of the newborn”
(Rumelhart & McClelland, 1986, p. 142).
(See D. C. Palmer, 1986, for an extended
discussion of this point.) Adaptive-network
theory, in agreement with behavior analysis
and only a few other contemporary views
(e.g., Gibson, 1979; see also Costall, 1984),
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regards the environment as providing a richer
source for shaping complex behavior than is
appreciated by the information-processing
approach (see Rumelhart, Hinton, &
McClelland, 1986, p. 54; Rumelhart, Smo-
lensky, McClelland, & Hinton, 1986, p. 39

The emphasis upon the environment as
the shaper both of behavior and adaptive
networks should not be taken to mean that
either behavior analysis or adaptive-network
theory denies the crucial contribution of the
organism as the locus of the cumulative effects
of prior environmental selection. As Skinner
has noted, “The environment made its first
great contribution during the evolution of the
species, but it exerts a different kind of effect
during the lifetime of the individual, and the
combination of the two effects is the behavior
that we observe at any given time” (Skinner,
1974, p. 19; see also Skinner, 1966a, 1984).
Similarly, in PDP it is remarked, “Some have
argued that since we claim that human cog-
nition can be explained in terms of PDP
networks and that the behavior of lower an-
imals can also be described in terms of such
networks we have no principled way of ex-
plaining why rats are not as smart as people.”
Does this “criticism” sound familiar? The
criticism is answered in much the same way
that behaviorists would answer it, except for
a few notable differences in technical vo-
cabulary: “We are not claiming, in any way,
that people and rats and all other organisms
start out with the same prewired hardware.
... But there must be another aspect to the
difference between rats and people as well.
This is that the human environment includes
other people and the cultural devices that
have been developed to organize their thinking
processes” (Rumelhart & McClelland, 1986,
p- 143; cf. Skinner, 1981).

Multiple causation. A corollary of the prop-
osition that behavior is the product of the
combined effect of the contemporary envi-
ronment acting on an organism that has been
changed by the cumulative effect of selection
by prior environments is the following: Be-
cause both prior and present environments
are complex, any given behavior—particularly
complex behavior, which is the product of
a prolonged history of selection—is likely to
be under the combined control of many dif-
ferent environmental stimuli. Multiple con-
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trolling variables are clearly evident in verbal
behavior, where slips of the tongue and the
pen often point to the complexity of the an-
tecedents of a given response. For example,
the failure of the subject and predicate to
agree in number in the sentence, “The as-
semblage of feathers are beautiful,” probably
reflects such facts as “feathers” is closer to
the verb than is “assemblage” and “feathers
are beautiful” has been more commonly ut-
tered (and reinforced) than “the assemblage
is beautiful.” Indeed, the pervasiveness and
importance of multiple controlling variables
for the understanding of complex behavior
led Skinner (1957) to entitle one of the chap-
ters in Verbal Behavior, “Multiple Causation.”

Adaptive networks inherently implement
multiple causation. That is, the output pattern
produced by the network is dependent upon
all of the input units that are activated by
the contemporary environment and all of the
connection weights within the network, which,
in turn, reflect the cumulative action of all
of the previous environments. The use of
adaptive networks to simulate the effects of
multiple controlling variables on complex
behavior is in its infancy, as in the treatment
of “sentence processing” in PDP (e.g.,
McClelland & Kawamoto, 1986, pp. 272-
325). Nevertheless, certain conclusions have
been reached that are congenial to a behavioral
analysis.

As two examples of such conclusions, adap-
tive-network theory questions the status of
certain apparently verbal constructions as
genuine instances of verbal behavior and the
status of response topography by itself as a
fruitful means for studying verbal behavior.
First, note the treatment in PDP of center-
embedded sentences, one of the constructions
thought by linguists to require recursive mech-
anisms in accounts of sentence processing.
McClelland and Kawamoto comment: ...
people cannot parse such sentences without
the use of very special strategies, and do not
even judge them to be acceptable. Consider,
for example, the ‘sentence’: . . . The man who
the girl who the dog chased liked laughed.
... sentences in natural language are simply
not structured in this way. Perhaps, then,
the search for a model of natural language
processing has gone down the garden path,
chasing a recursive white rabbit” (1986, pp.
323-324). Skinner’s earlier comments about
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such constructions are to similar effect: “Per-
haps there is no harm in playing with sentences
in this way, . . . but it is still a waste of time,
particularly when the sentences thus generated
could not have been emitted as verbal be-
havior” (Skinner, 1974, p. 109).

Second, behavior analysis has long rejected
response topography as a sufficient basis for
either an adequate experimental analysis
(Skinner, 1935) or interpretation (Skinner,
1957) of behavior. Regarding verbal behavior
Skinner has stated, “What is needed—and
what the traditional ‘word’ occasionally ap-
proximates—is a unit of behavior composed
of a response of identifiable form functionally
related to one or more independent variables.
... In this way we may distinguish between
the operant fast in which the controlling vari-
able is shared by the operant speedy and the
operant fast in which the controlling variable
is similar to that in the operant fixed” (Skin-
ner, 1957, pp. 20-21). “Those who have
confused behaviorism with structuralism, in
its emphasis on form or topography, have
complained that it ignores meaning. . ..
Meaning is not properly regarded as a prop-
erty either of a response or a situation but
rather of the contingencies responsible for both
the topography of behavior and the control
exerted by stimuli” (Skinner, 1974, pp. 100-
101). In the treatment of “words” by adaptive
networks, a similar point is made. “We will
probably all agree that there are different
readings of the word bat in the sentences The
bat hit the ball and The bat flew round the
cave. . . . Different readings of the same word
are just different patterns of activation; really
different readings, ones that are totally un-
related ... the two readings of bat simply
have very little in common” (McClelland &
Kawamoto, 1986, pp. 314-315). They have
“very little in common” because the “different
patterns of activation” are produced by dif-
ferent input patterns to the network. That
is, the controlling stimuli for responses of
the same topography are different and, there-
fore, the responses are members of different
operants.

Consciousness. The orienting attitude that
behavior analysis and adaptive-network theory
share toward consciousness might not appear,
at first glance, to be fundamental to their
approaches to complex behavior. In fact, an
argument can be made that it is this shared
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attitude that is central to their common ap-
proach to complex behavior.

The information-processing approach, either
explicitly or implicitly, is prone to the belief
that behavior taken as evidence of conscious-
ness occupies a special status with respect
to other behavior. Although a number of
characteristics are often mentioned as giving
consciousness its special status, the one of
concern here is the belief that there is a fairly
direct and straightforward relation between
what we think about what we are doing and
what we are indeed doing. That is, con-
sciousness is regarded as a valid, or, at a
minimum, a useful indicator of the behavioral
and physiological processes that intervene
between the stimulating environment and the
occurrence of other behavior. The experi-
menter’s consciousness, if not the subject’s,
is commonly accorded this ability. Sometimes
the assumption is explicit, as when computer
simulations of complex behavior are designed
to mimic the introspections of experts at a
complex task requiring expertise (Newell &
Simon, 1961); more often it is implicit, as
when an experimenter introspects under the
partial control of measures of the subject’s
behavior and infers the cognitive processes
said to underlie the subject’s behavior.

Behavior analysis has provided extensive
verbal interpretations (Skinner, 1945, 1964,
1974) and some organic simulations (e.g.,
Lubinski & Thompson, 1987) of consciousness
and its origins. Consciousness (i.e., verbal
behavior under the control of intraorganismic
events) is a defective indicator of those events
for two classes of reasons. First, the social
community faces uncircumventable impedi-
ments to fostering such discriminations (Skin-
ner, 1945, 1964). Second, ‘“There has been
no opportunity for the evolution of a nervous
system which would bring some very im-
portant parts of the body under that control
(p. 242).... Introspection has had to use
whatever [neural] systems were available, and
they have happened to be systems which made
contact with those parts of the body that
played a role in its internal and external
economy. ... [The verbal system] does not
make contact with that vast nervous system
that mediates ... behavior. [It] does not be-
cause there are no nerves going to the right
places. . . . The brain plays an extraordinary
role in behavior but not as the object of that
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special behavior called knowing. We can never
know through introspection what the phys-
iologist will eventually discover with his spe-
cial instruments (pp. 238-239).... What is
felt or seen through introspection is only a
small and relatively unimportant part of what
the physiologist will eventually discover”
(Skinner, 1974, p. 274).

Some proponents of adaptive-network the-
ory have come to essentially the same con-
clusion on this point. In summarizing the
PDP approach, Norman says “Introspection

. is based upon observation of the outputs
of a subconscious (PDP) system. As a result,
introspections are only capable of accurate
descriptions of system states. Because there
is no information available about how the
state was reached, introspection cannot give
reasons for the resulting states” (1986, p. 544).
He, then, advocates a close future relation
between cognitive psychology and the neu-
rosciences. Minsky and Papert (1988) concur:
“What any distributed network learns is likely
to be quite opaque to other networks connected
to it (p. 274).... It is because our brains
primarily exploit [adaptive networks] that we
possess such small degrees of consciousness,
in the sense that we have so little insight
into the nature of our own conceptual ma-
chinery.... What appear to us to be direct
insights into ourselves must be rarely genuine
and usually conjectural. . . . Reflective thought
is the lesser part of what our minds do” (p.
280).

Certain formal analyses have also under-
mined consciousness as bearing a special,
privileged relation to other behavior. These
analyses have shown that, with the customary
nonlinear activation mechanisms of adaptive
networks, there can be, in principle, no in-
variant relation between the output of a net-
work and the events within the network that
produced that output (Smolensky, 1986, pp.
422-424). That is, there is no isomorphism
between the output pattern of the network
and activity within the network (i.e., unit
activity). Moreover, “. .. if two models were
started in corresponding [output] states and
given corresponding inputs, they would not
continue to stay in corresponding states”
(Smolensky, 1986, p. 424). This last is a
general characteristic of historical science and
constitutes a strong formal argument against
conventional information-processing models.
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Knowledge of the behavioral output and en-
vironmental input does not sufficiently con-
strain conjectures about intraorganismic (or
intranetwork) events to warrant inferences
about such events from these observations
alone. In this important conclusion, which
strikes at the very heart of the information-
processing enterprise, behavior analysis (Skin-
ner, 1974) and adaptive-network theory con-
cur. (For related discussions of difficulties in
inferring antecedents from knowledge of only
the outputs of a system, see Anderson, 1978,
Gleick, 1987, and Churchland & Sejnowski,
1988.)

SOME CLOSING THOUGHTS

A dominant theme of our reactions to PDP
has been that behavior-analytic and adaptive-
network approaches share much conceptual
common ground and have much to gain from
one another in the effort to interpret complex
behavior. Experimental analyses, both of be-
havior and neuroscience, provide the findings
necessary for the construction of computer
simulations that conform to the requirements
of historical science. Computer simulations
based on experimental analyses provide a
powerful means for the formal interpretation
of complex behavior, one that is superior to
verbal interpretation in its ability to implement
the intricacies of environmental selection in
a precise and expeditious manner.

Skinner has long criticized a fascination
with what he dubbed the “Conceptual Ner-
vous System” (Skinner, 1938, p. 421), arguing
instead for a science of behavior studied at
its own level. His position, we believe, has
been vindicated; the experimental analysis of
behavior has advanced with little concern for
physiological mechanisms. However, the field
finds itself today, like Darwinism before it
(Catania, 1987), a science whose accom-
plishments have outstripped its acceptance
by the general public and by much of the
scientific community. Skinner’s verbal inter-
pretations of complex behavior, however com-
pelling to the prepared reader, have failed
to excite much interest outside the field. In-
deed, it is commonly held by those who call
themselves cognitive scientists that behavioral
interpretations are impoverished or even in-
adequate in principle (Bever, Fodor, & Gar-
rett, 1968; Chomsky, 1959). It is our belief
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that computer simulations using adaptive
networks can serve an important polemical
function by demonstrating, through formal in-
terpretation, the power of behavioral princi-
ples.

However, we would be remiss if we did
not indicate the antipathy toward behavior
analysis that is expressed in PDP. Although
Skinner’s views on many issues predate and
parallel those expressed in PDP, none of his
work appears among the many citations in
the bibliography. Moreover, in the one in-
stance in which behavior analysis is consid-
ered, a vigorous effort is made to distance
work on adaptive networks from behavior
analysis. To wit, in a section entitled “Some
objections [emphasis ours] to the PDP ap-
proach,” the following statements appear: “A
related claim that some people have made
is that our models appear to share much in
common with behaviorist accounts of behavior.
While they do involve simple mechanisms
of learning, there is a crucial difference be-
tween our models and the radical behaviorism
of Skinner and his followers. In our models,
we are explicitly concerned with the problem
of intermodal representation and mental pro-
cessing, whereas the radical behaviorist ex-
plicitly denies the scientific utility and even
the validity of the consideration of these con-
structs. . . . Our models must be seen as com-
pletely antithetical to the radical behaviorist
program and strongly committed to the study
of representations and process” (Rumelhart
& McClelland, 1986, p. 121).

Behavior analysts will recognize such crit-
icisms as ill-informed. As has occurred all
too often, the editors of PDP have mistakenly
equated the behavior-analytic position that
behavioral data do not sufficiently constrain
inferences about underlying microbehavioral
and physiological processes to permit fruitful
conjectures about such processes with the
“black-box” position that such processes are
of no relevance to a science of behavior (Skin-
ner, 1974, pp. 233-237). To the degree that
“intermodal representation” and “mental pro-
cessing” denote microbehavioral events or
events in the real nervous system, behaviorists
have no objection to the inclusion of such
terms in a complete account of the functioning
of the organism. To the contrary, as already
noted, Skinner has long acknowledged “the
advance that is made in the unification of
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knowledge when terms at one level of analysis
are defined (‘explained’) at a lower level”
(Skinner, 1938, p. 428). “The physiologist
of the future will tell us all that can be known
about what is happening inside the behaving
organism. His account will be an important
advance over a behavioral analysis, because
the latter is necessarily ‘historical’—that is
to say, it is confined to functional relations
showing temporal gaps. . . . What he discovers
cannot invalidate the laws of a science of
behavior, but it will make the picture of human
action more nearly complete” (Skinner, 1974,
pp. 236-237).

What Skinner rejected as futile was the
attempt to draw strong inferences about phys-
iology from behavior or, more generally, to
draw inferences about physical events taking
place at a lower level from the observation
of physical events occurring at a higher level.
If lower level events are to be understood,
then those events must be studied directly.
(See Donahoe & Palmer, 1988, for a discussion
of this point as it relates to the concept of
inhibition.) With respect to the relation be-
tween behavior and physiology, Skinner was
asserting nothing more remarkable than, for
example, that physiology is not the way to
study chemistry or that chemistry is not the
way to study physics. As applied to the present
issue, the behavior-analytic position is simply
that if one is interested in the architectures
of adaptive networks, which are crucial de-
terminants of the environment-behavior re-
lations that a network can mediate (Minsky
& Papert, 1988, p. 266), then behavior-an-
alytic findings must be supplemented by the
relevant findings from neuroscience. The de-
mands of interpretation in historical science
are not met when one attempts to infer un-
derlying processes from phenomena whose
explanation is sought in terms of those very
same processes. That way lies the chaos of
circular reasoning.

We began with the comment that behavior
analysts should regard adaptive-network the-
ory as an ally in the effort to interpret complex
behavior. A sufficient reason for taking this
position, although we have indicated many
better reasons, is the Machiavellian dictum,
“My enemy’s enemy is my friend.” We may
hope that adaptive-network theorists, faced
with the inevitable onslaughts from main-
stream cognitive psychology and linguistics,
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will be more receptive to interactions with
behavior analysts on the grounds that “A
friend in need is a friend indeed!” The better
reason for such cooperation is that adaptive-
network theory, if it is to be a means for
interpretation in historical science, must be
guided by principles and findings from be-
havior analysis and neuroscience.
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