
Critical Arterial Stenosis:

A Theoretical and Experimental Solution
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The mechanics of critical stenosis of a blood vessel are stud-
ied by means of a comprehensive theoretical model in terms
of energy changes and dissipation. These theoretical assump-
tions correlate well with experimental data obtained in vivo.
Previous work in this field is analyzed. This new treatment of
the phenomenon of blood vessel stenosis allows explanation
of apparent contradictions in previous studies. When the
velocity of flow in the unstenosed portion and the geometry
of the stenosis are known, the drop in pressure at flow can be
predicted.

THE FUNCMIONAL SIGNIFICANCE of the narrowing in
an arterial segment is a central problem in cardio-

vascular pathology. For many years, since Mann's origi-
nal work,7 it has been known that a substantial decrease
in the lumen of a vessel must occur before a drop in
pressure or flow can be measured distal to the narrowed
point. It is also well known that beyond a certain degree
of constriction, small decrements in the area result in
abrupt changes of pressure and flow distal to the con-
striction. The cross-sectional area value beyond which
this phenomenon occurs has been termed the "critical"
area of a stenosis (Fig. 1).

This term, however, has been defined in different
ways; some arbitrary, some contradictory. Most work-
ers3'4'12 describe this "critical" area as that beyond which
small decreases in vessel lumen areas will result in
significant or "marked" effects in pressure drop or flow-
rate decrease beyond the stenosis. Others, such as Brice,'
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have adopted an arbitrary definition; ". . . that con-
striction which would produce a 5% fall in distal mean
pressure or a 10% decrease in distal mean flow." Under
certain conditions, such as high flow rates, the above
definitions may represent substantially different values
than the one that would be obtained by Weale's standard
". . . that cross-sectional area at which 80% of the pressure
gradient obtainable on total occlusion occurs."
The problem of explaining what happens in a critical

stenosis has been approached following basically three
lines, or any combination of them: mathematical models,
physical models of the circulation and experimentation
in animal or human subjects (biological models). The
pitfalls inherent in physical and biological simulation
have led some workers to make conclusions that are
often incomplete and sometimes incorrect. Thus, for
some workers, the critical stenosis value would be de-
fined by the percentage reduction of the area at the
stenosis site.7 For others,'4 the factors determining the
critical value would be the absolute cross-section of
the stenosis and the value of the "peripheral resistance"
while they claim that the area of the un-stenosed portion
of the vessel bears no relation to the value of the critical
area. Lastly, others8 insist that the most important fac-
tors in determining the value of the critical area are
the velocity of the flow in the unobstructed segment
and the area ratio between the former segment and the
stenosis. Clearly, there is a fair amount of confusion
around the question of which are the parameters that
define the "critical" value of narrowing that will produce
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FIG. 1. The phenomenon of critical arterial stenosis. Flow rates
plotted versus percentage stenosis of vessel lumen.

a significant pressure gradient or a drop in the flow
rate through a vessel.
The problem of the critical stenosis, the prediction

of its occurrence and the physical grasp of its mechanics
are not therefore theoretical or abstract problems, but
matters that have a direct importance on everyday
surgical decisions and planning. Narrowing of an artery
is the most common problem in our circulatory system
beyond middle age and, a very common reason for
which vascular surgery operations are performed. Hav-
ing established its importance, its elucidation must be
pursued for, being a problem of fluid mechanics, how-
ever particular, it must have a theoretical solution.

Theoretical Solution
Kinetic Energy and the Area Ratio of the Constriction
Our approach has been to describe the circulatory

phenomenon in terms of its cause: energy gradients
causing blood mass displacements from a high to a
low energy point (the traditional proposition that blood
flows from a high to a low pressure point is only a
specific case of this general proposition).
We shall recall briefly that the total energy (Et) in

a unit weight of blood can be expressed as the sum of
three components Et = h + V2/2g + P/y where the
term h is the gravitational potential energy, V2/2g is
the kinetic energy (Ek) and P/y is the lateral pressure
energy (Ep). In as much as we shall be considering
vessels in a horizontal position, the gravitational com-
ponent (h) can be neglected.
To calculate the total energy across an arterial seg-

ment, all we need to know is the geometry involved,

and the values of the systemic pressure (P) and its
bulk velocity (V). The pressure (P) can be measured
directly and the velocity (V) can be obtained from the
volume flow rate (Q), since V = Q/A. These data
(P, A) can be measured in both the pre (P1Vj) and
post (P2V2) stenotic segments, from where the values
of P and V at the stenosis site (P8,V,) can be computed
once the geometry of the arterial segment is known.

Let us consider (Fig. 2) a continuous arterial segment
of known geometry which is divided into three sections,
1 (pre-stenotic), S (stenotic) and 2 (post stenotic).
The velocity at the stenosis (V.) can be computed as
follows:

fQ1 = AIV1T
Qs = A.V8

A1 - A. = lr(rl2- r2) = AA

from [2] and [1]:

Q1 A)(, Al VI
solving for V8:

9~~~~~~~
Vs = VI ( AA) V1 (r/rl)

substituting for = r8/r8,
VS = Vl. -2

[1]

[2]

[3]
From the value of V., the corresponding value of kinetic
energy at the stenosis (Ek,) can be derived since:
Eks = SM* V"2

fEk. PAV

jEki = -A Vi3J

where P is the density of the fluid

[4]

FIG. 2. Schematic representation of the stenosis model with the
three segments under consideration (1, S and 2). Flow direction
1 -- 2.
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Ek8 _ AaVa3
Ek- AV113 '

and substituting by [3]:

Ek. = (-4
Ek [5]

Figure 3 is a graphical representation of this function
which states that the ratio of kinetic energy in the
stenosed segment (Eke) to kinetic energy in the pre-
stenotic segment (Ek1) is a fourth power function of
the decrease in the radius of the vessel.*
Let us assume a stenosis of minimal length whose

physical approximation could be the constriction caused
by a tight suture around a vessel (see experimental device
in Fig. 6). If we now plot the ratio Ek/Ek, for this con-
striction, versus the values of < (that is the ratio of
radii) we obtain the curve displayed in Fig. 3. Due to
the effect of the fourth power function, a sharply in-
creasing amount of kinetic energy is required to "carry"
the flow through the stenosis (Ek.). Now, the total
energy in the stenosis segment (Ek8 + Epa) cannot be
greater than the energy in the prestenotic segment;
thus, if Ek8 is increased, then Ep8 must decrease. Hence
a drop in lateral pressure energy is inevitable as the
kinetic energy through the stenosis increases. In fact,
as < approaches zero, a great deal of pressure energy
(Ep) must be converted at an accelerated rate into
kinetic energy in order to maintain flow through the
stenosis.

Evidently, as the demand for kinetic energy in the
stenosis increases with progressive reduction of the
stenotic area, a point will be reached when the remain-
ing pressure energy can no longer meet the demand.
At this point the flow through the stenosis will have to
"slow down." This also implies a decrease in velocity
at the prestenotic segment, AV1, and hence a decrease
in the flow rate &Q2.

Normally, the fraction of energy being used as kinetic
energy in a peripheral medium-sized artery is rather
small and less than 1L% of the total energyt during peak
systole. As the stenosis progresses, the graphic repre-
sentation of the function Ek/Ek1 = (&- (Fig. 3) shows
that Ek, has to rise considerably before its magnitude
becomes appreciable (Ek1) being originally so small).
From this point on, as Ek, increases drastically at an
exponential rate, a correspondingly speedy fall in pres-
sure and flow will occur.
According to the Bernoulli principle, an "ideal" fluid

I ,___ I I
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FIG. 3. Graphic representation of the ratio Ek./EkI plotted versus

the ratio of radii (w).

will not generate a pressure gradient across a stenosis
but a transfer of energy from one form to another
(Ep1 -* Eks - Ep2). However, the simple fact that,
in a viscous fluid flowing through a tight stenosis, an
otherwise laminated flow gives rise to a turbulent jet,
(which is later dissipated in the distal stream as heat)
indicates that energy must be lost in the process. That
blood flowing through a tight stenosis results in a turbu-
lent jet which quickly dies out in the distal segment is
beyond doubt: this phenomenon can be observed with
the naked eye and, more precisely, with high speed
cinematography.

Application of Conventional Hydraulic
Principles to the Problem of Stenosis

Normally, in a continuous conduit having a con-
tracted segment, the transfer of lateral pressure energy
to kinetic energy in the contraction (Ep1 -* Ek.) is
made with relatively little energy loss§ Conversely, the
transfer of kinetic energy to lateral pressure energy
(Ek. -- Ep2) at the expansion of a conduit is a very
expensive one (in terms of energy). Energy is lost in
the expanded area by the formation and maintenance
of vortices and in providing the viscous drag which

* The theoretical errors that may be incurred in the computation
of kinetic energy from mean velocities as opposed to doing so by
differentiation of elements are discussed in the Appendix.

f See appendix.
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slows down the jet. These energy losses are usually
accounted by as contraction loss (he) and expansion
loss (he) as the fluid enters and leaves the stenosis
respectively.
Expansion Loss. Energy loss due to sudden expansion

has a common place in hydraulics where-for the par-
ticular case of sudden expansion in a pipe-the following
formula is used:6

he - (V8 - V2)2 [6]
2g

This equation is used in hydraulic engineering where
flow in pipes is generally considered to be under turbu-
lent conditions. In our case where a high speed jet
discharges into a relatively slow moving fluid mass
(poststenotic segment) the use of this formula seems
to be justified. Figure 4 illustrates the flow profile of a
stenosis in a photograph obtained from a flow model
(based on the Hele-Shaw theory). If we now insert
this term he (Eq. 6) into the continuity equation derived
from Bernoulli's principle:

PS/,y + Vs2/2g = P2/y + V22/2g + he,
we have:

P/,Y + V.2/2g = P2/7 + V22/2g + V82/2g - V22/2g
-2V8V2/2g;

PstY = P2/7 + V2 /g - VV2/g
Neither in the work presented in this paper nor from the
data from Fry is there any evidence to suggest that the
loss in lateral pressure energy that occurs at stenosis is
regained in any substantial amount in the post stenotic
segment. In other words:

P./I7 P2!/, [7]
and therefore the term V22 - V,V2/g must be very small.
For practical cases, this means that the lateral pressure
energy at the stenosis is approximately the same as the
lateral pressure energy in the post-stenotic segment
(Ep.a - Ep,2). Thus, the kinetic energy involved in
carrying the flow through the stenosis is lost at the
sudden expansion in the formation and maintenance of
local turbulence (it is possible, however, that in an
elastic system, such as an artery, a small amount of
pressure recovery could occur). The conventional repre-
sentation of the increase in lateral pressure energy at
the post-stenotic segment does not really apply to tur-
bulent viscous flow, which is the case of a critical arterial
stenosis. The loss in lateral pressure energy that occurs
at the stenosis is mostly non-recoverable in the post-
stenotic segment.

Contraction Loss. The energy loss due to a sudden
contraction in a pipe is usually much smaller than the
corresponding expansion loss. There is also a common
hydraulic formula for this loss6 b<. = 0.5 VS2/2g. This
empirical formula however is not applicable to our
problem because: 1) the flow condition proximal to a
stenosis in an artery is quasi laminar, while the hydraulic
formula is the result of experiments performed in turbu-
lent pipe flow. At the inlet of the stenosis most of the
contraction loss occurs in the boundary layer, the char-
acteristics of which will vary greatly between quasi
laminar and turbulent flow conditions;1" 2) this hy-
draulic formula is commonly used to calculate the con-
traction loss in water pipes. The geometrical reduction
in area of water piper that normally takes place is, in
practical terms, of much lesser magnitude than the one
under consideration here: a critical stenosis.

Fraction Loss through the Stenosis. The pressure
drop or flow decrease in a stenosis is also known to be
a function of its length. It is primarily the result of
fraction forces that develop between the moving fluid
and the wall boundary. For a steady flow system-
laminar or turbulent-this loss of energy through length
is expressed by the Darcy-Weisbach formula:9

hL = Lv2D 2g [8]

FIG. 4. Photograph of flow through a stenosis taken using the
author's flow model (based on the Hele-Shaw theory). The laminar
flow in the prestenotic segment remains laminated through the
stenosis. At the outlet, a disturbed flow pattern is noted immedi-
ately distal to the stenosis. In the post-stenotic segment the energy
loss (i.e. expansion loss) through eddies is obvious.

(f) being a coefficient (Darcy-Weisbach resistance co-
efficient) that varies with the Reynolds number, (L)
length of the segment (in our case, the length of the
stenotic segment), (D) diameter of the conduit and
(V2/2g) the kinetic energy per unit weight of the fluid
flowing through the segment under consideration.

It is obvious that in a stenosis this friction loss will
be directly proportional to the length and to the kinetic
energy of the blood flowing through it, and inversely
proportional to the diameter of the vessel. The graph
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of the energy loss as a function of the length of the
stenosis, can therefore be anticipated to be a curve
whose slope will become steeper as the internal radius
of the stenotic area under consideration decreases.

Experimental Method
Experiments were carried out in greyhound dogs.

Anaesthesia was obtained with intravenous Nembutal
(1 mg/kg weight) and the animals were systemically
heparinized with 5,000 units of heparin. The iliofemoral
trunk was dissected and collateral vessels were ligated
with the exception of the internal iliac and the saphenous
arteries; these were used as side branches and connected
by 13 cm of plastic tubing to pressure transducers (Bell
& Howell L 221) (Fig. 5). The pressure transducers
were calibrated against a mercury column at the begin-
ning and end of each experimental run. The external
diameter of the exposed arterial segment was measured
in three points using both a vernier caliper and a fine
suture to determine the circumference of the vessel. Two
of these points of known external diameter were chosen
for the placement of suitable electromagnetic flow
probes; the third (middle) point was the site elected
for placement of the constricting device. The electro-
magnetic flolwmeter used was the Nycotron 372 with
cuff probes, type PS. Occlusion zero was obtained before
every flow determination. Time-averaged flow rates (Q)
through the artery were read out on a digital display.
Both pulsatile flow and pressure tracings were recorded
on an ultraviolet 6-channel recorder (S. E. Laboratories).
At the end of each experimental run and occlusion zero
sufficient time was allowed for hyperhaemic compensa-
tion. The stability of the preparations was excellent
throughout the experiments, as evaluated by heart rate,
systemic pressure and periodic unrestricted flow rate
measurements.
Our constricting device consists of a 2-0 nylon suture

FIG. 5. Photograph of Ok
the experimental prepa-
ration showing the two
side branches can.nulated
for pressure measurement,
and the electromagnetic
flow transducer in situ.
The constricting loop is
seen in the mid portion
of the femoral artery.

looped through a very small ring, and held at each end
by two blocks of plastic. The two plastic blocks are
mounted on a pair of metal rods; one of the blocks is
moveable, thereby altering the loop diameter. The dis-
tance between these blocks can be measured accurately
with a vernier caliper, the relation between this distance
and the corresponding decrease in radius of the loop
being linear.

Arterial wall thickness was estimated at the end of
the experiments on frozen and fixed tissue sections
using a travelling microscope. A certain amount of error
must have been incorporated by not taking into account
the changes in wall thickness due to distending pressure
(although the artery is distended against a constricting
and unyielding loop) and due to the unavoidable tissue
volume changes secondary to processing. Corrections
for wall mass displacement which occur in the stenosed
segment in the range of severe constrictions, were made
on the curve representing internal radii by extrapolating
the values of zero flow and maximal pressure gradient
of those of zero internal area.

In order to study the effect of length of the stenosis
on the energy loss of the blood flowing through it, we
used split and bored plastic blocks of known length
and contricting diameters. Accepting the Shippley and
Gregg'0 demonstration, we assumed not significant wall
mass displacement in the experiments carried out using
plastic blocks as external constrictors.

Pressure data were obtained by averaging the reading
of 15 cardiac cycles. Kinetic energy computations were
made by differentiating the values of the velocity at
very small time intervals and computing the kinetic
energy for each one of these elements.* Plots of kinetic
and lateral pressure energy were made in terms of a
height of a water column (cm).

* See appendix.
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Results
A typical tracing of the flow and pressure changes

with increasing stenosis (loop constrictor) is shown in
Fig. 6. The scale showing percentage of occlusion is
added to the w scale for reference.
We had predicted that before reaching the critical

range, the experimental values of Ek,,/Ekt would follow
the theoretical curve. This close correlation can be seen

in Fig. 7 which displays data measured in two experi-
ments in the same animal against the theoretical curve.

Within the critical range, the experimental values should
be smaller and fall from the theoretical curve because,
having incurred a drop in flow volume, hence a drop
in V1 and Ek1, the value of EkB will be smaller since
it is expressed as "n" times that of a smaller Ek1.

In order to show this departure from the theoretical
curve more clearly, we have plotted the latter against
the experimental data in logarithmic scales (Fig. 8).
The solid straight line with the 4 to 1 slope represents
the theoretical fourth powered function (equation 5).
The beginning of the critical area is clearly shown by
the departure of the experimental data from the theo-
retical line. Beyond this point of departure, the velocity,
and, hence Ek8, continues to increase although it does
so at a slower rate than before the critical point was

reached. This increase can only continue for a very

short distance (as indicated by AB in Fig. 8) until a

point is reached where the velocity through the stenosis
reaches a maximal value (Max) and then decreases.
After this maximal point, the fall to zero flow is nearly
instantaneous.
The stenotic values between th critical (departure)

03

FIG. 7. Theoretical and experimental values of kinetic energy

plotted against the ratio of radii (X). Note the close correlation
between theoretical and experimental values up to a value of
w = 0.45.
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point and the Max point could be termed the critical
range. The departure point is that point beyond which
pressure and flow decrements will occur with even the
slightest additional constriction and is, therefore, the
"critical" point.

Figure 9 shows the effect of increasing the length of
two different stenotic segments on the flow rate in the
femoral artery. Two series of drilled blocks (4 mm and
3 mm) were used which provided vessel lumen of 0.063
mm2 and 0.0165 mm2 respectively in this particular
animal. The steeper curve for the 3 mm series correlates
well with the theoretical prediction (Equation 8).
From the above derivations and data, it is clear that

the "critical" value of a stenosis depends mainly on the
velocity of the flow and on the area ratio (or radii
ratio = w) between the stenosed and unstenosed seg-
ments of the vessel. Changes in length and viscosity
(within physiological limits) are less important in deter-
mining the critical value.
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Fic. 8. Experimental data (Expr.) plotted with the theoretical
function (Theor.) against the ratio of radii (w) on log-log scales.
The critical (departure) point and the point of maximal kinetic
energy (max) are indicated. The critical range is designated
(A-B).

Stenosis O.D. - ° = 4 0mm. + = 30 mm.
FIG. 9. Graph showing the effect of increasing the length of the

stenosis on the flow rate. (o): Constricting block giving a vessel
outside diameter of 4.0 mm; (+) idem. of 3.0 mm.

Discussion

Review of the Previous Experimental
Alodels on Arterial Stenosis

The experimental work on the problem of arterial
stenosis has been performed using mainlv two types of
models: physical and biological systems. Mathematical
models have been infrequently used, probably because
of the complexity involved in describing arterial blood
flow in precise fluid dynamic terms. Although the Poiseu-
ille equation has been extensively quoted, its inade-
quacy for predicting changes in flow or pressure sec-
ondary to stenosis has been the subject of some studies,
such as those of Byar'2 and of Delin.3 This fact should
come as no surprise for the conditions implicit in the
derivation of Poiseuille's equation make it non-applicable
to the problem of localised stenosis.

Empirically derived formulas-such as the one pre-
sented by Byar2-throw little light on the subject in
terms of providing either a tool or an understanding
of the phenomenon under consideration.
May8 introduced a mathematical model of a stenosis

that, because of its apparent simplicity, is worthwhile
discussing. Their model equation has three terms repre-
senting the pressure losses contributed by the stenosis,
the contraction and the expansion of flow, respectively.
The first term (8 ,.LL/R12)V,(A1/A)42 is derived from
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Poiseuille's equation through a continuity proposition.
It must, therefore, apply only where Poiseuille's equation
does apply: pulsating flow through a localised constric-
tion is not such a case. Their second term (4.8 /u/Ri)
VI (Al/As) 1 1/2 is an empirical one and is obviously
based in Poiseuille's equation as well. The third term
of their model pV12(Al/A. )2 is somewhat puzzling. It
is presented as being derived from the calculation of
head loss in a pipe due to sudden expansion. Such loss
in hydraulics has been quoted above (equation 6) as
(Vs - V1) 2/2g. By applying Bernoulli's principle
through a mass-continuity proposition, this term can be
easily transformed into the form of (p/2 )V12 ( Al/A, -

1)2 which although different does have a certain simi-
larity with that of the third term used by May.8 How-
ever, even if this term were the same as the one that
they used, it must be borne in mind that this hydraulic
formula has been experimentally derived and applies
only to turbulent flow. It is hardly acceptable to intro-
duce into a 3-term equation two terms applicable to
laminar flow (Poiseuille) and a third one which is only
applicable to turbulent flow and whose derivation is
not clear. We agree however, with their conclusions
regarding the important factors that determine the value
of the critical area of a vessel.
Among the physical models, the most often used are

either a constant head of pressure (gravity flow) or a
rotary pulsatile system. Mann's7 original experiments in-
volved both types of systems. His results are clear evi-
dence that the two systems are not comparable, and
this should be borne in mind when making deductions
to be applied to animal or human arteries.
The animal models have generally been comple-

mentary to physical models. They reproduce in a more
realistic way what happens in the human arteries, but
they have the usual drawbacks of lacking the steadiness
of a physical system and of incorporating variables that
change the parameters under investigation (autoregula-
tion, etc). In spite of this, they are the ultimate test of
any arterial haemodynamic problem before inferences
are made which are applicable to human arteries. Some
of the drawbacks in the uise of physical and animal
models are discussed in the next two headings.

The Calculation of the Area of Stenosis
Caused by a Constriction
Much of the work on critical stenosis has been done

using external constrictions imposed on an artery. From
the known values of the external constriction, the value
of the internal lumen is derived. When this is done in
arteries, whether interposed in a physical model or "in
situ," the calculation of this inside lumen implies some
assumptions.
Mann,7 assumed that the percentage of external con-

striction of a vessel would be directly proportional to
the percentage of internal constriction. Assuming the
wall thickness to be constant is a source of serious error,
as was pointed out by Shipley and Gregg.10 They
showed that with Mann's assumption, the total occlusion
of the vessel would occur earlier than would be expected
from calculations. Shippley and Gregg convincingly
argued that with the constricting blocks they used
(10 mm) there was no mass extrusion and, therefore,
the internal lumen can be predicted from the values
of external diameter and the assumption of constant
wall mass. These conclusions apply to constricting blocks
of over a certain length but do not apply to tight,
minimal-length stenoses, such as those produced by a
fine thread around an artery.

In those of our experiments that were performed using
constricting blocks (minimum length 10 mm) the as-
sumption of a constant wall volume was made. In the
experiments using the nylon loop the curve that defined
the internal radius for progressive constrictions was ex-
trapolated to the point where flow rate is zero and the
pressure drop reaches its maximum value to correct for
the wall mass shift in the constricted vessel.
Some workers3 have used radiographic measurements

of the stenotic areas. The precision of this technique at
high values of stenosis does not seem beyond question,
even when 2 plane projections are used.

Resistance to Flow
The establishment of a "fixed" peripheral resistance

in flow models has been the source of some interpreta-
tive errors. Most of the physical models used in previous
work2'4'7'10 have achieved a "fixed peripheral resistance"
by placing a small bore tube or a screw-clamp at the
distal end of the circuit. It must be said beforehand
that one cannot "fix" the peripheral resistance by simply
placing an obstruction at the end of a tube while varying
either Q or P. For if Q is kept constant, varying P by
AP would result in a variation of the resistance, AR

P+AP+RQa= R+ ARQ
Similarly, if P is kept constant, varying Q by AQ would
also result in a change in resistance, AR',

P
= R + AR'Q+AQRR

To place a "high peripheral resisistance" at the distal
end of the tubing is basically creating a second critical
stenosis downstream. The result of this second critical
stenosis is to decrease Qi and hence V1. This decrease
in velocity in the pre-stenotic segment under study will
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result in a much narrower stenosis being now needed
to achieve the "critical" constriction.

This is the flaw in Fiddian's work which led him to
conclude that the area ratio between unstenosed and
stenosed areas would not influence the value of the
critical area. By placing a "high peripheral resistance"
in the three different diameters of tubing which he used
to simulate the sizes of human aorta, dog's aorta and
dog's femoral artery in his experiments, he concluded
that the critical stenosis area was about 2.3 mm? for
all three systems. However, if we use his data to calcu-
late the respective mean velocities, we shall find them
to be approximately 1.8 cm per second for the human
aorta model, 8.4 cm per second for the dog aorta, and
57 cm per second for the dog femoral model. The actual
mean velocity in the human aorta is about 20 times
higher. His model, therefore, did not represent the con-
ditions that he was trying to simulate. In fact, under
a mean pressure of 100 mm Hg his flow data shows that
for both the aortic models, and specially for the human,
the peripheral resistance in his model acts as a critical
stenosis as shown by the very slow velocity in the tubes.

The Different Families of Flowr and Pressure
Curves in Progressive Stenosis

Previous research in this field of arterial stenosis4,8
10,12,13 has shown that when plotting stenotic areas versus
flow rate (or pressure values distal to the stenosis) the
resulting curves have different shapes and give different
values for critical areas for the same vessel, depending
on whether it is a high or a low flow rate situation.
Thus, with progressive constrictions in a high flow rate
system, the critical stenosis appears sooner and the
curve representing the fall in flow rate (or in post-
stenotic pressure) has a smaller slope than in a low
flow rate system. In the latter, the critical point appears
later and the fall in flow rate (or in pressure) is more
precipitous beyond the critical point. This is illustrated
in Fig. 10.
We have seen that the gain in kinetic energy (Ek,)

through the stenosis is at the expense of the lateral
pressure energy (Ep4,), and that this gained kinetic
energy is mostly lost in the post-stenotic segment. Thus,
the curve representing the gain in kinetic energy through
the stenosis is nearly the same as the curve representing
the drop in lateral pressure energy (Ep2) in the post-
stenotic segment. There is a small difference between
both curves accounted for by the energy lost in con-
tracting the flow at the inlet and the friction loss at
the stenosis. We will now show how the function
Ek,^/Ek, = can explain these different families of
curves for different flow velocity systems.

In an arterial segment, providing we are dealing with
stable experimental conditions, the total energy per unit
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FIC. 10. Graph of percentage decrease in flow obtained for pro-
gressive stenosis under high, medium and low flow conditions.

weight (Et) contained in the blood which flows through
a cross-section is constant. The kinetic (Ek) and the
lateral pressure (Ep) components, can be expressed as
percent fractions of the total energy (Fig. 11). In a
high flow condition (h) such as exercise, arteriovenous
shunting, etc., the amount of energy allocated to the
kinetic component-Ek(h) -will be a substantial pro-
portion of the total energy available. Let us give a high

Total energy -\
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as%.of total
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FIG. 11. Graph showing changes in the lateral pressure (Ep) and
kinetic (Ek) components of the total energy in a vessel for dif-
ferent degrees of stenosis, considering kinetic energy at the stenosis
(Ek.) and lateral pressure energy in the post-stenotic segment
(although for practical purposes Ep. = Ep2). Two cases are con-
sidered: a high flow condition (h) with the kinetic component
being 10% of the total energy, prior to any stenosis (w = 1), and
a low flow condition (1) with the kinetic component representing
1% of the total energy at w = 1. The 15% level of total energy
has been marked and is considered to be within the critical range.
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value, say 10% of the total energy, to Ek1(h) in the
curve representing the function Ek.(h)/Ek1(h), for a
progressive decrease of the lumen area (w -' 0), the
function Ek.(h ) /Ek1 (h) will rapidly approach the level
of 15% of the total energy. This rise will be reflected by
a similar (and detectable) drop in lateral pressure
energy as shown in Fig. 11 by Ep2(h). One may notice
the similarity between the graph of this drop and that
depicted as typical of high flow conditions (,Fig. 10 high
flow curve).
Conversely, the percentage of total energy allocated

to the kinetic component in a low flow situation-
Ek (1)-is a small fraction, generally less than 1%. Thus,
it requires a much higher degree of stenosis for the
function Ek8(l)/Ek1(l) to approach a value of 15% of
the total energy, and hence to show a measurable drop
in lateral pressure energy-Ep2 (1)-than is required in
the high flow condition to obtain the same result. When
this value (15%) is approached, that is when the stenosis
is within the critical area, we are dealing with that por-
tion of the function w-4 that has a very steep slope (Fig.
11). If we consider that, beyond the stenosis, the changes
in kinetic energy are approximately inversely propor-
tional to the changes in lateral pressure energy, we can
see that, in a low flow condition, the changes observed
within the critical area occur at a faster rate than in a
high flow condition.

In an experimental situation, a 15% drop in the lateral
pressure energy is definitely a measurable change. When
this occurs across a stenosis, we can assume that the
critical range has been entered. The drop in lateral pres-
sure energy (post-stenotic) being proportional to the
gain in kinetic energy through the stenosis, we shall
arbitrarily set this value of 15% as one which is definitely
within the critical range, in order to discuss the behaviour
of the function that describes energy changes through a
stenosis. This is not to say that 15% is what we define as
a critical stenosis but is a deliberately chosen value which
we know must be within the critical range.

Conclusions
Although the mechanics of blood flow through a ste-

nosis is known to be a dynamic problem, its interpre-
tation as a static, purely geometrical problem has been
used in both research and clinical work. Thus some au-
thors have defined the "critical" narrowing of a vessel in
terms of the area ratio between the stenosed and un-
stenosed portions.
On the other hand, experimental results have led

others to conclude that the "critical" area of a stenosis
depends on the peripheral resistance and on the actual
area of the stenosis while the area of the unstenosed seg-
ment of the vessel would bear no relation to the value
of the "critical" area of stenosis.

By considering the mechanics of the blood flow
through an arterial stenosis from the standpoint of energy
transfers, we have attempted to provide a physical grasp
of the fluid dynamics involved, which could be used as
a tool in evaluating arterial lesions in man. Our experi-
mental results correlate well with the theoretical solu-
tion. In the calculation of the values, the assumption
of a flat velocity profile was made. The possible magni-
tude of error involved with this assumption is discussed
in the appendix. The changes induced in the system by
the elastic properties of the arterial wall are not incor-
porated in the computation as their relative magnitude
is not thought to be of importance. For the size of artery
of our interest, the role of viscosity has been studied by
other workers2 and follows the simple Newtonian law.
The importance of the length factor as seen in the experi-
mental data, correlates well with the theoretical expecta-
tions. The most important factors in determining the
"critical" value for the stenosis of a vessel are the flow
rate in the unstenosed vessel and the ratio of areas be-
tween the stenosed and unstenosed segments.
The development of a pressure gradient or the de-

crease in volume flow secondary to a critical stenosis is
a reflection of energy loss through it. Most of this loss
occurs through the conversion of lateral pressure energy
into kinetic energy, the subsequent loss of the latter be-
ing mostly irretrievable as it is spent in the generation of
jet turbulence in the post-stenotic segment. The critical
area is defined, for each particular flow rate, as the area
ratio where the values of the kinetic energy through the
stenosis deviate from the theoretical curve. The critical
range of a stenosis is defined as the range of values be-
tween the critical area value and that where the velocity
reaches its maximum value.
The influence of the peripheral resistance on the values

for critical stenosis is affected through the changes that it
produces in flow velocity (V1).
The geometrical ratio between stenosed and pre-

stenotic segments and the velocity in the pre-stenotic
segment provide sufficient information to anticipate the
approximate value of a critical stenosis if the total energy
of the system is known. In most large and medium sized
arteries, the value of the lateral pressure energy at rest
(in the horizontal position) approximates to the total
energy value in the vessel, kinetic energy being a small
fraction of the latter. Under conditions of high flow rates
(exercise, drug-induced vasodilation, arterio-venous com-
munication) the kinetic energy component becomes im-
portant and must be taken into account. Measurement of
pressure gradients across stenosis under operative condi-
tions (low cardiac output, increased peripheral resistance;
hence, low velocity, etc) does not provide an answer to
the significance of a lesion. Vasodilating drugs may be
used to induce high volume flows, although the magni-
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tude of this increase may not correspond to that obtained
by exercise.

Appendix
In most fluid systems, velocity distributions over a

cross-section are quite pronounced. This variation in ve-
locity, plus the fact that kinetic energy is a power func-
tion of velocity, can introduce errors in the computa-
tion of kinetic energy when using the space-average value
of velocity, that is, assuming the velocity profile to be
flat.
A similar type of consideration has to be made with

respect to the time-average velocity, when dealing with
any type of time dependent flow, such as pulsatile ar-
terial flow. In the same manner, the use of time-averaged
values of velocity can introduce considerable errors in
the computation of kinetic energy values.

Errors Introduced by the Assumption of a Flat Velocity
Profile

Considering steady flow, the weight of the fluid that
passes through a cross section of the vessel in unit time
equals yQ; Q: discharge, y (specific weight) = pg.
The true average kinetic energy over the cross-section

of the vessel, expressed in K.E. per unit weight would be:

v = T L v(t) dt
T

T being the time period over which the average is taken.
We have then,

Ek= V = [l t t1 [12]2g - 2g [2

The true average kinetic energy can be calculated from
the velocity recordings (as functions of time) by con-
sidering small increments of time (dt) when the instan-
taneous velocity is v(t). The volume of fluid that passes
through the vessel cross-section in this period (dt) is
Q = Avt dt and its weight: yAv(t) dt

Kinetic energy per unit weight in this time period will
be vt2/2g and the kinetic energy of the total fluid weight
passing through the cross-section will be:

2
V(t) (yAv(t) dt) = PAv(t) dt

which over a long period of time (T) will equal:

2 'A V(,)3 dA [9]

Comparing equation 9 with the conventional way of com-
puting kinetic energy:

V2/2g [10]
we have:

1
Q|v() dA 2|v_ (

3vCA |v() _dA'AQ - 2gQ JA 'A

V2/2g V3A/2gQ VA = a [11]
This ratio (a) between the true value of the kinetic
energy and the value of the kinetic energy computed
by using the average velocity v = Q/A is called the
'coefficient of kinetic energy." This coefficient will be
larger than 1.0 unless the velocity is uniform across the
entire cross-section. In steady laminar flow (parabolic
distribution) the value of a = 2.00, while for turbulent
flow in a smooth pipe a = 1.06. Hence, the error involved
in using the space-average value of the velocity in the
term v2/2g for computation of kinetic energy amounts to
6% in fully developed turbulent flow and to 200% in
laminar flow.

Error Introduced by Using the Time-averaged Value of
Velocity (V) for the Computation of Kinetic Energy

Assuming now a flat flow profile, the true time-
average of velocity in unsteady flow is:

[13]pfAV(tT 3 dt2T

The time averaging Ek per unit weight will be:

2 Av(t) 3dt 1 fv(t3dt

ly |Av(t) dt 2g vV(t) dt
T T

comparing the values from equations [14] and [12]:

T V(t)3 dt

2g T V(t) dt
T

2

2gT2 [| V(t, dt]

[14]

V(t) dt

1 [f V(t) dt]

We shall call a(t) the "time coefficient of kinetic
energy." Its value depends entirely on the waveform.

Considering arterial blood flow, the errors involved in
computing kinetic energy values by using its time-
averaged velocities (V) are greater than those involved
in using the space-averaged velocities (V). In space-
averaged velocities, the largest possible error in comput-
ing kinetic energy values would be in the case of a par-
bolic flow profile (laminar) when the true kinetic energy
value would be 200% higher than the estimated assuming
the same average velocity for the entire cross-section. It
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is doubtful that a true parabolic profile ever exists in
arterial blood flow and, if it does, it could only occur in
certain locations and for a short period in each cardiac
cycle.
The errors involved in using time-averaged velocities

for the computation of kinetic energy values are of
greater magnitude. In certain physiological waveforms
we have found the true values of kinetic energy to be
over 1,000% higher than those obtained by computing
kinetic energy from recorded time-averaged velocities.

In this study we have computed the kinetic energy
values from differential time elements in the waveform
according to equation (14). We have assumed a flat
velocity profile. The reason for this lies in the difficulty
of plotting the flow profile through the stenosis and in the
fact that, as the stenotic area decreases, we are dealing
with a turbulent jet in which the coefficient of kinetic
energy must approach the 1.06 value.*

In fact, in the range of very small areas of stenosis,
the errors incurred in the computation of kinetic energy
depend more on the difficulty of estimating with accu-

racy the cross-sectional area of the vessel, than in time
or space velocity distributions, for the flow becomes a
turbulent jet (flat profile), and the velocity wave is
damped and approaches the configuration of the time-
averaged velocity tracing.

In detailed haemodynamic studies, it may be neces-

sary to consider both the space and time distributions
of velocities simultaneously. The basic mechanics are

* The errors incurred by computing kinetic energy values from
time-averaged velocity values also become smaller as the stenotic
area decreases because of the damping effect of the velocity wave

amplitude. These are still of sufficient magnitude to be unaccept-
able for computation of kinetic energy values.
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provided in equations (1 and 15), and the computations
provided in equations (11 and 15), and the computations
space (A) and time (T).
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