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COMMENT

MATCHING, STATISTICS, AND COMMON SENSE

Two papers have appeared recently, one by Mullins,
Agunwamba, and Donohoe (1982) and one by Wearden
and Burgess (1982), disagreeing with conclusions of my
1979 paper on choice experiments (Baum, 1979), the
former on the basis of argument, the latter on the basis
of additional data. Both these papers appear mistaken;
the conclusions of my earlier paper still stand.

Mullins et al. criticize my discussion of variations in
the exponent a of the power law of behavior allocation:
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I considered separately sets of data in which B, and B,
were measured by counting discrete responses and sets
of data in which they were measured by time spent at
the alternatives. I found both undermatching (a <1.0)
and overmatching (a>1.0), as well as matching (a=
1.0). Undermatching was the more common deviation
from matching, by far.

Mullins et al. make three claims: (1) that I incorrectly
concluded that the time ratios generally conformed to
the matching law, (2) that the methods I used to assess
deviations from matching were faulty, and (8) that my
suggesting a range of slopes that might be considered
to approximate matching was mistaken. I consider all
three claims incorrect. I will consider them in order.

MODES, SKEW, AND SCALE

The first claim disputes my description of the fre-
quency distribution of power-law exponents (slopes in
log-log coordinates) from ratios of times spent at two
alternatives. Whereas the distribution of slopes from
response ratios was roughly symmetrical with a mode,
median, and mean clearly less than 1.0, I described the
distribution of time-derived slopes as skewed toward
values less than 1.0, but having a mode at about 1.0.
The skew reflects a higher frequency of undermatching
than overmatching among those data sets. The asym-
metry leads also to a median and mean less than the
mode at 1.0. For a skew-independent estimate of cen-
tral tendency, the mode (provided a clear mode is pres-
ent) is the best.

Attempting to argue that the central tendency fell
short of 1.0, Mullins et al. make statements such as
“two thirds of the observed slope values for the time
measure are less than 1.0.” They go on, “This depar-
ture from symmetry with only 17 values greater than
1.0 is statistically significant (p <.02)” (p. 324). Al-
though no hint is given as to what statistical test was
used or what assumptions it entailed, these statements
indicate nothing more than that the distribution was
skewed.

Can something be said about central tendency? Mul-
lins et al. try, by redoing the frequency distribution
using smaller class intervals than I used. Indeed, they
find that a clear mode appears at about .9. But anyone
who has ever struggled to find the best representation
of a frequency distribution knows that playing with
class intervals can be a dangerous game. Using smaller
class intervals means fewer data per class interval,
spreading out the data, and less reliable estimation of
the mode. Indeed, if the class intervals are too small,
one finds more than one mode. Although Mullins et al.
make no mention of it, their class intervals were small
enough to produce a multimodal distribution. Together
with the mode they mention at .9, there are two lesser
modes at .7 and 1.1.

Using large enough class intervals to produce a uni-
modal distribution results in a modal class interval
that includes 1.0. I preferred the single mode, and still
do, for two reasons: (1) I see no sense in more than one
mode, and (2) none of the slopes between .9 and
1.1 was, by any obvious criterion, reliably different
from 1.0.

Mullins et al. make another error in analyzing the
variation in slope: Instead of representing the slopes
on a logarithmic scale, as I did, they use an arithmetic
scale. An arithmetic scale is appropriate to display and
compare differences. Slopes and exponents, however,
have the properties of ratios. Factors give the relation-
ships among them, not differences. A slope of .4 differs
from a slope of .8 as much as one of 1.6 differs from
one of .8. A slope of 1.2 is closer to a slope of .8 than
is a slope of .4. The basic reason for this is that the in-
verse of any slope or exponent is its reciprocal. Since
1.0 equals its own inverse, it represents the center of
the scale, half of which lies between 0 and 1.0, and half
of which lies between 1.0 and . The logarithmic
transformation has two desirable effects: It renders the
scale symmetrical around 1.0, and it represents factors
as distances, so that equally different slopes appear
equally far apart. To get a correct idea of the relation-
ships among different slopes, particularly degrees of
undermatching and overmatching, one should use a
logarithmic scale.

The paper by Wearden and Burgess (1982) illustrates
how far one can be misled by the use of inappropriate
scale. They gathered slopes from data sets published
between 1977 and 1979, constructed frequency distribu-
tions, and also compared slopes for time ratios with
slopes for response ratios in those experiments where
both measures were taken. Like Mullins et al., they
represented the slopes along an arithmetic scale. Com-
paring the frequency distributions, they conclude, “Un-
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Fig. 1. Frequency distributions of the slope a ob-
tained by fitting the power law of choice to the various
sets of data compiled by Wearden and Burgess (1982).
Vertical lines show the location of 1.0. The upper dis-
tribution shows slopes fitted to time ratios; the lower
distribution, to response ratios. Note logarithmic axes
for slope.

dermatching (slope less than 1.0) was predominant in
both response-distribution and time-allocation mea-
sures” (p. 341).

Figure 1 shows frequency distributions of the slopes
gathered by Wearden and Burgess represented on loga-
rithmic scales. The class intervals used for Figure 1
were .1 log unit wide as in my 1979 paper (incorrectly
reported there as .2 log unit). The time slopes clearly
show a single strong mode in the class interval includ-
ing 1.0, which contained slopes from .9 to 1.12. The re-
sponse slopes, in contrast, show a single mode at about
-8—undermatching. In other words, when slope is scaled
logarithmically, the slopes gathered by Wearden and
Burgess agree completely with my earlier analysis
(Baum, 1979, Figure $3).

Comparing time slope with response slope in those
experiments where both were determined, Wearden
and Burgess examine differences between the slopes, in-
stead of ratios. As a result, they draw several erroneous
conclusions. Figure 2 shows that, when the slopes are
represented on logarithmic scales and compared, the
results agree with the results of my analysis: Inequality
occurs commonly, and when the slopes differ substan-
tially, the time slope is always the larger (Baum, 1979,
Figure 4). Too little overmatching occurs for any firm
conclusions about its relative frequency.

WILLIAM M. BAUM
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Fig. 2. Scatter plot of slope fitted to time ratios versus
slope fitted to response ratios, for all experiments, com-
piled by Wearden and Burgess (1982), in which both
measurements were made. Diagonal line shows locus of
equality. Note logarithmic axes.

Instead of more discussion of modes and variation
in slopes from study to study, we need experiments
that give some understanding as to why time slopes
generally exceed response slopes and what factors cause
the slopes to vary. Davison and associates report evi-
dence that scheduling of reinforcement can increase or
decrease the choice slope (Davison, 1982; Taylor &
Davison, 1983). Research on changeover requirements
indicates that increasing the cost of changeover can in-
crease the choice slope across the entire range from
undermatching to overmatching (see Baum [1982] for
a summary, and Dunn [1982]). Keller and Gollub (1977)
found that extended training can change performance
from matching to undermatching. More research along
such lines will allow us to decide whether the match-
ing law can be upheld or whether it must be replaced.

RELIABILITY

The second claim of Mullins et al., that I used in-
correct methods of evaluating the fits of the various
data sets to the matching law, derives from the nar-
rowness of their interpretation of the 72 statistic and
an unfounded preference for parametric statistics. The
statistic 7%, often called the “proportion of variance ac-
counted for,” equals
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where v is the total variance in the data, and v, is the
variance around the fitted curve or line. In usual linear
regression, in which both slope and intercept are al-
lowed to vary, r* varies between 0 and 1.0, because v,
cannot exceed v. One way to assess how far a set of data
deviates from matching is to ask how much the fit to
the data deteriorates if one assumes matching. This
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means fitting a line with slope of 1.0; only the intercept
is allowed to vary. Unless the fitted slope happens to
equal exactly 1.0, the two-parameter 72 (H) will exceed
the one-parameter r* (H’). In addition, H’ may even de-
crease to less than 0, because v,, the variance around
the line with assumed slope 1.0, may exceed v, the total
variance in the data. Mullins et al. state, “It is sufficient
to point out that H’ may be negative to undermine the
reliability of the measure” (p. 825). They are mistaken,
because although 7* is called the “proportion of vari-
ance accounted for,” it is really a comparison between
the two variances v and v,. Negative H’ has a straight-
forward meaning. It means that the fit to the line
with slope 1.0 is so much worse than the two-parameter
fit that one would actually have done better to assume
a slope of zero. This occurs when the fitted slope is
less than .5.

Mullins et al. go on to suggest a parametric statisti-
cal test for deviation from a slope of 1.0. For reasons
that remain unclear, they prefer it to the nonpara-
metric test that I used. They state, “If it can be as-
sumed that the distribution of the deviations about
the regression line is approximately Normal (as could
certainly be done for many of the data sets in ques-
tion), a parametric test . . . would be more appropriate
than a nonparametric test” (p. 326). Rarely, probably
never, will an experiment produce enough data to per-
mit verifying the assumption. Precisely this uncertainty
led me to prefer the nonparametric test. I cannot see
how a test requiring an unverifiable assumption can be
more “appropriate” than one that makes no such
assumption.

ESTIMATION

The third claim of Mullins et al., that I was mistaken
in suggesting the range of slopes from .9 to 1.11 to ap-
proximate matching, points up a philosophical differ-
ence between us. In suggesting the range of slopes, I
was reporting my findings. I had no special concern
for the question, “How far can a slope differ from 1.0
and still be consistent with matching?”” That depends
on the degree of unsystematic variation in the data.
I was trying, rather, to answer the question, ‘“‘How
close can a slope be to 1.0 and be considered a reason-
able approximation to 1.0?"” Someone else might answer
with a smaller or larger range than I did, but Mullins
et al. seem to feel the question itself is at fault. They
argue that each data set should be submitted to statis-
tical test, even those that are fitted by slopes close to
1.0. They give as an example, “if all of a large number
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of observations lie exactly on a straight line of, for ex-
ample, slope .97 it would hardly be appropriate to de-
cide that the ‘true’ slope is 1.0” (p. 326). In practice,
of course, such an occurrence is extremely unlikely. But,
suppose one experiment produced a slope of .97 that
by some statistical test was significantly different from
1.0 with a p of .001. Mullins et al. would insist that the
slope was different from 1.0. I would never wish to take
such a position. No one will ever repeat the experi-
ment exactly. Even if the test were perfectly valid (are
all assumptions ever met?), why isn’t this the one case
in a thousand that p tells about? If I find a set of data
fitted by a slope of .97, I will always want to call that
a good approximation to 1.0. No statistical test will
ever substitute for plain common sense.

William M. Baum
University of New Hampshire
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