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SUMMARY

1. A system proposed in a previous article as a model of responses of
visual cells has been analysed with the purpose of predicting the features
of responses to single absorbed photons.

2. As a result of this analysis, the stochastic variability of responses has
been expressed as a function of the amplification of the system.

3. The theoretical predictions have been compared to the results
obtained by recording electrical responses of visual cells of Limulus to
flashes delivering only few photons.

4. Experimental responses to single photons have been tentatively
identified and it was shown that the stochastic variability ofthese responses
is similar to that predicted for a model with a multiplication factor of at
least twenty-five.

5. These results lead to the conclusion that the processes responsible
for visual responses incorporate some form of amplification. This con-
clusion may prove useful for identifying the physical mechanisms under-
lying the transducer action of visual cells.

INTRODUCTION

The process of vision starts with absorption of light in the pigments of
visual cells in the eye and ends with the recognition ofpatterns as evidenced
by changes of behaviour or by conscious experience. The initial step in this
process is the transformation of light into a signal capable of influencing
the activity of nerve cells, and the present paper will be concerned ex-
clusively with these initial events.
The earliest change produced by light must be some alteration of the

visual pigment molecules, such as the transformation of rhodopsin from
its 11-cis configuration to its all-trans structure (see Wald, 1961). Follow-
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ing this, processes are initiated which lead to a potential change of the
membrane of visual cells. In the cells of the compound eyes of inverte-
brates, membrane potential is decreased by illumination (Hartline,
Wagner & MacNichol, 1952; Fuortes, 1959a; Naka & Eguchi, 1962), and
the following considerations will be limited to the visual responses recorded
from cells in the eyes of Limulul3. One would hope, however, that the con-
clusions may have some general validity.

THEORY

Hodgkin's model. Examining responses of visual cells of Limulus,
Hodgkin observed that the main features of the potential changes evoked
by light can be reproduced by a system such as that represented by the
electrical network of Fig. 1B (Fuortes & Hodgkin, 1964). In this model,
the shape of responses to a given input is a function of the number of
stages n. For a given number of stages, the amplitude of the responses is
controlled by both parameters rl = RC and r2 = Cfu, whereas the time
course of the response is controlled by r, only. If the input is an instan-
taneous impulse i3oAt at t = 0, the output vn (t) will be

Vn(t)
~ tn-1 e-4ITrv~(t) -V0At (n-l)n- (1)

Plots of equation (1) for different values of n are shown in Fig. 1 A.
The change of membrane potential V(t) in visual responses evoked by

flashes of intensity I can be related to the output of the model by intro-
V I

ducing two constants of proportionality A =-and B = =

One obtains then
AIt tnlet/2l

) B (n-1)! T2n (2)

as the expression describing the electrical response of a visual cell to a
brief flash of light.
The network of Fig. 1 is a linear system and, therefore, it can reproduce

visual responses only over their limited linear range. Non-linearities
similar to those observed in visual cells can be simulated by this model if
rl is placed under the control of the output vn, for instance using the
relation

= ~~~~~~~~~~~(3)

It then becomes possible to reproduce responses over a wider range of
stimuli. The best fit between theoretical and experimental responses has
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been obtained by Marimont (1965) using a slightly different form of gain
control and is illustrated in Fig. 2.

Gain. A typical feature of the model of Fig. 1 is the possibility to pro-
vide gain. Considering responses to an instantaneous impulse, it is con-
venient to define gain as the ratio

V(t)dt
T

G = JO = (T1) (4)

It is easily seen that if each stage has a gain of g, over-all gain is gn where
g can be greater than unity.

Particle models. Other models have been proposed which lead to
equation (1) but cannot supply gain. Borsellino, Fuortes & Smith (1965)
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Fig. 1. A. Response of the model of Fig. lB to an instantaneous impulse. The
figure shows normalized plots of equation (1) for n = 1, 2,..., 12. Voltages are
measured in ordinate in units of peak output voltage, Vm,S.

B. Electrical network reproducing kinetics of visual responses. The network
consists of n identical stages including the two time constants each: 71 = BC and
72 = I.IC. The components separating the successive stages are amplifiers of in-
finite input impedance and of mutual conductance /. In order to incorporate
suitable non-linearities in this model the conductances I/R are made linearly
dependent upon the output voltage v. (see equation 3). (Modified from Fuortes &
Hodgkin, 1964.)
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have pointed out that equation (1) is satisfied by a system in which a
response is produced when a particle capable of moving forward and back-
ward along a chain of n sites reaches the end of the chain. However, some
important features of visual responses involving non-linearities can be
reproduced by this system only if its multiplication factor (defined as the
number of particles reaching the output per number of particles intro-
duced at the input) is much less than unity. More recently, Levinson (1966)
has proposed a model based on the assumption that absorbed photons
activate 'sites' in the visual cell and that a response is obtained if n
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Fig. 2. Comparison of experimental and theoretical responses. Solid lines are
photographs of responses recorded from a visual cell in the eye of Limulus by
means of an intracellular electrode, following stimulation with flashes or steps of
light. Light intensity in arbitrary units is indicated near each pair of records. The
dots show points calculated from the model of Fig. 1B; gain control was obtained
using the relation I/T1 = 1/IT {1 + (v,_,1/w)} rather than equation (3). This corre-
sponds to moving the origin of the gain control loop from the last stage to the stage
before last. In this way, a faster feed-back is obtained and excessive oscillations
of the output of the model can be avoided. Temperature 13° C. (Modified from
Marimont, 1965.)
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particles of a pre-existing substance SO reach a site, provided that the site
is not inactivated by arrival of particles of another substance Si. The
multiplication factor of this system (defined as the number of responses
per number of activated sites) is necessarily less than unity.

Diffusion of a substance satisfies input-output relations similar to those
of Hodgkin's model but again it implies a gain less than unity.

Compartmental model. It seems useful to determine whether visual
responses have the features predicted by models providing amplification
or by systems without gain since different physical processes are sug-
gested by these two classes of models.

In order to study this question, we found it convenient to represent the
model of Fig. 1B as a system of compartments because compartmental
models are especially suitable for analysis of stochastic properties, and
stochastic properties are predictably related to gain. A compartment is
defined as the state or location of particles (Solomon, 1961; Berman,
Shahn & Weiss, 1962). The number of particles in compartment i is called
qi and the fractional rate of transition of particles from one compartment
to another is called A2. The network of Fig. 1 is analogous to a sequence
of n+ 1 compartments (n = 0, 1, 2,..., n) arranged as shown in Fig. 3 in
which compartment 0 may be thought to represent absorption of light and
the rapid transformations induced by light on the pigment molecules (the
so-called 'light reactions'). This system is characterized by the equation

dqi 'Al qi + A2qi-1 (i = 1, 2, ... , n). (5)dt

It is assumed that a flash of light of intensity I and duration At activates a
number acM of particles in compartment 0, proportional to the number of
photons in the flash, M = IAt. The average life T of these particles is sup-
posed to be very short so that the average number of particles present
during the flash will be qo = aMTOIAt = aclIO. The number of particles
introduced into compartment 1 during the flash will be A24OAt, and if At is
brief compared with the time course of the response (which is controlled by
the time constant 1/Al), this number may be regarded as the initial number
of particles in compartment 1: q1 (0) = A240At. With this initial condition,
the solution of equation (5) is

(t) 40 t,,tn1 e-ki
qn(t) = nAtA2 tn-1).! (6)

It might be objected that the correct initial conditions for compartment 1
are

q1(0) = 0 and d q (0) = MA2 = - 2qoAt.dt 'r~~~~o
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However, the initial condition mentioned previously is equivalent to these
for all practical purposes if T and At are much shorter than the time
constant 1/Al; more precisely, if r0 At < 1/Al. The recorded electrical
response V(t) is assumed to be proportional to the number of particles in
the last compartment

V(t) = qn (t). (7)
Equation (6) can be simplified introducing a parameter with dimensions of
rate

(n-I)!(1
A

A2 A2 A~~2 A2 12 A2

A1A2 1A A2 A1 -A2 l1A2 1

B C

A/p xq; =A2qA
A A q-2 2 A3 qn 1-A2

A11

Fig. 3. Compartmental representation of the model of Fig. 1 B. The parameters of
this model correspond to the parameters of the electrical network as follows:

Compartmental model q1 Al A2 n
Electrical model vi 1/RC = lIT1 2P/C = 1/T2 n

In the electrical model, the elements 1a supply current to the stages i+ 1 without
draining current from the preceding stages i. In order to reproduce this feature in
the compartmental model, i+1 must receive particles from i, but i must not lose
particles in the process. Thus, the outflow from i into i + 1 (A2qi) must be com-

pensated by an equal influx (-A2qi). This can be accomplished by subtracting A2
from the rate of decay Al. One obtains then

dq, = -(Al-A2)qj-A2qj+A2q_jL = -ALqi +A2qi-.dit
A chemical system satisfying this relation has been described in a previous article
and is reproduced in B: a precursor reacts with an enzyme in compartment i to give
a new enzyme in compartment i+ 1 (Borsellino et al. 1965).
The gain control of equation (3) can be incorporated in the compartmental

system using the relation

A1 = i1w -n=X+A3q3

and a typical compartment of the non-linear system is illustrated in C.
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and a dimensionless variable 6 = Alt. One obtains then

qn (t) = A0AtA6n-1e-. (6B)
For the case of inputs in the form of an impulse, gain G is defined as

qn(t)dt n(8)
qOAt A

Since the average life of particles is 70 in compartment 0 and 1/Al in com-
partment n, the average number of particles introduced by the flash in
compartment 0 will be qoAt/ro and the total number of particles in com-
partment n will be

Al qn (t) dt-

The ratio between these two numbers will be called the 'multiplication
factor' F of the chain of compartments:

AJ qn (t) dt
F = '0zqAt/To = AlToG (9)

Finally, the ratio between the number of particles generated by the flash
in compartment 0

aM = q°0At
To

and the number of absorbed photons Q = KM will be called the 'initial
quantum yield' Y0

am a

Q =K (10)
In the following treatment we shall assume that Y0 < 1. In physiological
experiments, the directly measurable quantities are the voltage change
V(t), and the number of absorbable photons in the flash M = Q/K. In
order to evaluate F from equation (9), it is necessary to know in addi-
tion the value of vi in equation (7), of Y1 in equation (10), and of K. Since
these parameters are unknown, F cannot in general be deduced directly
from the experimental results. However, if the input of the model of Fig. 3
is a single particle (40 = TO/At), its output should show random variations
and their statistical properties should be recognizably different for
different values of F. The features of the responses to be expected for
different amplifications can be deduced from the considerations outlined
below and given in greater detail in the Appendix.

Stochastic treatment of compartmental model. Each particle in a compart-
ment can either decay or it can generate particles in the following com-
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partment. The number of particles in each compartment will then be
considered as a stochastic variable X1 (t), X2 (t),..., X. (t) and each of these
variables can assume the integer values x = 0, 1, 2,....
We shall define

Pi,x(= Prob{Xi(t) = x} (11)

as the probability that the number of particles in the ith compartment at
time t is x.
The average number of particles in the ith compartment is

co

E Pi.x(t)x = qi (t) (12)
X=O

where qi (t) is the solution of equation (6).
As explained in the Appendix, the probability that the number of

particles at time t is x, is given by the Poisson equation

1
Pi,x(t) = 3-! {qi (t)}xe-qi(t). (13)

If one assumes that the measured latency of a response is the time at
which the first particle appears in the nth compartment, latency distri-
bution of responses can be predicted as follows:
The average rate of arrival of particles at the last compartment at the

time t is
v(t) = A2qn-1(t) (14)

The average number of particles arriving within t will then be

{ v(t)dt = A2f qn1(t)dt (15)

and the probability that no particle arrives within t is (see Appendix)

Pn, (t) = exp (-A2J' qn-i(t)dt} (16)

This can be considered also as the probability that all particles arrive
after t; therefore the probability that the first particle arrives between t
and t + dt is

d
Pn, 0(t)-Pn 0 (t + dt) = -dtPn,o(t) dt (17)

and the probability density of arrival of the first particle is

P*(t) = -d Pn, (t) = A2qn-I (t)exp{-A2 qn-l(t) dt} (18)

The probability P*(t) can be expressed as a function of the total number
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of particles arriving at compartment n. We shall call this number f and
we shall define it as

ft = A2 qn-1 (t) dt = A1J qn (t) dt = CoAt 2

With this definition, equation (18) can be written

(19)

P*(t) = A fl (Alnt)n-2e-Alt

07

06

05

04

03

02

0 1

exp (-AIf{(A6(n-2)! dt). (18B)

0.1 5

0.1

0

005

1 2 3 4 5 6 7
Alt

8 9 10

Fig. 4. Probability of arrival of first particle in compartment n when responses are

produced by different numbers of particles. Curves calculated from equation (18 C)
taking n = 10 and A1 = 1. The value of ,B (the total number of particles arriving
at n) is indicated near each curve. The dashed curve is the solution of equation (6)
with n = 10, qoAt/To = 1 and Al = A2 = 1. This solution is: qlo(t) = t9e-t/9! and
describes the average response to one particle in compartment 0 when the multi-
plication factor F is unity.

Knowing ft, the numerical evaluation of this expression can be easily
performed noting that, when A1 1

(18C)P* (t) = tn-2e4 ]expt _6 'IOr=-t r!e])
where the expressions in square brackets are found in the tables of the
Poisson distribution.
Values of P* from (18C) for n = 10 and for different values of are

plotted in Fig. 4. The curves in this Figure illustrate therefore the latency
distributions expected when the total number of particles arriving at the

*:
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last compartment has the values indicated by the figures near each curve.
This number, fi, is related to the amplification of the system by the
expression:

fi= T F = A1TO-O t G, where
TOto toto

is the number of particles introduced in compartment 0, F is the multi-
plication factor and G is the gain. Therefore, if the input 4OAtlro is known,
it should be possible to estimate the amplification of the system from the
latency distribution of responses.

Features of quantal responses in systems with different gain. The relation
between the number of particles qn(t) and the electrical response V(t) is
given by equation (7) as V(t) = i5qn (t), where i3 defines the voltage change
produced by one particle in compartment n. When we consider the number
of particles as a random variable Xn (t) the electrical response V(t) will also
be a random variable defined by V(t) = -vX. (t). In order to reconstruct
these stochastic responses we suppose that the fluctuations of Xn(t) occur
only at discrete, equally spaced times of interval 1/Al; in this way each
particle arriving at n evokes an 'elementary response' of height -v and of
duration 1/A1 (the average life of particles in compartment n).

Figure 5 illustrates possible individual responses and their expected
averages for inputs consisting of a single particle (qo/t/ro = 1) and for
different amplifications. It has been assumed that 1/Al= 1. Latency
distributions have been retraced from Fig. 4 noting that when the input
is a single particle, f8 = F. It has been mentioned above that the response
v/A1, evoked by one particle in compartment n, will be called 'elementary
response'; the response to injection of YO particles in compartment 0
(corresponding to absorption of one photon) will be called 'quantal
response'. A quantal response may be composed of several elementary
responses if F > 1.
We have then in the plots of Fig. 5 the average form of the response, the

latency distribution and the possible organization of individual responses
to be expected from systems with different amplification when the input
4OAt/ro = 1. Comparison of the experimental results with the curves of
Fig. 5 should give an estimate of the number of particles

fi = AJ qn (t) dt

contributing to the experimental response. If it could be established in
addition that the responses considered are evoked by a single particle at
the input, the number f, would give an estimate ofthe multiplication factor.
In general we would expect that if F < 1, the response to one particle in
compartment 0 should be a brief transient appearing with widely variable
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latency, whereas ifF > 1 the response should resemble the usual generator
potentials and latency scatter should be restricted.

*

,-;=

/ r _ lementary responses

0 1 2 3 4 5 6 7 8 9 10 11 121314 15 16 17 18 Xlt
Fig. 5. Latency distribution and possible shape of response in systems with
different amplifications. Latency distributions have been retraced from Fig. 4. The
numbers near each curve indicate the number of particles contributing to the

response: Aif q,(t)dt = ,8. This number is equal to the multiplication factor F if

the number of particles introduced in compartment 0, q,Atl/r = 1 and it is equal
to gain G if q0At/to = 1/rOAL. The smooth curves are average responses to inputs of
1/roAL particles when gain has the values indicated near each curve. Probable indi-
vidual responses are the function TV = 11XIO(t) and have been constructed assuming
that fluctuations of Xl0(t) occur only at equally spaced intervals, as explained in
the text.

METHODS
The potential changes occurring in visual cells following illumination were led off by

means of intracellular micro-electrodes. The general methods used for stimulating and
recording have been described in previous articles (Fuortes, 1959a; Fuortes & Hodgkin,
1964); in addition a Mnemotron computer (C.A.T.) was used for detecting responses to dim
flashes occurring in the presence of the large 'noise' which is usually characteristic of deeply
dark-adapted preparations. The output of this computer, giving the average response to the
flashes, was recorded on an x-y plotter. Controls were routinely performed to make sure that
the conditions of the preparation were stable while these records were taken.
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RESULTS

At first sight, the experimental results seem to favour the view that
absorption of a photon elicits the type of response expected from a system
without gain. Several years ago, Yeandle (1957) found that dim lights
applied to dark-adapted preparations evoke sharp discrete waves (Fig. 6A
and B) which could be produced (according to statistical criteria) each by
absorption of a single photon. It was later observed that, for dim filu-
minations, frequency of occurrence of these discrete waves is linearly
related to light intensity and that their latency distribution following
flashes is similar to the time course of composite generator potentials
(Fuortes & Yeandle, 1964). It seemed reasonable to suggest on the basis
of these findings that these discrete waves are unitary responses to single
absorbed photons and that the generator potentials evoked by brighter
lights result from summation of many discrete waves. However, two
observations are difficult to reconcile with the view that Yeandle's dis-
crete waves are the elementary components of generator potentials; firstly,
discrete waves disappear during light adaptation (as shown in the experi-
ment of Fig. 6C), although it is well known that generator potentials can
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Fig. 6A. Discontinuous activity recorded during constant illumination. Occasional
discrete waves were recorded from this cell in the absence of light as shown in the
top record (-oo). Frequency of discrete waves increased with illumination, as
shown in the other records. Figures at right measure intensity of constant light in
logarithmic units. Temperature 70 C.

B. Discrete waves recorded following flashes. Numerous discrete waves were
present in this unit in darkness. Probability of occurrence of these waves increased
transiently following dim flashes. This increase is not apparent in the few samples
shown in the illustration but could be demonstrated by summing responses to many
flashes, as shown in the inset. Inset: Mnemotron record obtained by summing 512
responses to flashes of intensity - 7-2; 256 responses to flashes of intensity - 6-9;
and 128 responses to flashes of intensity - 6-6. Temperature 240 C.

C. Changes elicited by light-adaptation. (a) is a record of the activity present
during dim, constant illumination; light intensity was increased by a factor of
four in (b) and returned to the original intensity in (c). The discrete waves which
appeared after a few seconds of silence in (c) had approximately the same size as
those recorded in a.
D. Activity recorded following steps of light. Steps of light of 5 sec duration and

of intensity indicated (in arbitrary logarithmic units) near each record were applied
at time 0. Illumination evokes a sustained depolarization with superimposed dis-
crete waves. Frequency of discrete waves is greater at the beginning of the illu-
mination. All records in this figure are from the same unit. The preparation was
more deeply dark-adapted when the records on the right-hand side were taken.
Temperature 20 'C.
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still be evoked in these conditions. In order to interpret this finding it may
be suggested that discrete waves do not disappear during light adaptation
but rather become too small for detection. However, there is no evidence
in the records of Fig. 6C to support this view, since the first discrete waves
which appear as the preparation recovers (record c) have approximately
the same size as those present in control conditions (record a). These
findings are certainly not crucial but they appear to suggest that the
principal effect of light adaptation (as produced in this experiment) is to
decrease the frequency rather than the size of the discrete waves.

Secondly, it can be shown on occasions that discrete waves evoked by
dim illumination are superimposed on a smooth generator potential. This
type of result is illustrated in Fig. 6D (see also Fuortes, 1959b). It is
evident in these records that the small sustained depolarization of the two
tracings labelled - 6-6 cannot be made up of the relatively large discrete
waves recorded from this cell. It seems unlikely, therefore, that generator
potentials result necessarily from combination of discrete waves.
In view of these difficulties, it is important to re-examine the features

of response to dim flashes.
Linearity of responses to dim light. It has been assumed so far that one

absorbed photon is sufficient for eliciting an electrical response. However,
since this assumption could not be proved unequivocally in previous
research (Fuortes & Yeandle, 1964) it is important to reconsider the question
because arguments and conclusions might change if this assumption were
not valid. Responses to large number of flashes of different intensities
were summed and averaged on a Mnemotron Computer. Figure 7 shows
average responses obtained from a cell using three different light inten-
sities. The flashes used to obtain the curve labelled - 7*2 delivered 37*5
absorbable photons in the average. Of these, not more than four passed
through the rhabdome where the pigment is located. The optical density
of the rhabdome is difficult to estimate, and our attempts to measure the
absorption of the visual pigment have not given very precise results.
However, it appears from our measurements that in the experimental
conditions used in this study (the beam of light was perpendicular to the
optical axis of the ommatidium) the rhabdome absorbs less than 10% ofthe
light impinging upon it. Therefore, if four photons are delivered to the
rhabdome, less than 0 4 can be absorbed (K < 0x1). For the other curves
(- 6-9 and - 66) light intensity was doubled, and the number of stimuli
was halved so that a constant total number of photons was delivered in
each set. It is seen that the averaged response curves are approximately
equal in size and shape. This finding is consistent with the view that single
absorbed photons elicit an electrical response, but is inconsistent with the
hypothesis that co-operation of two or more photons is required, since in
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this case the area of the curves should increase with increasing light
intensity. The reasons for this can be clarified with reference to Fig. 8 (see
also Fuortes & Yeandle, 1964); if each usefully absorbed photon produces
a response, then the number of quantal responses should be proportional
to number of photons absorbed. Thus, equal total numbers of photons

2-0

- 6 :6
.-7-2\

0.5

0 01 02 03
Seconds

Fig. 7. Average responses to flashes. The Figure shows curves obtained by sum-
ming responses to a large number of flashes of three different intensities. The
characteristics of the stimulation were as follows:

Light intensity -7-2 -6-9 -6-6
Number of photons between 4000A and 37-5 75 0 150-0
soooA in each flash
Number of photons through rhabdome/ 3.75 7-5 15.0
flash, M
Number of photons absorbed in rhabdome/ < 0 375 < 0 75 < 1-5
flash, Q
Number of flashes delivered 1024 512 256
Total number of photons through 3840 3840 3840
rhabdome

Total number of photons absorbed < 384 < 384 < 384
The ordinate scale was obtained dividing the voltage of the summated response by
the total number of photons through the rhabdome. Temperature 240 C.

delivered using flashes ofdifferent intensities should produce equalresponse
curves, as is the case in Fig. 7. If instead, a response can occur only if two
photons are absorbed during the flash, then one response will be obtained
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if two or three photons are usefully absorbed; two responses will occur if
four of five photons are absorbed, etc. Thus if Q is the average number of
photons absorbed per flash, the number of quantal responses would be

N2= r +( Q)2rT+}e-yoQ = j(e-2YoQ+2YOQ-1) (20)

(see Appendix). As shown in Fig. 8, the number of quantal responses would
increase more than proportionally to light intensity as long as Q is less than
about 1-5. With more photons absorbed, linearity between number of
responses and light intensity is predicted even if coincidence oftwo or more

0 05 1-0

0-2

1.0

1 2 3 4 5
Q

Fig. 8. Relation between number of responses N2 and number of photons absorbed
Q. This figure is constructed assuming that pairs of photons absorbed anywhere in
the rhabdome following one flash produce a response, but single photons have no
effect. Under these assumptions the average number of responses elicited by one
flash (N2) is defined by equation (20). The relation is appreciably non-linear only
if Q < 1F5, as seen in greater detail in the inset of the figure.

photons is required for one response. It was estimated in the experiment
of Fig. 7 that less than 0 4, 0 8, and 1*6 photons per flash were absorbed at
the three lhght intensities used. If this estimate is correct then the area of
curve - 6*6 should be more than twice the area of curve - 72. If this
estimate were in error by a factor of four, curve - 66 should still be about
25% larger than curve - 7-2. Since this does not seem to be the case, it
may be concluded that absorption of a single photon can produce an
electrical response, and the curves of Fig. 7 can be regarded as average
quantal responses although correction of the voltage scale may be required
due to the uncertaintyof the value

=KYo = joqAt/Toct=Y0 M
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(the ratio between number of particles in compartment 0 and incident
photons).

Linearity of the summation curves can be demonstrated only over a
narrow range of light intensities; with flashes delivering more than 40
photons (of which less than four can be absorbed according to the estimates
given above) the size of summated waves evoked by a constant number
of photons decreases and their shape changes as illustrated in Fig. 9A.
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Fig. 9A. Summed responses to constant total number of photons and different
light intensity. Mnemotron records as in preceding Figures (6B and 7). The curves
were obtained by summing 2048 responses to flashes of intensity -6-9; 1024
responses to flashes of intensity - 6-6, etc. The curves have a common rising phase,
but time-to-peak and peak voltage decrease as light intensity is increased.
Temperature 250 C.

B. Responses of a chain of ten compartments to impulse inputs of different
intensities. The Figure illustrates that the qualitative features of the non-
linearities are similar to those observed experimentally.

These changes are qualitatively similar to those occurring at the output of
Hodgkin's model when input intensity is increased, as shown in Fig. 9B. It
is apparent that significant similarities exist in the properties of the non-
linearities of the summated responses to dim flashes and of the output of
the model described by equations (1) and (3).
The relation between area of the average response to one flash and flash

intensity is plotted in Fig. 10 for two different units.
The study of average responses described in the preceding section

indicates that electrical responses can be elicited by absorption of single
photons, but does not reveal whether these responses have the features
expected from systems providing gain (such as Hodgkin's model) or from
the more extensive class of systems without gain (such as Levinson's
model). Analysis of individual responses is required in order to investigate
this question.
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524 A. BORSELLINO AND M. G. F. FUORTES

Classification of discrete waves. Examining individual responses to dim
flashes, we have observed that discrete waves often appear to divide into
two groups (Adolph, 1964); some are large and fast, others are smaller and
slower. In different preparations either the large or the small waves may

predominate so that different amplitude histograms may be obtained

10-S ~~~~~I
10-5-** * ~ *20 July 1965

*29 July 1 65

106 i

x

M 0 1 0-7
" P

10

10-9

O9

1 10 102 103 104 105 106 107
Photons(M)

Flash

Fig. 10. Relation between area of average responses to flashes and light intensity.
Summed responses as illustrated in Figs. 6B (inset) and 7 were elicited by flashes
of different intensities and their normalized area was plotted as a function of the
number of absorbable photons in each flash (M). Units in ordinate are: Area of
response/Total number of absorbable photons (M x number of flashes). With this
type of plot area of response is constant as long as the responses to individual
photons do not interact. Constancy of response can be demonstrated in practice
only over a narrow limit of light intensity but presumably it extends indefinitely
towards the left-hand side of the plot.

(Fig. 11). When amplitude distribution is not clearly bimodal the two types
of waves may be separated by plotting peak height as a function of time
of rise, as shown in Fig. 12. Moreover, it can be observed in the records of
Figs. 13 and 14 that fluctuations of latency are greater for the large than
for the small waves. One may then conclude that discrete waves can

often be classified in two groups defined by the following properties:
group I-small, slow and synchronous (S-waves) and group II-large,
fast and asynchronous (L-waves). The two types of discrete waves can be
demonstrated more easily using flashes of moderate intensity; with
brighter flashes the dispersion of the larger waves decreases and with still
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Fig. 11. Amplitude histogram of discrete waves. The tracings show examples of
waves recorded in darkness or following illumination from two cells. The larger
and faster waves often start from a slower depolarization, similar to the rising
phase of the slower waves (see Adolph, 1964, fig. 9). The histograms indicate that
the waves can sometimes be divided into two groups with respect to peak
amplitude. Temperature: Left, 70 C; Right 25 0C.
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than 6 mV were classified as L -waves. The remaining waves were discarded be-
cause their classification was considered uncertain. Temperature 25° C.
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526 A. BORSELLINO AND M. G. F. FUORTES
higher intensities S- and L-waves fuse and the responses cannot be decom-
posed into discrete components. Strong non-linear effects become apparent
at this stage. These features of responses to flashes of increasing inten-
sities are illustrated in Fig. 13.

20

0 01 02 0304
Seconds -5

-7-5

-6-9 ,1_~4-

30 130
> 20 -r 10 E

0 0-1 0-20-304 0 01 020304
Seconds Seconds

Fig. 13. Waves recorded following flashes. Superimposed sweeps of responses to
flashes of intensity indicated near each record. Both slow and fast waves were
present in darkness. Following flashes, the slow waves tend to superimpose better
than the faster transients. Temperature 25 0C.

In some cells these two groups of discrete waves cannot be recognized,
apparently because S-waves are too small to be detected when they appear
singly. In these cases, however, it is usually possible to demonstrate them
by superposing several responses to flashes. Small superimposed waves
can be seen in Fig. 14 (attenuation 6*0); with this intensity every flash
evokes a small wave at a fixed time after the stimulus. With dimmer
flashes small waves appear occasionally at the appropriate time after the
flash, but they are too small to be identified with confidence.

Latency distribution of waves evoked byflashles. Latency distribution of S-
and L-waves is plotted in Fig. 15 together with theoretical curves com-
puted from equation (18 C). It is seen that the experimental measurements
fit the theoretical curves only very roughly. We see, however, that the
distribution of S-waves is similar to that predicted in a chain of ten com-
partments following arrival of about twenty-five particles in the last
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Fig. 14. Discrete waves evoked by flashes. In this unit, only few waves were
present in the absence of illumination. Flashes evoked small superimposed waves
starting with a latency of about 80 msec, and larger waves of variable latency. The
superimposed waves are interpreted as small S-waves. Temperature 240 C.
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Fig. 15. Latency distribution of discrete waves evoked by flashes. Discrete waves
recorded following flashes were classified in the two groups, defined in text.
Measurements on S-waves are given by circles and on L-waves by triangles.
Probability of occurrence of waves of each group at given times after the flash
was plotted after subtracting the probability that the same type of wave occurred
in darkness. Solid lines are the function P* for Al = 1 and /1 = 25 (curve A) or

,B = 1 (curve B). Inmet: Same data plotted as the cumulative distribution of
latency of the two groups of waves. The theoretical curves are the integrals of the
corresponding curves in the main figure. Temperature 250C.
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compartment while the distribution of L-waves resembles that expected
if only one particle arrived at the last compartment following one flash
(see Fig. 4).
A different plot of the same data is shown in the inset of Fig. 15 where

the percentage of responses occurring within the time t is compared to the
expected integral distribution given by:

f P*(t)dt = 1-Pn,o(t) (21)

In this plot, the points relating to S-waves fit the theoretical curve reason-
ably well, but the measurements of latency of L-waves show a vertical
displacement. This discrepancy is due to the contribution of the first four
points which remained above zero after subtraction of the average resting
frequency. It is difficult to say whether this deviation should be ascribed
to chance fluctuations of the noise or whether it should be taken to reveal
a real inconsistency of the model. However, it seems reasonable to con-
clude that the restricted latency scatter of S-waves in this experiment
indicates that they are produced not by a single event but by combination
of several events and we shall assume that each S-wave was due to arrival
of about twenty-five particles at the nth compartment.

Relation between failures and light intensity. It becomes important at this
point to determine the value of the input 4OAt/\ro in this same experiment,
and we shall attempt to estimate it from measurement of the number of
photons in the flash and from the relation between this number and the
probability of obtaining or not obtaining a response. No response will be
obtained in the model if no particle arrives at the last compartment. This
will occur (1) if the flash fails to produce particles in compartment 0; this
probability is exp {- YO Q}where YOQ is the average number of particles in-
troduced by one flash; (2) if particles are produced but they all decay before
reaching the last compartment. As explained in Appendix, the total
probability that no particle arrives at the last compartment when the aver-
age number of photons absorbed per flash is Q, is

PO = exp { -YoQ{l -e-Y(A2AL)nf-I} }, where y= A2r0. (22)

In the experiment of Fig. 15, the number of photons delivered by each
flash, M, was approximately 24; since according to our optical measure-
ments the ratio between absorbed and delivered photons is less than 0.1,
we can take as a maximum value: Q = 2-4. The number of particles intro-
duced in compartment 0 by the flash will then be at the most: YOQ = 2-4Yo.
It was concluded on the basis of latency distribution that S-waves evoked
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by this input were due to about twenty-five particles in the last compart-
ment. Thus we can write

co~~~~I\n-1
A2 qn-1(t)dt = 2*4yY'2 = 25 (23)

(see Appendix, formula (32A)).
Taking n = 10, we have

(A2 9 25

vA1j 2-4Yo
and substituting this value in formula (22) we obtain

P0 = exp {-2.4Y0{1-e-25/24Yo}} (22B)

If Y0 < 1 as we have assumed, e-25/24Yo < 1 and we have with good
approximation:

PO = e-24Yo (24)
Since we consider only linear responses, this conclusion can be generalized
for any value of Q and we obtain

Po(Q) = e-YoQ = eu (25)
This means that if the multiplication factor of the chain

(A n (A9n-1F = Ail(o )= (A)nA

is large, then the probability of failure is controlled by the probability that
no particle enters compartment 0 following a flash.

Figure 16 is a plot of the experimental probabilities of failure for
different values of M, while the curve through the experimental points is
the theoretical function Po (Q). It is seen that an acceptable fit is obtained
for ut = KYoM = 0-01 M, giving KYo = 0 01. This fit suggests that in this
experiment about one in a hundred photons through the rhabdome pro-
duced one particle in compartment 0; thus, since 24 photons were delivered
with each flash, 0-24 particles/flash were produced in the average. We can
conclude from this that the large majority of responses observed were
elicited by a single particle at the input and thus that the multiplication
factor F was about 25. It should be noted that this value is obtained with-
out taking into account possible fluctuations of the parameters A1 and A2.
If such fluctuations occur the observed latency distribution would be
consistent with a larger value of F.

This evidence suggests that S-waves arise as a consequence of absorption
of single photons but are brought about by the combined action of many
events, interpreted as the arrival of particles in the last compartment.
According to this point of view, S-waves are essentially identical to the
generator potentials evoked by flashes delivering many photons.
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Origin of L-waves. L-waves have instead the features which one would

expect from a system with F = 1. Figure 15 shows that their latency
distribution is similar to the probability of arrival of the first particle in
the last compartment when their average number fi is unity. In order to
explain production of two types of waves with different properties one
may assume that one photon can activate one channel giving multiplication
of particles and producing the S-waves and another non-multiplying
channel giving origin to the L-waves. However, it may be simpler to
assume that both S- and L-waves originate from a single channel. For
instance, one could assume that a photon activates only one multiplying
channel; one particle in compartment 0 will then produce several particles
in n. Each of these particles has a small probability H of producing an
L-wave and a much larger probability (1-H) of producing a small voltage
change lasting a brief time 1/Al.
In these conditions, the average number of particles arriving at the nth

compartment following a flash Q wil be

A2 qn-1(t) dt = Y0QF

and the average number of L-waves will be u' = HYoQF. The probability
P' that no L-wave is generated will then be

Po (Q) = e-HYoQF = e-u' (26)

Figure 16 shows how this curve fits the experimental measurements of
probability of failure of L-waves. This fit indicates that u' = 1 when
M = Q/K = 500. We have then: 1 = 500KYoFH. Using the values deter-
mined in the previous section: KYO = 0 01; F = 25. We obtain

500 x 0 01 x 25 008.

Based on these conclusions, we can propose the following scheme: each
usefully absorbed photon gives one particle in compartment 0; particles
multiply along the chain and one particle at the input produces on average
twenty-five particles at the output. Each particle at the output produces a
small (elementary) voltage change vD/Al and the summation of the twenty-
five elementary responses produced by absorption of a single photon makes
up an S-wave. In about one case in one hundred, a particle in the last
compartment does not produce a small response vD/Al but evokes instead a
large effect resulting in an L-wave. L-waves will then appear with a pro-
bability proportional to the number of particles in the last compartment
and, therefore, proportional to the instantaneous height of the S-wave.

Convolution of S- and L-waves. If the hypothesis proposed above is
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essentially correct, it should be possible to reconstruct the average
responses to flashes by summation of S- and L-waves taking into account
shape, frequency of occurrence and latency distribution of these waves.
This reconstruction was performed as follows: several records of S-waves
were averaged and this average ii,g(t) was normalized to unit area; simi-
larly, several records of L-waves were superimposed to obtain an average
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F.0. Py0h025011t S-waves
and -2 L-waves
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1-9 3.75 7*5 15s 30 60 120 240 480 960 1920
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Fig. 16. Proba-bility that S-waves or L-waves do not occur following flashes of
different intensities. Experimental measurements of probability of failure of S-
and L-waves were fitted to the curves PO(Q) and P'0(Q) given by equations (25)
and (26) respectively. As explained in text, the ratios u/M and u'/M should give
an estimate of both quantities KYo (the probability that an incident photon pro-
duces a particle in compartment 0) and H (the probability that a particle in the
nth compartment produces an L -wave). Data were taken from the cell which gave
the latency distribution curves of Fig. 15. Temperature 250 C.

L-wave, vDL(t). According to the model advanced in the previous section,
S(t) describes the latency distribution of L-waves. The contribution of
both types ofwaves to the average response to a flash should then be given
by the convolution of their average shape with their latency distribution.
This convolution is described by:

WL (t) = (T)i3L (t -T) dr. (27)

In the experiment considered, N stimuli evoked NS S-waves and NL L-
waves, and the area of the S-wave was a in the average. The average
response to one stimulus could then be predicted to be

V(t = N avN(t)+N L(t). (28)

The computation of this expression is shown in the dotted curve of Fig. 17,
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superposed to experimental responses averaged by a Mnemotron computer.
This comparison reveals good agreement of theoretical and experimental
curves, and therefore it supports the notions proposed above.
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Fig. 17. Comparison of theoretical and experimental average responses to flashes.
Average responses to dim flashes were recorded on a Mnemotron computer and the
curves obtained following flashes of four different intensities are shown. The heavy
dots are computed from expression (28), assuming that latency scatter of S-
waves is negligible and probability of occurrence of L-waves is proportional to the
time course of S-waves. The reconstruction is based on the experimental values of
shape and frequency of occurrence of the discrete waves of the two groups.

DISCUSSION

We conclude from these results that responses to flashes delivering only
few photons have the properties expected if they are brought about by
processes supplying some form of amplification. Although we do not know
what processes correspond to the components and parameters of this
model, a chemical hypothesis may be proposed as an example. It may be
thought (as already suggested by Wald, 1956) that each photon absorbed
in the rhabdome activates a molecule of visual pigment with the proba-
bility YO; each activated pigment molecule (E0) reacts with a substrate to
produce on average q1 particles of a new substance E1. E1, in turn, reacts
with another substrate forming a product E2 and so on for n steps until
qn (qn > 1) particles of substance En are generated. Each particle of En
combining with the membrane of the visual cell produces an elementary
response consisting of a brief and minute depolarization. The sum of qn
elementary responses is the average response to one photon or 'quantal
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response'. These quantal responses are the slow S-waves described in this
paper. These events occur both with dim and bright illumination; how-
ever, the substance En increases the rate of decay of all particles in accor-
dance with the relation

A1 = +qn (29)

(see equation (3)). This relation is responsible for the non-linearities
observed following brighter illumination and described in a previous
article (Fuortes & Hodgkin, 1964) as well as in the present study. If the
ratio 40At/MTO is indeed about 0.01 (see p. 16), then the non-linearities
shown in Fig. 10 become appreciable as soon as the average number of
photons absorbed in each flash exceeds one.
S-waves are regarded therefore as small generator potentials since both

unitary S-waves and composite generator potentials are supposed to
originate from combination of many undetectably small responses.
L-waves are considered in this interpretation to be accessory events.

Their general features can be explained assuming that they originate due
to a large amplification of a minority ofelementary responses; the majority
of E. particles produce small elementary responses but an occasional
particle generates instead a large response or L-wave. Since both S- and
L-waves can be present in darkness one must assume that both Eo and E.
particles may exist in the absence of illumination.
When L-waves occur, they will contribute to the shape and features of

visual responses, but if they are abolished (as it may be the case during
light adaptation) generator potentials can still be produced by the more
usual small elementary responses.

It should be stated, however, that different processes such as transport
of particles or states would be equally consistent with the experimental
results, provided that these processes include some mechanism supplying
amplification, as required for consistency with the findings described in
this paper.

APPENDIX
Amplification chain as a stochastic process

The differential equations for the probability functions Pi, (t) at time t
can be obtained by computing the probability Pi, Z (t + dt) for the number x
of particles in the compartment i at the later time t + dt.

This probability is given by the sum of: (1) the probability Pi,x (t) that
the number of particles Xi (t) is already x at time t, multiplied by the proba-
bility that it does not change during the interval dt; and (2) the probability
that the number Xi (t) being y t x at time t changes during dt by the right
amount to become x.
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The leakage mechanism gives a probability Aldt that one of the x

particles disappears during the interval dt; the probability that two
particles disappear during dt is proportional to (dt)2 and can be ignored.
The second mechanism for changing the number of particles in com-

partment i is given by the probability A2dt that any one particle in com-
partment i -1 generates a new particle in compartment i. Thus, the proba-
bility that one particle is added to compartment i during the interval dt,
when the number of particles in compartment i-1 is y, is A2ydt.

Since y can assume all the values y = 0,1,2,..., the probability that
Xi (t) increases by one particle in compartment i during dt is given by:

00

I Pi-1,Y(t)A2ydt.
?/=o

The probability that more than one particle is added to compartment i
during the interval dt can be ignored for the reasons mentioned above.
We have therefore

Pi,x(t +dt) = PI,x(t)[1 -Alxdt-E PI1,y (t) A2ydt]
Y=o11=00

+Pi,x+1(t)Al(x+ l)dt+Pi,x-(t) X Pi1, (t)A2ydt
Y=o

and we can write

dti,z = -(1A Xi, -A2 Pi, x E Ii-,,11y + A, (x+ 1)P,1 (1A)
V=,

+ A2 Pi,X-1 Pi-l.VY

The sum in the right-hand side of equation (1 A) represents the average
number of particles in each compartment

m1(t) = Pix(t)x (2A)
X=O

so we can write

dtddpz= -(A1x+A2mni1) Fs,x+A1(x+ 1)Pi,+1+A2m-1Pi,x-l. (3A)

The system of infinite equations (3A) gives the probability functions
P, x (t) describing the stochastic properties of our amplification chain and
we look for the solution with the initial conditions:

1 if x =m;P~,,(0) = {o if z * n;|(A
(4A)

Pi,x(0) = 0 for (t =~3'2Jn
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corresponding to the injection of exactly m particles at time t = 0 in the
first compartment. We show first that the average number mi(t) is the
same as the quantities qi (t) of equations (5) of the text. In order to demon-
strate this we multiply equation (3A) by x and sum over x, obtaining:

dmi = -A(l/i-A2milmi + A1 (1i -mO) + A2mi-1 (mi+l)dt
= A1mi+A2mi1, (5A)

where
00

Pi(=( I,x2 (6A)
X=o

are the second moments of the distributions and we made use of:
00 0M

E Pi,x+1x(x+ 1) = Pi, x(x-1)x = /i-mi
0=0 X=0 (7A)

E PI1x-= E Pi,x(x+1) = mi+I J
x=O ~x=OJ

taking into account that Pi, = 0 for x < 0 and
00

Pi,Jx(t) = 1. (8A)
X=o

The initial values (4A) imply

ml(0) = m; m2(0) = m3(0) = .. = m.(0) = 0. (9A)

Comparing equations (5A), (9A) with equations (5, text), we conclude
that the solutions qi (t) of the deterministic model are identical with the
averages mi (t) computed from the stochastic treatment ofthe same process,
if we put M = A24OAt; therefore, we have

m (t) = qi(t) = m(A2t)0' (ji) !. (IOA)

To solve equations (3A) we introduce the probability generating functions
00

Fi (s, t) = E Pi, (t)sx (11 A)
x=O

defined for -1 < 8 <I and for t > 0.
Multiplying equation (3A) by 8x and summing over x, we obtain the

partial differential equations for F1

.Fti - A1(1 -s ) OF'-A2q-1 8-s)Fi (12A)
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that must be solved with the initial and boundary values:

for t = 0:Fi(s, 0) = 1 (i > 1),

Fi (s, 0) = 8m (13A)
00

for s = 1: FJi(1,t) = E Pi,x(t) = 1 (14A)
x=O

which are deduced from (14A) and (8A). For i = 1, we must put in (13)
qo(t) = 0 (or A2 = 0)-
To solve equation (12A) we define

0 = Alt; 6 = In (l-s); 3bi = In Fi. (15A)
Using expression (1OA) for qi (t), we obtain

@2s + 8*i = Aias-2es-0, (16A)

where
A1 = 0; Ai = (22)-i 2)! for i > 1. (17A)

Equation (16A) has the general solution, for i > 1

3bi = Aieo(?_ 1+C0) = (s-1)qi(t) +Cie-Ait, (18A)

where CO, C' are arbitrary constants. The boundary condition (14A) is
satisfied; to satisfy the initial conditions (13A) we must take C' = 0 and
we obtain

Fi (s, t) = exp{(s-1)qi (t)}. (19A)

We obtain in this way the probability generating functions for a Poisson
process with intensity qi (t) dependent on time. We can write, therefore, the
probability functions, for i > 1

P (t) -{q (t)}eQil) (20A)

For the first compartment (i = 1) equation (16A), considering (17A) can
be written

aFi+aF, = 0 (21A)

with the general solution
F1 (O, 6) = 0(O-6) (22A)

where 0(x) is an arbitrary function. For t = 0 we have using equations
(13A), (14A), (15A)

F 1(0, 6) = 0(-6) = Sm = (1-eg)m
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therefore
0(x) = (1-e-x)m. (24A)

We obtain in conclusion
F1 (s, t) = (1-eF-o)m - [1-(1-s) e-,1t]m (25A)

that is the probability generating function of a binomial distribution with
probability of success e-Alt. The probability functions are therefore
given by

Pi, (t) = ( =
F

X)[ - e-Alt]m-xe-xAit (26A)

for x < m; for x > m, Pl,x(t) = 0.
We consider now the (fundamental) solution for the case m = 1, that is

one particle injected in the first compartment. We have in the first
compartment

PI,0 (t) = 1-eAlt,
Pl,1(t) = e-At, 0 (27 A)
PI,2(t) = P1,3 (t) = ... =

For the last compartment we have

PI. (t) = {qn (t)}xe--Qn() (28A)

Number of responses occurring if two photons are required
for each response

If QYO is the average number of photons usefully absorbed per flash, the
number of photons in each flash will have a Poisson distribution around the
average QYO. Therefore the probability to have m photons will be

(QY0)m( e-QYo)/m
To obtain r responses, the number of photons must be 2r or 2r+ 1; there-
fore the average number of responses per flash is given by

N2(= (QIfl2r (Qy0)2r+leQl
N2 = O (2r)! +(2r 1e-Q

as already mentioned in the text. This equation can be written

N2 _ eQY0 QY0 d (z(QYo)~Y2 (QY0)2 d | 1 c (Qy0)2r+2 d(QYO) r=O (2r)!J 2 d(QYO) QYor=o(2r+ 1)

= IQYe-QYo (d( ) cosh (Q Yo) + Q Yo d(QY ) (QY0) (29A)

From this we obtain

N2 = QY2-1 + 1e-2QYo. (30A)
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Probability offailure in the stochastic chain
The average number of particles arriving at compartment n from time 0

to oo is given by
A2 J n(mt) (t) dt,

where q(m), is the average number of particles in compartment n -1 when
m particles are injected at time 0 in compartment zero. The actual number
of particles X.-L (t) at a given time t fluctuates around the average q(21 (t)
with a Poisson distribution. It can be shown that also the integral

Xn-I (t)dt

is a Poissonian random variable with average valuef q(m)1 (t) dt. Therefore

the probability to have no particles in compartment n from zero time to
infinity when m particles are initially at compartment zero is

exp{-A4 )q,P1 (t) dt}.
Compounding this probability with the probability to have m particles in
compartment zero when their average number is YOQ, we obtain for the
total probability PO to have no particles in compartment n

O K(YOQ)Mexp(-Y Q)exp{A{ q(l(t)dt} (m = 0, 1, 2,...).

(31 A)
Using the relation

A42 qn2)i (t) dt = mA2ro (A) n-I (32A)
and defining A2r0 = y we have

PO = exp(-YoQ) E Im exp -ym(A2/Al)n-}M=0M

=epYOQ)
c

{YOQ exp [- Y(A2/Al)n-l]}M=exp m=Q0

= exp (-YO0Q) exp {YoQexp [-Y(A2/l) l

= exp ((-YOQ) {1-exp [-Y(A2/Al)n-l]}}. (33A)

The second term in the exponent describes the fluctuations along the chain.
If y(A2/Al)n-1 > 1 then probability of failure is controlled only by the
fluctuations at the input and we have

538

P, = exp ( - Yo Q). (34A)
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