
Appendix S3: New methodology for determining shoulder girdle homologies 
 
Comparative scope 
 
Detection of conserved muscle pattern constraints in the neck region requires high-resolution long-term 
lineage mapping in a species with a neck musculature sufficiently generalized for gnathostomes. This is 
difficult to do. The chick as the only vertebrate in which long-term lineage labeling (by chick-quail 
chimeras) was feasible so far 2is not informative: the ancestral jawed vertebrate neck musculature was 
dismantled during the evolution of the avian flying apparatus and a re-configured neck region with unique 
muscle innervation patterns bars detailed comparisons beyond archosaurs5,14. The mammalian neck and 
shoulder region is far more conservative. This determines our choice for the mouse as a model system to 
study the mechanisms behind the plesiomorphic muscle pattern shared among all living gnathostomes.  
 
Fortunately, recent advances in recombinase-mediated lineage tracing now permit experimental verification 
of lineage descendants for the very first time. 
Following this approach we have identified the neck and shoulder region as the interface of the neural crest 
and mesodermal cell populations. We show that boundaries of embryonic cell populations precisely 
correspond to muscle attachment regions but not to ossification modes. The conservation of muscle patterns 
(Fig. 1) is therefore likely to be a reflection of conserved cell population boundaries. The latter appear to be 
far more stable than the signaling pathways that determine their (dermal-endochondral) ossification as 
attachment points (Fig.1). An alternative hypothesis would have to find multiple independent 
developmental explanations for such highly constrained muscle patterns (Fig.1). Verification of cell 
boundary stability and the validity of the ‘scaffold model’ will have to await further genetic fate mapping in 
a wider phylogenetic range of species when this becomes possible. However, our present high-resolution 
data set for the mouse allows us to reject the widely held competing ‘ossification model’9,7: dermal-
endochondral ossification modes are not safe criteria for identifying cellular origins and homologies of 
neck and shoulder structures. Notably, muscle attachment patterns in the neck of mice follow the same 
connectivity rules that have already been observed in the cranial (hindbrain) neural crest of birds13 and 
amphibians 31 and would therefore be at least a shared tetrapod character. The unity of skeletal attachment 
region and connective tissue origin has been demonstrated for mesoderm in the trunk and scapular blade of 
birds and turtles 24, is therefore at least a common amniote feature. The highly conserved nature of the 
crest-mesoderm neck muscle scaffold across jawed vertebrates might suggest that these connectivity rules 
are in fact universal for gnathostomes.  
 
Methodology 
The rather counter-intuitive ‘scaffold model’ supported by our single cell labeling perceives muscle 
connectivities as the basic units (as they precisely correspond to cell populations) and the skeletal structures 
everyone can see as subjects of change. This prompts a new heuristic strategy for establishing neck 
homologies in an experimentally falsifiable manner.  
We first determine the connective tissue origins of the attached muscles on a given skeletal element and 
then infer the cellular origin of the skeletal attachment site. Muscles are either branchial (with neural crest 
connective tissue) or trunk/mesodermal (with somite-derived connective tissues). A muscle is branchial if it 
is either 1. motor-innervated by a branchial (hindbrain) nerve or  2.connected to branchial skeleton 
(connective tissue) or 3.connected to anterior shoulder girdle skeleton. These rules take into account the 
unusual structure of the hypoglossus (tongue muscle connectivity) system (rule2, Fig.6a) as well as coraco-
branchial system (rule 3, Fig.4c,5a,c). Conversely, a muscle is to be considered mesodermal if 1. it is 
innervated by spinal nerves only or 2. attached onto the posterior margin of the shoulder girdle. Once 
muscle origins are determined, their respective skeletal attachment regions can be safely attributed to neural 
crest or mesoderm and the bone can be subdivided according to these criteria. Our ‘scaffold model’ makes 
precise predictions that will become testable once other informative species (such as Amia and sturgeon 5) 
become accessible to genetic long-term lineage tracing. Zebrafish would not be particularly useful in this 
regard, as highly derived cyprinids have independently lost their cucullaris/trapezius musculature11. 
Depending on the phylogenetic distribution of connectivity mechanisms(which might be older than the 
emergence of skeleton), these criteria will permit us to disentangle strange fossil morphologies deep in the 
gnathostome tree that have hitherto defied analysis. These will be discussed elsewhere (TM, GK and PEA, 
manuscript in preparation). 
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