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SUMMARY

1. Kinetics of inactivation of sodium channels in myelinated nerve
from Rana pipien8 were studied at 4 5 TC using the voltage clamp tech-
nique of Dodge & Frankenhaeuser (1958).

2. Potassium currents were blocked by cutting the internodes in 20 mM-
TEA-Cl+ 100 mi i-KCI and by adding 12 m -TEA-Cl to the external
Ringer. Leakage and capacitative currents were subtracted electron-
ically.

3. Kinetics of recovery from inactivation of the sodium channels were
studied by inactivating the channels with a large depolarizing prepulse
and allowing the channels to recover at different potentials; the extent of
recovery was measured by applying a test pulse at various times after the
prepulse.

4. Kinetics of development of inactivation were studied by two different
methods. The first was to measure the decay of sodium current under a
maintained depolarization. The second method was to measure the decay
of the peak sodium current in a test pulse as a function of time after the
onset of a maintained depolarization. These two methods yielded similar
results for the kinetics of inactivation development.

5. Contrary to expectations of the Hodgkin-Huxley formalism, the
time course of recovery from and development of inactivation is not
strictly exponential. Rather, recovery from complete inactivation shows
an initial delay which depends on recovery potentials. Development of
inactivation at a fixed potential exhibits at least two exponentials.

6. The steady-state inactivation curve h,(E) is asymmetrical and is
fitted better by 1/[1+ exp (A1E + B1)+ exp (A2E + B2)] than by

1/[I +exp (AE +B)].
7. Most of the above kinetic observation on inactivation can be fitted



by the following modification of the h system of the Hodgkin-Huxley
formalism:

open closed closed
0 4 1 t 2 (aj = exp (AUE+Bi,))

8. In the analysis it was not necessary to modify the concept of two
separate processes, activation and inactivation, governing the opening
and closing of the sodium channels.

INTRODUCTION

Twenty years after Hodgkin & Huxley pioneered the concept of a
voltage-sensitive gating system in nerve membrane, its precise molecular
nature is still unresolved. Recently Hodgkin-Huxley equations (1952b)
describing the sodium permeability changes have been subjected to re-
examination due to discoveries of apparent disagreements on sodium
gating kinetics. Two general types of kinetic aberrations have been
reported, both relating to the h inactivation system. The first type deals
with lags and history-dependent inactivation (Schauf, 1974; Armstrong,
1970; Goldman & Schauf, 1972; Chandler & Meves, 1970; Peganov, 1973).
The second type concerns the observation that the rate constants and
steady inactivation vary with the methods used to measure them (Gold-
man & Schauf, 1972, 1973; Hoyt & Adelman, 1970). These observations
have been interpreted by some authors (Goldman, 1975; Hoyt & Adelman,
1970) as rendering untenable the concept of two separate processes, m and
h, governing the turn-on and -off of the sodium current. Instead, these
authors propose a set of coupled equations, schematically very different
from the Hodgkin-Huxley equations and with a different physical inter-
pretation concerning the nature of the gating system. Relatively unpur-
sued, however, is the possibility that some of these kinetic aberrations
can be accounted for by the hypothesis that inactivation is itself a second
order process rather than a first order process (Chandler & Meves, 1970;
Hille, 1976).

It seems worthwhile to re-examine the validity of the Hodgkin-Huxley
formalism. I have confirmed some but not all of the kinetic deviations
reported by some authors and extended some of these observations. The
observed kinetics of inactivation were analysed quantitatively in terms
of a second order system. It appears that the Hodgkin-Huxley formalism
need only be modified in this aspect to account for the kinetic deviations.
An abstract of this work has been presented to the Biophysical Society
(Chiu, 1976).
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SECOND ORDER Na INACTIVATION

METHODS

Nodes ofRanvier of single myelinated fibres from the sciatic nerve of Rana pigpen8
were voltage clamped by the techniques of Dodge & Frankenhaeuser (1958) with
modifications by Hille (1971). The dissection and the mounting of the nerve in
the plastic chamber took about 1 hr. The chamber with the nerve mounted was
put into a brass block maintained at 4-5 0C and the pool bathing the node was
immediately perfused with fresh Ringer solution. The node was then stimulated and,
if it was excitable, all the amplifiers were turned off and the nerve chamber and
electrodes were allowed to stabilize for half an hour before recording started. After
the stabilization period, the voltage clamp was applied and the holding membrane
potential was adjusted to give a resting inactivation of 0-5-0-7. The holding poten-
tials adjusted in this manner were between -80 and -90 mV. Nodes requiring
holding potentials more negative than -90 mV were discarded.
The solution bathing the node was composed of 115 mM-NaCl, 2 mm-CaCl2,

2-5 mm-KCl, 4 mM-Tris-(hydroxymethyl)aminomethane buffer (pH 7.4) with 12 mM
tetraethylammonium chloride (TEA-Cl) added to block currents in potassium
channels (Hille, 1970). In experiments exploring possible effects of series resistance,
low-sodium solutions were made by replacing sodium with an osmotically equivalent
amount of tetramethylammonium chloride (TMA-Cl). All solutions were stored in
the refrigerator until use.
The ends of the nerve fibre were cut in 100 mM-KCl, plus 20 mm-TEA-Cl. The

TEA-Cl diffused via the cut ends of the nerve to the inside of the node and blocked
outward potassium currents after some minutes (Koppenhofer & Vogel, 1969;
Armstrong & Hille, 1972). Thus, with external and internal TEA-Cl of 12 and 20 mm
respectively, the only ionic currents left in voltage clamp were the sodium and leak
currents. The leak and capacitative currents were then subtracted off by analogue
circuitry to allow direct observation of the sodium currents on the oscilloscope.
The oscilloscope traces were recorded on film and analysed later.

General procedures
Three main categories of measurement were made: the time course of development

of inactivation, the time course of recovery from inactivation and the steady-state
inactivation as a function of membrane voltage. Recovery from inactivation was
studied by inactivating Na channels with a 50 msec depolarizing prepulse to -20 mV.
Complete inactivation of the sodium current in the prepulse was checked by
observing on the oscilloscope that the sodium current decayed to the base line by
the end of the prepulse. Within 200 pssec after termination of the prepulse, the mem-
brane was repolarized to different potentials to induce recovery from previous
inactivation. The time course of recovery at each recovery potential was measured
by applying a test pulse of -10 mV at various time intervals after the prepulse.
Immediately after each test pulse, a control pulse was applied which was defined
to be a test pulse applied 200 msec after the depolarizing prepulse. The peak sodium
current in the control pulse was then used to normalize the preceding test current.
The control sodium current for a given recovery potential was checked to make
sure that it did not change whether the prepulse was turned on or off. For recovery
at very hyperpolarizing voltages, the control pulse was taken at only 20 msec after
the prepulse since prolonged hyperpolarization at a very negative value killed the
node. In a healthy fibre, a set of recovery measurements at six to eight different
potentials could be done within 20 min.
The time course of development of inactivation was measured in two ways. The

first method was to impose a step depolarization and measure the decay ofthe sodium

575



576 S. Y. CHIU

-26 PP TP

1 0 msec
-1 00 mV

3 nA[

B

6nAL ~~JI~*4JiPI!t
5 msec

Fig. 1. Direct observation of delay in recovery from inactivation in sodium
channels on the oscilloscope screen. Potassium currents were blocked by
internal and external application of TEA (see Methods) and leak was sub-
tracted electronically. Part A illustrates the two-pulse method. Upper
trace, voltage. Lower trace, current. Sodium channels were completely
inactivated by a 40 msec prepulse (PP) to -26 mV. Subsequently, the
membrane potential was hyperpolarized to - 100 mV to permit recovery
from inactivation. The degree of recovery at 5 and 25 msec after the pre-
pulse was assayed by applying test pulses (TP) at these times. The size
of the peak current in these two test pulses reflects the degree of recovery
from previous inactivation. In actual measurement, the peak sodium
current in each test pulse was normalized with respect to a test current
corresponding to a test pulse taken 200 msec after the prepulse. In B,
only the last 3 msec of the sodium current in the prepulse is shown. At
time marked by the arrow, the prepulse was terminated and the membrane
was repolarized to rest (-85 mV). Recovery from inactivation at the
resting potential was measured by applying a sequence of test pulses at
various times after the prepulse. All the resulting test currents were
superimposed and their peaks traced out the time course of recovery.
It can be seen that the recovery is sigmoidal with an initial delay of about
3 msec. This run was completed in 10 sec. Node 101. Temperature 4-5 'C.



SECOND ORDER Na INACTIVATION
current under the maintained depolarization. The second method was to apply a
test pulse at different intervals after the onset of a step depolarization and to measure
the dependence of the peak sodium current on the time after the onset. The time
constants of inactivation development for each potential were determined by semi-
logarithmic plots of the normalized current time course or peak current amplitudes.
The steady-state inactivation as a function of potential was measured by applying

a test pulse after various prepulse potentials lasting 50 msec. This procedure is
identical to that first used by Hodgkin & Huxley (1952 a).

1.0 ER=- 20 ER=-105

sz i/

010 20 30 40
t (msec)

Fig. 2. Quantitative analysis of recovery from complete inactivation at
three different potentials. Sodium channels were inactivated by a 50 msec
prepulse to -26 mV. Recovery from inactivation at a given potential
EB was measured by applying a test pulse at various times after the pre-
pulse. Abscissa: time interval between end of the prepulse and onset of
the test pulse. Ordinate: I~/s where 1,t is the peak sodium current
in the test pulse and IN is the peak sodium current in a test pulse taken
200 msec after the prepulse. *, 0, <: ER= -120, -105. -90 mV,
respectively. Node 38. Resting potential -89 mV. Temperature 4-5 0C.
Continuous lines in this Figure (and Fig. 3) are calculated from eqn.
(14) using the four rate constants given by eqns. (10)-(13). Figs. 2-5,
10 and 11 show analysed data from the same node, N38.

RESULTS AND ANALYSIS

The observations are best described in terms of the three categories of
measurement mentioned in the Methods.

Recovery from inactivation
Recovery was studied with test pulses applied some time after

a prepulse as is shown in Fig. 1A. In all the recovery experiments, the
prepulse was chosen to induce complete inactivation of the sodium current
by the end of the prepulse. Contrary to the expectations of the Hodgkin-
Huxley scheme, the peak current does not recover exponentially with time
at a given recovery potential. Rather, the recovery always shows a
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sigmoidal time course with a small initial delay (Fig. 1B) as observed by
Schauf (1974) on Myxicola giant axons. This sigmoidal time course of
recovery from inactivation has been a consistent observation in twenty
nodes. The recovery time course at three potentials is shown in Fig. 2.
From such records a delay in recovery for each potential was estimated
by plotting -In (1-p) as a function of time, where p(t) = ItaII'a and
Ita and 'Ma are peak sodium currents in the test pulse at recovery inter-
vals t and 200 msec respectively. If the recovery time course were a single
exponential, where p = 1- exp (- tirh), the plot should yield a straight
line passing through the origin. However, plots of observed -in (1-p)
V8. time (Fig. 3) show clear deviations from a straight line, with the
recovery relaxing into a single exponential only at times longer than
approximately 6 msec. A straight line was fitted to the late recovery

ER =-1 20 mV3~~
ER =-1 05 mV

2 0 ER=49 mV

C

0 10 20 30 40
t (msec)

Fig. 3. Recovery from inactivation. Same data as in Fig. 2 but plotted
semilogarithmically. Abscissa: as in Fig. 2. Ordinate: In (1 -p), where
p = It/IN, currents as defined in Fig. 2.

points and the slope was a measure of the final relaxation time constant TA
at every potential. The intercept of this straight line with the time axis
is taken as a measure of the 'delay' in recovery from inactivation. This
delay has values on the order of 2-4 msec and depends on the recovery
potential, being smaller for more hyperpolarizing potentials (Fig. 4). For
potentials depolarizing with respect to rest, the steady-state inactivation
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SECOND ORDER Na INACTIVATION
falls steeply to zero as a function of voltage, but, for a very narrow range
of depolarizing potentials in which the currents are large enough for
analysis, the delay was found to decrease with more depolarizing voltage.
In two experiments, the delay of recovery from inactivation at a given
recovery potential was found not to depend significantly on the prepulse
potential so long as the prepulses inactivated the sodium current
completely. The voltage dependence of the time constant TA of the later
phase of recovery kinetics is shown in Fig. 5 (open circles).

Developwment of inactivation
During a maintained depolarization under voltage clamp, sodium current

rises sharply and then decays slowly. In all my nodes, this decay phase
is not a single exponential (Fig. 6). If analysed in terms of a linear sum-
mation of exponentials, the decay phase (Fig. 7A) is multi-exponential
but it is not possible to tell from the decay whether two or more exponen-
tials are needed to fit the time course. However, it seems natural to

Delay
(msec)
4

/* 02
01~~1

0~~~~'I1* , @0 I l I I

-170 -130 -90 -50
Recovery potentials (mV)

Fig. 4. Delay in recovery from inactivation (ordinate) v8. membrane
potential (abscissa). The continuous line was calculated according to
eqn. (15). In determining the delay, a straight line was fitted to the late
recovery points plotted in Fig. 3, and the intercept on the time axis was
taken to be the delay. The dotted line in Figs. 2 and 3 shows such an
extrapolation for the delay at E3, = - 105 mV.

start the analysis using two exponential. Irrespective of the physical
models proposed for inactivation, then, the time course of inactivation
can be represented mathematically by the general equation

INl(decay) = A exp (-k t) +B exp (-k2t) (k2 < k1).
Qualitatively, then, sodium currents decay with a fast phase (characterized
by the rate constant kj) giving way to a slower phase (characterized by
the rate constant k2). These rate constants can be determined from plotting
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the logarithm of sodium current against time (Fig. 7B). From the semi-
logarithmic plot in Fig. 7B, it can be seen that the data points do not fit
a single straight line and two straight lines with different slopes can be
fitted by eye to the data points corresponding to an initial fast phase
(k1) and a final slower phase (k2). The value of k2 obtained from
semilogarithmic plots was found to be comparable to that obtained from a
least squares fit of the above function to the sodium current decay by a
computer. Experiments like that of Fig. 6A show that A and B of the
above equation, which determine the relative contribution ofthe two phases,

Th
(msec)

30

Recovery Decay

15

0 ~ ~ @

-170 -130 -90 -50 -10
mV

Fig. 5. Final time constants of inactivation (rA,) V8. membrane potential.
Points (open circles) to the left of the ordinate obtained from recovery
experiments as in Fig. 3. Points (filled circles) to the right of the ordinate
represent the final time constants determined from decays of sodium
current under a maintained depolarization. Note that the peak of the
Ar, curve is about 7 mV to the right of that of the delay curve (Fig. 4).
The solid line was calculated according to eqn. (8).

are voltage dependent. The two time constants were clearly separated out
around moderate depolarizing potentials, e.g. -26 mV. However, at
extreme depolarizing potentials, the fast phase begins to dominate while
the second phase disappears (B -+ 0), and the decay of sodium current
approaches a single exponential, e.g. at + 14 mV.

Estimation of the second time constant (k2) at extreme depolarizations
is, thus, impossible. Even around moderately depolarized potentials
where biphasic inactivation is most prominent, quantitative determination
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SECOND ORDER Na INACTIVATION
of the second time constant is still unreliable up to a factor of 2 since the
second component becomes evident only when inactivation of sodium
current has proceeded to within 15-20% completion.

A

ij.. ... ...

; -49 mV

.......,=_- b

!-26mV...........
-14 mV

6 nAL
1 0 msec

--

-6 mV
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,,.7. Tr - f

/+14 mV
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A... ..... ,.- a

.J ........ b

I 12 nA

i
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................ -e
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Fig. 6. Time course of the ionic currents through the nodal membrane
after leak and capacitative subtraction. Part A, a-f show a family of
sodium currents under different maintained depolarizations. Each depolar-
ization was preceded by a 50 msec, - 125 mV hyperpolarization to remove
resting inactivation. Potassium currents were blocked by internal and ex-
ternal application of TEA-Cl (see Methods). Node 97. Resting potential,
-87 mV. Temperature 4-5 0C. Part B, membrane depolarized to -35 mV.
The voltage trace is shown at the bottom. a, normal Ringer without TEA,
showing the initial inward sodium current and late outward potassium
current. b, external application of 12 mm-TEA-Cl to Ringer. c, external
application of 12 mi-TEA-Cl plus 500nM tetrodotoxin (TTX) to Ringer.
d, superimposed records from b and c. The ends of this node were cut in 120
mM-KCl. Node 100. Resting potential, -81 mV. Temperature 10 'C. Notice
that inactivation of sodium current is not a single exponential, but, rather,
biphasic (Bb, Bd, Aa to Ac). This biphasic nature of inactivation is most
prominent from -49 to -14 mV (Aa to Ac). At high depolarizations
( + 14 mV, Af ), the second slower phase disappears leaving only a single
exponential inactivation of the sodium current.

Series resistance
Series resistance problems may affect the time course of the sodium transient

and it must be questioned whether it is possible to account for the observed splitting
of the decay into two time constants by the existence of a series resistance between
the sodium channel and the bath electrode. This error is now considered in detail.
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582 S. Y. CHIU
I have done computer simulations of a nerve model obeying the Hodgkin-

Huxley kinetics but with a series resistance between the sodium channel and the
bathing solution. Using the value of 100 kQl for the series resistance from Dodge
(1963) and solving the time course of the sodium transient with and without the
series resistance, I found that series resistance cannot account for the observed
non-exponential decay of the sodium transient. At a given potential within the
positive limb of the current-voltage relation for the sodium current, increasing the
series resistance decreases the peak of the sodium transient without much effect
on the time course. In order to test experimentally the possibility of series resistance
error, I lowered the external sodium concentration from 115 to 50-25 mm by
equimolar substitution of NaCl by TMA-Cl and observed that this procedure did
not eliminate the biphasic nature of inactivation development under a maintained
depolarization. In fact, at the same potential, the ratio of the initial fast time con-
stant to the final time constant remains fairly invariant with respect to the external
sodium concentration used (Fig. 8).

t (msec)
0 10 20 30

1-*0

A B
1-0 -37mV 0-5

-138L 83 O%

1-t -ba)

N;a:
0-1

0 10 20 30
t (msec)

Fig. 7. A, development of inactivation at -37 mV. The decay portion of
the sodium current trace was normalized with respect to INTO the value
obtained by extrapolating the current trace back to the onset of the
maintained depolarization. The depolarization was preceded by a 50 msec
hyperpolarization to - 138 mV to remove any resting inactivation.
Continuous line was calculated by eqn. (16). B, development of inactivation
at -37 mV plotted semilogarithmically. Ordinate: hn (INIIN.). Abscissa:
time in msec after onset of depolarization. Node 58. Temperature 4-5 TC.

Leak current
Another possibility to account for the non-exponential time course of inactivation

development is that the leak may be non-linear, whereas in my work I assumed a
linear leakage correction. This was checked by using 500 nu-TTX to block all the
sodium current and plotting the current-voltage relation for the leak. The current-
voltage relation was linear over the potential range from the holding potential to
-50 or -30 mV where non-exponential development of inactivation was most
obvious. Finally, the time course of the leakage current under a maintained de-
polarization was checked for possible time-dependent rectification. Again, underTTX
block, the time course of leakage current was observed in detail. At high depolarizing
potential (to above 0 mV), the current was not a square step but increased towards
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the end of the depolarization. This time-dependent rectification of the currents under
TTX and TEA block did not occur at lower depolarizing potentials (-80 to -30 mV),
however, and, therefore, would not affect the measurement of the second relaxation
time constant in the decay of sodium current over these potential ranges (see traces
canddof Fig. 6B).

The time course of development of inactivation can also be determined
by the double pulse method (see Methods) which is a completely inde-

A C

]6 nA 1 2 nA

1 0 msec

B D~~~~~~~~50 mm
go]3nA ;( ~~~~~100mm

25 mm

Fig. 8. Effect of changing external sodium ion concentrations on the time
course of sodium current inactivation. A-C show inactivation of sodium
current under a maintained depolarization to -30 mV with different
external sodium concentrations (see Methods). The external sodium
concentration is: 115 mu in A, 50 mm in B and 25 mm in C. These current
traces were photographed directly from the oscilloscope and were de-
liberately scaled to the same peak height so they can be superimposed
on each other, as shown by the hand-traced records in D. Note that the
biphasic time course of sodium inactivation is not affected by changing
external sodium concentration.

pendent measurement from that of directly observing the decay of the
sodium transient. According to the Hodgkin-Huxley formalism, the time
constants of inactivation development determined by these two methods
should agree. Recently, Goldman & Schauf (1973) found that, in Myxicola
giant axon, measurement by these two methods results in different values
for the time constants of inactivation development. In my experiments,



the time course of inactivation development measured by the double
pulse method is similar to the time course of decay of the sodium current
(Fig. 9). Fig. 9B shows normalized time courses of inactivation develop-
ment measured by the two different methods. Although the time courses
may differ slightly, their time constants would definitely not differ
from each other by more than 20 %. This comparison of the time con-
stants was made over a voltage range from rest (-80 mV) to -35 mV,

TH 6 nAIa -30 msec

--63 -
3 A

1r0i
0

0

05 _

0

08 Rest (-85)

00

0a00s2
60 *, i

2 msec

B

° 0 0 0

10 3020
t (msec)

Fig. 9. Comparison of time courses of inactivation at -63 mV measured
by two different methods on the same node. Part A, a-c show three records
from the two-pulse method. In each record, the upper trace is current and
lower trace is voltage. A test pulse (TP) was applied at a, 5 msec; b,
13msec; c, 32msec after the onset of a -63mV prepulse (PP). Two
different current traces were superimposed for each test pulse, one trace
with the prepulse on and the other with the prepulse off. The test sodium
current with the prepulse off (the larger current trace for each test pulse)
was used as a control. With the prepulse on, the rate of decline of peak
sodium current in the test pulse as a function of prepulse duration gives a

measure of the time course of inactivation induced by the prepulse.
Alternatively, this time course can also be observed directly from the
decay of sodium current during the prepulse as in c. Part B, a quantitative
analysis of the experiment in A. 0O development of inactivation at
-63 mV measured by the two-pulse method. *, normalized time course

of decay ofsodium current under the maintained depolarization at -63 mV.
Node 60. Resting potential, -85 mV. Temperature, 4-5 0C.

C
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and no significant discrepancies were found. The agreement of the two
methods of measurement argues against artifacts of the measuring system
as the cause of the biphasic time course.

It is possible that still longer time constants exist in the decay of the
sodium transient and are undetected due to the closeness to the base line.
However, over the time range under a maintained depolarization where

e-37
E {a 4-89 (rest)

50+
msec

*10

-0*5 '

-130 -90 -70
E (mV)

Fig. 10. Steady-state inactivation, h,,, V8. membrane potential. Ordinate:
h.t(E) = I(E)IILs where Iwt(E) is the peak sodium current in the
test pulse after various prepulses of 50 msec duration. In. is the peak
sodium current in the test pulse corresponding to a maximal hyper-
polarizing prepulse. Abscissa: E, prepulse potential in mV. Dashed curve:
1/[1 + exp (AE + B)] with coefficients A and B extrapolated from data
points to the right of -93 mV. Continuous curve: fit to the data using
the equation 1/[1 + exp (A1E + B1) + exp (A2E + B2)], with coefficients AL,
A,, B1, and B2 calculated from eqn. (9) and rate constants from eqns.
(10)-(13).

the current size is sufficiently large for semilogarithmic analysis, the two
phases discussed seem prominent. The second relaxation time constant
for development of inactivation has the potential dependence shown in
Fig. 5 (filled circles).
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Steady-state inactivation
The steady-state value of inactivation was measured by the traditional

method of determining the peak sodium current in a test pulse applied
after a 50 msec prepulse to various potentials (Hodgkin & Huxley, 1952 a).
As the prepulse was made more hyperpolarizing, inactivation was reduced
and the evoked sodium current became larger until it finally saturated at
extreme hyperpolarization. The saturating sodium current was then used
to normalize the test sodium currents resulting from other prepulse poten-
tials. A plot of the normalized peak currents against the prepulse potential
gives the familiar function ha)(E) (see Fig. 10) which I will interpret as

4

90

-130 -90 -50
-1 E (mV)

-2

-4

Fig. 11. Voltage dependence of steady-state inactivation. Same data as
in Fig. 10 but plotted differently. Ordinate: hn [{ 1/h,(E)}-1]. Abscissa:
prepulse potential. Using this plot, 1/[1 + exp (AE + B)] and

1/[1+ exp (AE + B1) + exp (A2E + B2)]
become AE+B and A1E+B1+ln [1 +exp {(A2-AI) E+(B2-B1)}], re-
spectively, with A,,, and B,,2 calculated from eqn. (9). Note the non-
linearities exhibited by the data (@), and the continuous line.

a measure of the steady-state occupancy of the open state of the h system.
In all the nodes studied, the hc,,(E) curves were not symmetrical. Asym-
metries can be defined by plotting the quantity ln [{I1h,A(E)}-1 ] against
voltage. For a symmetrical ha,(E) with the form

hk(E) = 1/[1+ exp (AE + B)],
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this plot would yield a straight line. Such a plot is shown in Fig. 11.
Since the plot is not a straight line, the observed h,(E) is not symmetrical.
This finding is reproducible from node to node.

A three-state model for the inactivation system
It appears that my observations are not consistent with the inter-

pretation of the Hodgkin-Huxley formalism that the inactivation h
system has only two states. In the Hodgkin-Huxley scheme, the inacti-
vation system can either be in one of two states, kinetically related by the
scheme

open closed
O 6. 1

all

where the rate constants a01L and alo depend on potential only. The time
course of occupancy of the open state can be obtained by solving the
equation

dPo(t) = -P0(t) a01+a10[1 -P0(t)],

where Po(t) denotes the fractional occupancy of the open state as a function
of time. At any voltage, the solution of the above equation gives strictly
exponential time courses of transition between the open and closed state,
in contrast to my observations on development and recovery of inacti-
vation. The delay in recovery from inactivation, in particular, suggests
that there is an additional closed state of the inactivation system such
that a transition between the two adjacent closed states delays the time
course of recovery from inactivation. While other schemes may account
equally well for the above kinetic observations, I have worked on a
relatively simple physical model of the inactivation system suggested to
me by Dr C. F. Stevens. This model assumes that the inactivation gate
has three states, one open and two closed in a linear sequence.

open closed closed
o -<- 1 -~ 2

The rate constants associated with transitions between adjacent states
are voltage dependent and are assumed to be given by

a,, = exp (AilE+Bi), (1)

where Aij and B.] are constants (Magleby & Stevens, 1972).
Using eqn. (1) for the rate constants, the next step is to solve for the

time course of and steady-state occupancy in the open state which are
the measurable parameters in our experiments. If we let P1(t) denote the
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probability of occupancy in state i at time t, then for each state we can
write the following equations.

dPO(t)fdt = a1OP1(t)-aOPO(t), (2)
dP1(t)/dt = a01PO(t) - (a10 + a12) P,(t) + a2,P2(t), (3)
dP2(t)/dt = a12P,(t)-a2,P2(t) (4)

Imposing the constraint that PO(t)+Pl(t)+P2(t) = 1, then P,(t) and P2(t)
can be eliminated from the above equations to give an explicit differential
equation for PO(t), the fractional occupancy in the open state.

d2PO(t)/dt2 + C2dPO(t)/dt + CPO +CO = 0, (5)
where

C2 = alo+ aOL+ a12+ a2V

C, = a1Oa21L + a2jaOL + anaOj
CO = -a21alO-

The general solution for PO(t) is

Po(t) = P0(oo) + al exp (-k t) + G2 exp (-k2t), (6)
where

ki = [C2+V(C22-4C1)]/2, (7)

k2 = [C2-1(Ca2- 4C1)]/2, (8)
PO(oo) = I/[1 + (aol1alo) + (aOaald2a1oa2l)],

G, = [(a1o + a0l-k2) PO(O) + aloP2(0) - a10 + k2Po(o))]/(k, -k2b
02 = PO(O) - P(o() - G1.

k, and k2 are the two rate constants in every kinetic response, PO(O)
and P2(0) denote the initial conditions and PO(oo) is the steady-state value
for every response. Eqn. (6) says that the time course of fractional
occupancy in the open state for a given potential is not a single exponential,
but, since k, > k12 will always relax with a final time constant 1/k2 for
long times. Thus, k2 can be measured as a function of voltage by deter-
mining the final relaxation time constants from the recovery and decay
experiments. According to eqn. (8), k2 is a function of all the a1js since
2 and C0 in that equation are functions of ajs. It can be shown, however,

that, at extreme potentials, k2 approaches one single aij and, therefore,
empirical determination of k2(E) over a wide range of potentials will
yield useful information on a,3s. As will be seen shortly, this empirical
determination of k2(E), coupled with the measured steady-state occupancy
in the open state h0s,(E), gives enough constraints to determine all the
rate constants atjs which should be necessary and sufficient to reproduce
all the kinetic observations made in this paper.
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The steady-state occupancy in the open-state 0 as a function of potential

is given by the equation

h.,(E) = P0(oo) = 1/ri + (aol/a1o) + (a01a12/aL0a21)] (9)
and In [{I/hoo(E)}- 1] = In (ao1/a10) + In [1 + (al2/a21)]
Thus, according to this model, In [{1/hoo(E)}-1] has two asymptotes,
In (ao1/al0) at very negative potentials and In (ao1/alo) + In (a12/a2l) at
strong depolarizations (assuming that, for extreme hyperpolarization,
a21 > a12 and, for extreme depolarization, a12 > a21). This is at once
qualitatively in agreement with the observed plot of In [{I/hX,(E)}-1], as
shown in Fig. 11. The solid line in that figure was calculated according to
eqn. (9) using the rate constants given in eqns. (10)-(13).

Determination of the rate constants aij
From the above consideration, the values of In (ao1/a1o) + In (a12/a2l)

and In (ao1/a10) were obtained from the two asymptotes of the plot of
observed In [{1/hX,(E)}-1] over opposite potential extremes. Other con-
straints on possible values of aijs can be obtained by plotting

In [1/(final time constant (E))] = In [k2(E)]

vs. potentials and measuring the two asymptotes over opposite extreme
potentials. It can be shown that over the hyperpolarizing range the
asymptote approaches either alo or a21. In the analysis, the choice a1o
was used since it resulted in better fit to the data. Over extreme de-
polarizations, the asymptote should yield a12, but a further clarifica-
tion of this point is needed. The time course of inactivation at
moderate to extreme depolarizations can be approximated to an excellent
degree by eqn. (16). Using the simple assumptions that at high de-
polarizations a01 > alo and a12 > a21, and using eqns. (7) and (8) for
k1 and k2 respectively, it can be shown that as E becomes large (extreme
depolarization), either k, -Ba0l and k2 -÷a'l or k1 -+aia and k2 -+ a0.
Examination of the family of sodium currents in Fig. 6A reveals that the
time course of inactivation, which is clearly biphasic at moderate de-
polarizations, becomes a single exponential at high depolarizations as
the second phase begins to disappear, implying that the coefficient
(a01 - k1)/(k2- k1) in eqn. (16) approaches zero at high potentials. Thus, the
choice k11 -+a01 and k2 - an at large depolarizations seems correct and
the asymptote of the plot In (k2) vs. potential at extreme depolarizations
should yield a12. In practice, however, it is impossible to resolve k2 at
extreme depolarizations and extrapolation for a12 on the plot In (k2(E))
can only be done within the narrow range of moderate depolarizations
over which the asymptote is only just beginning to form and there still
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remains enough resolution of the two time constants in the decay of
sodium currents. Thus, from the plots of the observed in [{1/h,,(E)}-1]
and In [k2(E)] v8. voltage, first estimates for the four rate constants were
quickly determined. The accuracies of these estimates were checked by
calculating the h,(E) and k2(E) corresponding to these rate constants
using eqns. (8) and (9). The h0,,(E) and k2(E) values calculated were
compared with the observed values and discrepancies were reduced by
manually adjusting the first chosen set of rate constants. Usually the final
set did not differ much from the initial set chosen. The final set of rate
constants for node 38 (at a temperature of 4-5 TC and in msec-1) is given by

a.2 = exp (0-013E-1-4), (10)
a01 = exp (0-05E+ 10), (11)
a2, = exp (-0-102E-11P9), (12)
a1o = exp (-0*015E-2*96), (13)

where E is the absolute membrane potential in millivolts. This set of
rate constants should completely define all the kinetic responses under
the various experimental conditions in this paper if the model is a reason-
ably accurate approximate description of the actual physical mechanism.

Fitting of the model to the observations
The first test of this model is to see if the chosen set of rate constants

(eqns. (10)-(13)) reproduces appropriate values for the observed delays in
recovery from inactivation. The experimental conditions for recovery
from inactivation can be imitated by using the initial conditions P0(O) = 0,
P1(O) = 0 and P2(0) = 1 for eqn. (6) and the time course ofrecovery becomes

Po(t)fP0(oo) = 1+ [kS(k1- k2)] exp ( - kt) + [kl/(k2-kl)] exp (- k2t). (14)
The delay (as defined in the Methods) can be deduced from eqn. (14) to
have the following potential dependence:

delay = (1/k2) In [k1/(k1-k2)]* (15)
In Fig. 4, the continuous line shows the calculated delay (according to
eqn. (15)) as a function of recovery potential, and Figs. 2 and 3 show
various calculated recovery time courses (according to eqn. (14)) as a
function of different recovery potentials.
The experimental conditions for development of inactivation under

various maintained depolarizations preceded by a large hyperpolarizing
prepulse to remove resting inactivation can be imitated by the initial
conditions P0(O) = 1, P1(O) = P2(0) = 0. Eqn. (6), with these initial
conditions, becomes

Po(t) = PO(oo) + [(al + k2PO(co) -k2)/(kc-k2)] exp (-k t)
+ (a, - kl +k+1P0(oo))f(k2-k1)] exp (-k2t)
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For moderate to high depolarizations which completely inactivate the

sodium current (Po(oo) approaches zero), the time course of inactivation
can be approximated by

PO(t) = [(a01 - k2)/(k1 - k2)] exp (- k t) + [(a0l - kl)/(k2- k1l)] exp (- k2t).
(16)

Eqn. (16) was used to calculate the time course of inactivation at -37 mV,
as shown by the solid line in Fig. 7. Figs. 2-5 and Figs. 7, 10 and 11 show
a summary of all the calculated kinetic responses superimposed on the
actual observations. It should be emphasized that only the values of rate
constants given in eqns. (10)-(13) were used to make predictions shown
in all Figures; no adjustable parameters were used to alter the fit for
individual Figures.

DISCUSSION

The primary results of this paper show that neither inactivation nor
recovery from it in the sodium channel can be described in terms of a
single first order differential equation. The critical evidence is that the
time course of transitions of the inactivation system between its open
and closed states is not a simple exponential, as shown in Figs. 1B, 2,
6 and 7. The delay in recovery from inactivation was first reported by
Schauf (1974). The delays reported in this paper at a temperature of
4.5 'C are in the order of 2-4 msec, in good agreement with Schauf's
(1974) results on Myxicola. One interesting feature of the voltage depen-
dence of the delay is observed. The delay (E) curve (Fig. 4) has a bell
shape with its peak displaced slightly to the hyperpolarizing direction
relative to the peak of the rA(E) curve along the voltage axis. From Dodge
(1963) the bell-shaped Tm(E) curve has its peak displaced to the depolarizing
direction relative to the Th(E) curve. This implies that, over a certain
potential range, the delay in recovery from inactivation decreases with
potential while the Tm increases. If the delay in recovery is a result of
coupling between the activation and inactivation processes, then the
above observation means that the nature of coupling must be more
complicated than that implied by the correlation between Tm(E) and the
delay in development of inactivation reported by some authors (Goldman
& Schauf, 1972; Schauf & Davis, 1975). Calculation from the model shows
that the peak of the delay-in-recovery (E) curve should always be slightly
hyperpolarizing relative to the peak of the rh(E) curve, in agreement
with the observations.
The observation that the decay of the sodium current under a main-

tained depolarization exhibits at least two time constants is direct evidence
for second order properties in the inactivation system. The fact that this
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multi-exponential time course remains invariant with respect to external
sodium concentration and the methods used to measure them tends to
rule out the possibility of an experimental artifact.
One of the major arguments against the Hodgkin-Huxley formalism

of two separate processes, activation and inactivation, governing the
opening and closing of the sodium channel is that the time constant of
development of inactivation measured from decay of sodium transients
differs from that measured by the conditioning pulse method (Goldman &

6 nA [

0 5 msec

-60 mV
-11
-1 40

Fig. 12. Slowing down of turn-on of sodium current in a -60 mV test
pulse by strong hyperpolarizing prepulse. Upper traces, current. Lower
traces, voltage. The test pulse used fell within the negative slope region
of the I-E plot for sodium current. Trace a shows sodium current in the
test pulse with a 50 msec, - 110 mV hyperpolarizing prepulse. Only the
last 1 msec of the hyperpolarizing prepulse is shown. In b, the hyper-
polarizing prepulse was - 140 mV. Instead of evoking a bigger sodium
current, the stronger hyperpolarizing prepulse actually results in smaller
peak current in the test pulse. This may be the result of a slowing down
of the turn-on of the sodium current in the test pulse by the - 140 mV
hyperpolarizing prepulse. Node 100. Resting potential, -81 mV. Tem-
perature 10 'C.

Schauf, 1973; Goldman, 1975). It appears that in nodes these differences
in time constants are lacking. It is still not clear why these differences in
time constants are seen in Myxicola and not in nodes (Schauf, Pencek &
Davis, 1976).
Another argument for coupling of activation to inactivation is the

reported shift of the h,x,(E) curve along the voltage axis as a function of

592 S. Y. CHIU



SECOND ORDER Na INACTIVATION
the test pulse used (Hoyt & Adelman, 1970; Goldman & Schauf, 1972). I
have tried to repeat this observation in nodes. However, this type of
experiment is hindered by the following phenomenon. If a test pulse is
used which falls within the negative slope region of the I-E plot for
sodium currents, the turn-on of the sodium transient in the test pulse is
slowed down considerably by strong hyperpolarizing prepulses (Fig. 12).
This slowing down of the turn-on affects the peak height of the sodium
current in the test pulse and extreme hyperpolarization could actually
decrease rather than saturate the sodium current in a test pulse applied
after the hyperpolarization (Dubois & Bergman, 1971). This phenomenon
means that, if the h,(E) is measured using a test pulse falling within the
negative slope region of the I-E plot, the saturating sodium current in
the test pulse cannot be defined and the h. (E) curve cannot be normalized.
Armstrong & Bezanilla (1974) also reported a delay in the turn-on of a
sodium current after a strong hyperpolarization.

0*3
Delay/ rh

0.2
00 2

0 @

0.

-170 -130 -90 -50
mV

Fig. 13. (delay/ft) V8. absolute membrane potentials. 0, data averaged
from four nodes. Ordinate: the ratio of the delay in recovery from complete
inactivation to the final time constant of recovery. Abscissa: membrane
potential in millivolts.

A family of the recovery curves at different potentials as shown in
Fig. 2 greatly resembles the potassium currents with their sigmoidal time
course and the possibility is raised of describing the inactivation system
with kinetics of the type [1 - exp (- tprh)]l, similar to the potassium
system. For this type of kinetics, it can be shown that the ratio (delay/
final relaxation time constant) for different recovery potentials should be
a constant as a function of voltage, and equal to In n. Fig. 13 shows the
observed (delay/final relaxation time constant) as a function of the
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recovery potentials. The ratio is not invariant with respect to potentials
and, therefore, renders the potassium-type kinetics untenable. It is also
interesting to note that in observations on nodes of Ranvier by Drs C. F.
Stevens and T. Begenisich, the delay/final time constant for the potassium
current is also not a constant function of potential (C. F. Stevens, personal
communication).
Schauf (1976) recently reported that the time constants of reactivation

and development of inactivation at the same potential are not the same.
I have done one experiment in which the normalized time course of in-
activation development and recovery from inactivation at the same
potential were compared. In node, there is a narrow range of potentials
over which the recovery after a large depolarization can be compared to
the time course of development of inactivation after a strong hyper-
polarization. The two time courses were not the same, with the recovery
being a simple exponential, apart from a small initial delay while the
development time course showed a slight biphasic behaviour. Calculation
from the three-state model also showed these characteristics, but the
calculated biphasic time course of development was less prominent than
that observed over these potential ranges. The final relaxation time con-
stants, for both development and recovery, however, were the same at
the same potential, as observed.
The model does very well at predicting the time course of removal of

inactivation, the time course of development of inactivation, and the
steady-state voltage dependence of inactivation. The model is also quali-
tatively correct in predicting that at high depolarization sodium currents
should decay with a single exponential (see the current trace at + 14 mV
in Fig. 6A) as according to eqn. (16) the amplitude coefficient of the slow
phase, (a01 -kl)/(k2- k,), approaches zero. However, quantitatively, this
coefficient approaches zero as a function of potential more steeply than is
observed. In addition, the predicted time course of decay of the first
phase becomes too fast - for example, a factor of 3 too fast at -5 mV.
Both of these disagreements arise because the rate constant a0l depends
too steeply on potential at high depolarizations. This suggests that the
functional form used for the ajjs (eqn. (1)) is oversimplified and other
forms which saturate at high potentials might be preferable. Alternatively,
adding more states to the model can help to make the fit better.

In summary, the kinetic observations reported in this paper show that
the inactivation system has second order properties. While the present
model does not give perfect fit, the approach gains merit from its simple
mathematics and physical assumptions. The three-state inactivation
model must be the simplest next alternative to the two-state inactivation
model of Hodgkin and Huxley which definitely cannot account for the
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observations. And, one of the tacit assumptions throughout the analysis
is still the idea of two separate processes governing the sodium channel
as first proposed by Hodgkin & Huxley (1952 a).
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