Legend

Figure1; *Predicted structures of the RNAs used in the gel retardation experiments.* The RNA sequences were folded with *mfold* (<u>http://www.bioinfo.rpi.edu/applications/mfold</u>). The secondary structure of the 3'*rpsO*-A18 mRNA fragment was experimentally determined (1). Enzymatic probing of a slightly longer *hfq* mRNA fragment revealed that most of the secondary structures predicted by *mfold* are not stable in solution (2).

Resulting plasmid	Template	Primer sequence
pTE607D40A	pTE607	For:GCTGCAAGGGCAAATCGAGTCTTTTGCTCA
		GTTCGTGATCCTGTTGAAAAACAC
		Rev:GTGTTTTTCAACAGGATCACGAACTGAGCA
		AAAGACTCGATTTGCCCTTGCAGC
pTE607F42A	pTE607	For:GGCAAATCGAGTCTTTTGATCAGGCTGTGAT
		CCTGTTGAAAAACACGGTC
		Rev:GACCGTGTTTTTCAACAGGATCACAGCCTG
		ATCAAAAGACTCGATTTGCC
pTE607K56A	pTE607	For:CACGGTCAGCCAGATGGTTTACGCTCACGC
		GATTTCTACTGTTGTCCCGTC
		Rev:GACGGGACAACAGTAGAAATCGCGTGAGC
		GTAAACCATCTGGCTGACCGTG
pTE607D40A-F42A	pTE607-F42A	For:GGCAAATCGAGTCTTTTGCTCAGGCTGTGAT
		CCTGTTGAAAAACACGGTC
		Rev;GACCGTGTTTTTCAACAGGATCACAGCCTG
		AGCAAAAGACTCGATTTGCC
pTE607V43C	pTE607	For:GGCAAATCGAGTCTTTTGATCAGTTCTGTAT
		CCTGTTGAAAAACACGGT
		Rev;GACCGTGTTTTTCAACAGGATACAGAACTG
		ATCAAAAGACTCGATTTGCC
pTE607V43R	pTE607	For:GGCAAATCGAGTCTTTTGATCAGTTCCGCAT
		CCTGTTGAAAAACACGGTC
		Rev;GACCGTGTTTTTCAACAGGATGCGGAACTG
		ATCAAAAGACTCGATTTGCC
pTX381V43C	pTX381	For:GGCAAATCGAGTCTTTTGATCAGTTCTGTAT
		CCTGTTGAAAAACACGGT
		Rev;GACCGTGTTTTTCAACAGGATACAGAACTG
		ATCAAAAGACTCGATTTGCC
pTX381V43R	pTX381	For:GGCAAATCGAGTCTTTTGATCAGTTCCGCAT
		CCTGTTGAAAAACACGGTC
		Rev;GACCGTGTTTTTCAACAGGATGCGGAACTG
		ATCAAAAGACTCGATTTGCC

Table 2 ; E. coli strains used in this work.

Strain	Relevant Genotype	Source or Reference		
TX2808	JC7623 $hfq1::\Omega$ (kan ^R)	(3)		
HAT10	hfq10::cat (cm ^R)	(4)		
RO91	rpoS742::lacZ	(5)		
MCM11	RO91 $hfq10$::cat (cm ^R)	M. Springer		
BL21 λDE3hfq1	BL21 λ DE3 <i>hfq1</i> :: Ω	This study		
N3433	HfrH lacZ43 relA1 spoT1 thi-1	D. Apirion		
CAG12073	<i>cycA30::Tn10</i> (tet ^R)	(6)		
MA261 <i>oppA</i> ::Km		(7)		
IBPC937	TX2808 hfqV43R (kan ^S)	This study		
IBPC946	TX2808 $hfq\Delta 22-294$ (kan ^s)	This study		
IBPC929	N3433 $hfq1::\Omega(kan^R, BclI)$	This study		
IBPC941	N3433 hfqV43R cycA30::Tn10 (tet ^R)	This study		
IBPC953	N3433 $hfq\Delta 22-294 \ cycA30::Tn10 \ (tet^{R})$	This study		
IBPC959	IBPC953 <i>oppA</i> ∷km (kan ^R)	This study		
ENSO	former name HfrG6∆12	(8)		
IBhfq95	ENSO hfq::lacZ	This study		
IBhfq95-hfqV43R	ENSO hfq::lacZ hfqV43R	This study		

Table	3.	Statistics	of $1HK0$	(wit	V/3C	V/3R)
radie	э;	Sialistics	0] 1 П К У	(<i>wi</i> ,	<i>v4</i> 5C,	V43A	,

Simulation	α -helix $\pm \sigma_{\alpha}\%$	β -strand $\pm \sigma_{\beta}$ %	Н	B1	B2	B3	B4	B5
Initial structure	16.2	46.4	100	100	100	100	100	100
wt	16.2 ± 0.4	45.5 ± 1.4	92.1	95.9	89.4	92.8	89.8	93.1
V43C	15.8 ± 0.3	46.3 ± 1.2	90.2	96.2	91.2	95.7	90.9	94.3
V43R	15.1 ± 0.4	41.7 ± 1.6	90.5	96.0	84.4	85.9	74.6	92.1

The mean and standard deviation (σ) of α -helix and β -strand are given for the minimized (initial) structure and for the time-averaged wt, V43C and V43R structures. The mean percentage of helix (H) and β -strands (B1 to B5) are shown to the right.

References

- 1. Folichon, M., Arluison, V., Pellegrini, O., Huntzinger, E., Regnier, P. and Hajnsdorf, E. (2003) The poly(A) binding protein Hfq protects RNA from RNase E and exoribonucleolytic degradation. *Nucleic Acids Res*, **31**, 7302-7310.
- 2. Vecerek, B., Moll, I. and Blasi, U. (2005) Translational autocontrol of the *Escherichia coli hfq* RNA chaperone gene. *Rna*, **11**, 976-984.
- 3. Tsui, H.-C., T., Leung, H.-C., E. and Winkler, M.E. (1994) Characterization of broadly pleiotropic phenotypes caused by an *hfq* insertion mutation in *Escherichia coli* K-12. *Mol. Microbiol.*, **13**, 35-49.
- 4. Wachi, M., Takada, A. and Nagai, K. (1999) Overproduction of the outer-membrane proteins FepA and FhuE responsible for iron transport in *Escherichia coli hfq::cat* mutant. *Biochem. Biophys. Res. Com.*, **264**, 525-529.
- 5. Lange, R. and Hengge-Aronis, R. (1994) The cellular concentration of the σ^{s} subunit of RNA polymerase in *Escherichia coli* is controlled at the levels of transcription, translation and protein stability. *Genes & Dev.*, **8**, 1600-1612.
- 6. Singer, M., Baker, T.A., Schnitzler, G., Deischel, S.M., Goel, M., Dove, W., Jaacks, K.J., Grossman, A.D., Erickson, J.W. and Gross, C.A. (1989) A collection of strains containing genetically linked alternating antibiotic resistance elements for genetic mapping of Escherichia coli. *Microbiol Rev*, **53**, 1-24.
- 7. Igarashi, K., Saisho, T., Yuguchi, M. and Kashiwagi, K. (1997) Molecular mechanism of polyamine stimulation of the synthesis of oligopeptide-binding protein. *J Biol Chem*, **272**, 4058-4064.
- 8. Dreyfus, M. (1988) What constitutes the signal for the initiation of protein synthesis on *Escherichia coli* mRNAs? *J Mol Biol*, **204**, 79-94.