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The present literature on quantum efficiency is confusing and contains
contradictions partly because definitions of efficiency have differed, partly
because false assumptions about the working of the eye have been implicit
in the method of calculation used, and partly because the experimental
results chosen for the calculations were obtained under different conditions.
The present paper defines overall quantum efficiency, reviews the litera-
ture leading up to the present work, points out the difficulties that have
arisen, and describes a new method for determining the efficiency that is
simpler and more accurate than previous methods. The range of applica-
tion and significance of quantum efficiency as a measure of visual per-
formance are discussed. In the following paper (Barlow, 1962) some results
obtained with the method will be presented.

Definition. The overall quantum efficiency (¥') of vision is most simply
defined as the following ratio:

_ Least quantity of light theoretically required for performing a task
~ Least quantity required in practice for performing that same task "

The basic idea, due originally to Rose (1942), is to compare the per-
formance of a human subject with that of an ideal device in which all the
light entering the eye is correctly focused on the retina, all of it is absorbed
by the receptor cells, all the quantal absorptions are correctly signalled
centrally, and in which the central mechanisms process the resulting in-
formation optimally for the performance of whatever task is required.
Such an ideal device will perform the task optimally, but not absolutely
correctly; quantal fluctuations lead to random scatter in the numbers of
quanta absorbed in the various parts of the retinal image, and even with
ideal central processing this scatter must occasionally lead to the incorrect
performance of the task. Such errors will occur more often if the light
entering the device is reduced by a neutral filter, for this decreases the
average number of quantal absorptions, and thereby increases the relative
magnitude of the quantum fluctuations. Now imagine a human subject
and such an ideal device performing the same task: with no filter in front
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of it, the ideal device will of course perform better, but by interposing the
appropriate filter its performance can be reduced until it matches that
achieved by the subject. The fraction of light transmitted by this filter is
then equal to the overall quantum efficiency, ¥, as defined above. Of
course the ideal device does not exist, so that in practice one substitutes
performance figures calculated theoretically.

Historical background. Quantum efficiency was proposed by Rose (1942)
as an absolute measure of performance of an optical task and was later
applied by him to the human eye (Rose, 1948). Two facts seemed to
emerge at once from the use of this measure: first, the efficiency appeared
to be remarkably high, suggesting that little loss of efficiency occurred
except from the absorption of light in the optic media, and the failure to
absorb all of it in the receptor cells of the retina: and secondly this high
efficiency was thought to be maintained under a great diversity of working
conditions of the eye. At this stage it seemed possible that much of the
empirical psychophysical data on the visual performance could be sum-
marized by the single statement that the quantum efficiency was high and
almost constant (as de Vries had suggested in 1943), but in fact both
these early results have proved misleading. Aguilar & Stiles (1954) made
a critical estimate of efficiency under conditions where Rose thought it was
high, and obtained a lower value which decreased rapidly with increasing
background intensity. Barlow (1958) showed that the range of conditions
for constant quantum efficiency was very restricted ; there is, for instance,
no range of values of background intensity, and area and duration of an
added increment, over which the values of threshold are consistent with the
quantum efficiency for detection of the incregment remaining invariant.
Clark Jones (1957, 1959), pursuing Rose’s line of thought, has obtained
lower values of quantum efficiency, and has shown up more variation with
variation of the experimental parameters.

Necessary precautions. The most troublesome disagreement in the past
has been about the limitations to be accepted for the ‘ideal detector’. The
tendency has been to assume that the eye functions in a particular way,
and then to impose the equivalent limitation on the ideal device. For
instance, Rose (1948) assumed a constant figure of 0-2 sec for the sum-
mation time of the eye, and calculated the number of quanta required by
an ideal device which was exposed to the test field for a single 0-2 sec
exposure. That this is incorrect is easily seen when it is pointed out that a
human subject’s performance would, in many of the test situations, have
been seriously impaired if he had been exposed to it for 0-2 sec instead of
the much longer observation periods allowed. Complete summation may
be limited to this time but incomplete summation certainly occurs over
longer periods. Clark Jones (1957) made similar assumptions, and in his
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latest calculations (Clark Jones, 1959) he has compared the performance
of an ideal device using the light entering one eye with the actual per-
formance of subjects who used both eyes. Again, the one-eyed perfor-
mance would have been worse than the two-eyed, and his calculated
figures for quantum efficiency are therefore too high.

Disagreements of this sort can be avoided if these two rules are followed
when calculating the ideal performance:

(1) No limitations are to be imposed upon the ideal detector except
those that incontrovertibly apply to the eye—e.g. the finite pupil area.

(2) The task for which the calculation is made must be exactly the same
as the task performed by the subject.

Detective efficiency and the false-positive rate. The visual task performed
in all the above cases was the detection of a stimulus just sufficient to give
rise to a sensation, and Clark Jones therefore talks of the detective quantum
efficiency. Now to calculate a theoretical minimum signal for any response
one needs to know both the probability that the signal, if present, will
give the response, and the probability that the same response will be given
in the absence of the signal. The importance of specifying the first when
stating a threshold value is of course recognized, but there are difficulties
with the second. This may be partly because people are unwilling to admit
the unreliability of their own sensations, or because they are unwilling to
quibble about the exact significance of a sensation when there is such com-
plete consensus of opinion about the verbal meaning of ‘seeing a light’.
But there is also a genuine technical difficulty in specifying reliability
numerically. The probability of ‘seeing’ a zero stimulus is certainly low,
and the number of occasions upon which it occurs in any reasonably
designed experiment is consequently small. Hence the accuracy of any
estimate of the probability is very poor. This statistical problem is one
which the method of estimating F' described in this paper was designed to
overcome.

Fitting frequency-of-seeing curves. While this work on detective quantum
efficiency was being done, Hecht, Shlaer & Pirenne (1942), van der Velden
(1944), Bouman & van der Velden (1947), Baumgardt (1948) and others
were using an alternative method of calculating the smallest quantity of
light theoretically required (see review by Pirenne, 1956). This was first
used as an independent check on direct estimates of the number of quanta
absorbed from a threshold flash of light, though it really only sets a lower
limit to this figure. The principle is to match an experimentally deter-
mined frequency-of-seeing curve with a theoretical curve calculated for
an ideal detector that responds when the number of quanta absorbed
equals or exceeds a certain critical value. If a fit is obtained for a critical
number equal to, say, 5, then one can conclude that the average number of
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quanta that are required to cause a reported sensation is not less than 5.
The quantum efficiency is easily derived by dividing the critical number by
the average number of quanta which must be delivered to the eye to produce
a response, though the above workers have not made this calculation.

Quantum efficiency for discriminating two intensities. The first object of
this paper is to describe a simplified method of determining the quantum
efficiency. This is derived from the use by Hecht et al. (1942) of fre-
quency-of-seeing curves, but employs only two intensities of stimulus; it
thus makes the calculations easier. All the required quantities are
measured in the actual experimental situation, and the sampling error of
the estimate can be calculated together with the estimate itself. The task
the subject performs for this ‘two-point method’ is not restricted to the
detection of the presence or absence of a stimulus and it would not be
accurate to describe it as a measure of detective quantum efficiency. Since
the subject’s task is to discriminate between two added stimuli of different
intensities, it should be called the discriminative quantum efficiency. In the
special case where one stimulus is of zero intensity, and the other is just
threshold, discriminative and detective quantum efficiencies are identical,
but the two-point discriminative method can be applied in different
conditions; for instance, both stimuli can be supra-threshold, the subject
distinguishing them by the brightness of the sensation.

The two-point method

Apparatus is arranged to give two alternative stimuli, S; the brighter
of the pair, and S, the dimmer. The stimuli may be of any area, duration,
and location in the visual field, and may appear on a background of any
intensity. It is important, however, that the pair should only differ from
each other in intensity, that subsidiary clues aiding their differentiation
(e.g. clicks, sequences) should be rigorously eliminated, and that the
subject should have adequate experience, in advance of the test, of both
classes of stimuli. When he has this experience he is presented with one of
the pair selected at random, and his task is to classify it as brighter or
dimmer. The four possible combinations of stimulus and response are
counted separately, so the quantities known for each of the stimuli 8; and
S, are: M, the average numbers of quanta delivered to the eye from the
stimuli, together with any quanta entering the eye from the background
during the stimulus and from the area covered by the stimulus;* n, the

* The justification for adding in these background quanta is that no ideal device could
exclude them, and the increased fluctuation they bring with them. On the other hand,
quanta from outside the area and period of time occupied by the stimulus can be excluded if,
as is here assumed to be the case, the detector knows the time and position of occurrence of
the stimulus, and its area and duration.
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numbers of stimuli delivered; and P, the proportions classed as ‘brighter.’
The problem is to calculate m, and m,, the smallest numbers of quanta
bearing the same ratio to each other as M, and M, that would enable the
unknown signals to be discriminated to the extent indicated by the values
of P, P,.

Consider a device that classes a stimulus as brighter if the number of
quanta absorbed equals or exceeds a critical number ¢, dimmer if it does
not. The proportions, P, classed as brighter for varying average numbers
of quanta absorbed, m, are given by the cumulative Poisson formula, and
if these proportions are to match those achieved by the human subject,
then

o] mf ] mr
P=emy 1 and Py =em3 —2,
rmet! rme !

The ratio m,: m, is known, since it is equal to that of the stimuli M, : M,
and in principle one can determine the two unknowns (¢ and either m,
or m,) from these two equations. The following theoretical section derives
an approximate method for doing this. In outline, the family of curves
representing P as a function of m for varying ¢ (Fig. 1, top) is converted
into a set of parallel straight lines (Fig. 1, bottom) by use of appropriate
transformations for ordinate and abscissa. Putting a neutral filter in front
of the ideal device described by this set of lines would have the effect of
reducing the slope of all of them equally. It is an easy matter to calculate
what value of neutral filter would reduce the slope to the value represented
by the line joining the two experimental points, P,M, and P,M,, plotted
on these transformed co-ordinates. The transmission of this neutral filter
is then the quantum efficiency corresponding to the experimental per-
formance.

THEORY

The derivation of the formulae for F and for the sampling error of F' are
the main contributions of the present paper, but it is clearly not necessary
to follow this through in detail in order to understand the principle of the
method. Figure 2 is the result of calculations showing that the sampling
error of the two-point method is least when P, and P, are about 95 and
59%,, and that it is then considerably more accurate than other methods of
determining F. Apart from this, the next section of general interest is the
Discussion.

Notation

M, = average number of quanta entering the eye during the exposure
of the brighter stimulus (8;) from the stimulus and from the background
over the area covered by that stimulus.

M, = same for dimmer stimulus (S,).
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7y, Ny = number of presentations of S;, S,.

P, = ry/n, proportion of S, classified (correctly) as brighter.

P, = r,y/n, proportion of S, classified (incorrectly) as brighter.

m,, m, = smallest average numbers of quanta absorbed from the M,
M,, which will allow P, and P, to be as high and low (respectively) as
observed.

¢ = number of quanta absorbed which, if exceeded or equalled, leads to
classifying as brighter by ideal device.

: ¥Y-5
Y,, Y, = probits corresponding to P,, P,; P = T2n J s U

2
wy, wy, = weighting coefficient corresponding to P;, Py; w = % .

Viy,, etc. = variance of estimate of Y;, etc.

Sy ,-r,, ete. = estimate of standard deviation of Y, — Y, ete.

F = m/M, = my/M, = overall quantum efficiency = smallest fraction
of incident quanta which must necessarily be absorbed in order to obtain
P, and P,.

Problem

To calculate F' and Sz from experimentally obtained values of P,, P,,
M,, M, and n,, n,.

The treatment of the cumulative Poisson curves to yield approximations
to which the experimental data can be fitted is shown in Fig. 1. First a
function of m is chosen for the abscissa which converts the family of
cumulative Poisson curves into a family that are almost the same shape
and almost parallel to each other (i.e. superposable by lateral displace-
ment). /m does this, as shown in Fig. 1 (top and middle), and it has the
additional advantage of removing some of the skewness, so that the follow-
ing transformation is more effective. Secondly, in place of the probability
P, which is the ordinate in Fig. 1 (top and middle), the probit Y is used
The probit of a probability P is ¥ where

=L [Tetug
I
This transformation converts the integral of a normal distribution into a
straight line whose slope is the reciprocal of the standard deviation of that
distribution. It is extensively used in the statistical analysis of dosage—
response relations (Finney, 1947), but it is historically interesting that,
according to Finney, the method was originated by Fechner for the treat-
ment of psychophysical results similar to those considered in this paper.

An ideal detector with criterion ¢ would give the curves of Fig. 1 (middle).
These are not integrals of normal distributions, hence they are not con-
verted into exactly straight lines by the probit transformation. It will be
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seen from Fig. 1 (bottom) that the lines are straight where c is large, but
where it is small they are slightly convex to the left. For ¢ = 12 or more,
a straight line with the equation
Y = 5+ 2(mt—ct)

is practically coincident with the transformed cumulative Poisson. The
errors that may result from using the above straight lines as approxima-
tions when c is less than 12 are considered in a later section.

From the definition of quantum efficiency, F is m/M. Substituting for
m in the straight-line approximation above, and eliminating c, one has

Y,— Y, = eFMi—Fiui), F = (DY) 1
1— 42— ( 1~ 2)’ - Z m* . ( )
27e77 25 50 80
P
T 05 (a.)
0 1 1 1 1
o 20 0 60 80 100
—_—-m
1 27 6 % 50 80
[
0-5- d)
% ) 4 6 8 10
— >vm
7 27 6/ 12/ 35 50 80
y o
5r (c)
4_
Py 1 )
% 2 4 3 8 70
——m

Fig. 1. Transformations of ordinates and abscissae to produce a set of almost
parallel, almost straight, lines from cumulative Poisson curves. (a) Top; ordinates,
the probability P, and abscissa m, the average number of quanta absorbed. (b)
Middle; P and 4/m. (c) Lower; Y, the probit transformation of P (see text), and
y/m. The number on each curve indicates the values of c.

11 Physiol. 160
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Criterion and discriminant level

The ideal detector has a criterion ¢, and the ‘discriminant level’ is
defined as ¢/F. It is the stimulus intensity that is classified as ‘brighter’
on 50 %, of occasions.

It is given by

¢ _[ia(Xr=8)\_ s Y2—5)2

F [M2 Y,-Y U Y,-Y, /]
It should be noted that the choice of discriminant level is, within limits,
left to the subject, and the ideal detector is then matched to this choice.
This step makes it unnecessary to have any knowledge of the rewards
and penalties associated with each possible outcome of the task in cal-
culating the optimum performance. Presumably one might deduce some-
thing about a subject’s impression of this pay-off matrix from his choice of
discriminant level, but this has not been attempted.

Variation of criterion

To derive the theoretical curves it was assumed that ¢ was constant,
and one might question whether this is necessarily so in the ideal device.
If the experiment is suitably designed, there will be no means of telling
whether 8, or 8, is presented except by the number of quanta absorbed;
hence if ¢ does change, the distribution of its values will be the same, on
average, for S; and S,. In such a situation the curve relating probabilities
of exceeding ¢ to ,/m would be a weighted mean of several of the curves of
Fig. 1(b), and at all values of ordinate it would have a slope less than those
curves. The reduction of slope would persist after the probit transfor-
mation. This justifies the intuitive feeling that fluctuations of threshold
criterion must cause a loss of quantum efficiency.

Sampling error of estimates

For the estimate of F to be accurate all the quantities in the above
equation must be accurately known. M, and M, are fixed by ordinary
physical calibrations. Y, and Y, are derived from P, and P,, the propor-
tions of the two stimuli classed as brighter, and as they are estimates of
true probabilities obtained from a limited number of trials they are subject
to sampling error. The effect of this on the estimate of F can be calculated
as follows. It is assumed that the sampling errors in P are small enough for
the relation with F to be treated as linear over their range. If P was
obtained from a large number of trials this would be acceptable, but it is a
poor approximation, where = is of the order of 50. The results are, however,
of interest in showing the conditions where the sampling error is low and
for comparison with other methods.
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Since M, and M, in equation (1) are not subject to sampling error,
- ar _ _ (Y, —7Y,)
S = S —ry (7,7~ Sy-ry S =i

S,-ry is obtained from V(y, and V(y, and these are related to the
‘weighting coefficients’ w (see Finney, 1947) which are conveniently
tabulated.

‘ dY\* _PQ-P)dY\* 1
V(y) = V(P) (d?) = n (@ = _TU,
1 1
S(Yl—Ya) = "/( V(Y1)+ V(Ys)) = J(”m-'-nz_wz) ’
L N-¥, (11
therefore S = 2(Mi — M3y J (n1w1+n2w2) ’

_ 2F A/( 1 + 1 )
Y,-Y, MWy MW/

In practice it is usually more convenient to use log ', for which the sampling

error is
. 2logyee 1 1
S(loglo F) = Y]_ _— Y2 J(nlwl-i- nzwz) .

The weighing function w depends upon Y, and it becomes very small for
values of Y far from 5 (values of P close to 0 or 1). The result is that the
standard error of the estimate then becomes very large. On the other hand
if both values of Y are close to 5 (P close to 0-5), the error also becomes
large because Y;— Y, is the denominator in the expressions above. In
Fig. 2 (lower curve) S, 5 is plotted against P for the case where

P,=1-P, and n; = n, = 50;

i.e. there are 50 brighter and 50 dimmer flashes, and the same proportion
of each is correctly classified. It will be seen that the lowest errors are
obtained when the proportion of each classified correctly is about 959,
and the error is then 0-11log. units ( + 28 %,). It increases rapidly for more
extreme values of P, and P,, slowly for values-closer to 509%,. Although
these errors may seem uncomfortably large, they are small in relation to
the range of variation of ¥, and they could, of course, be reduced by in-
creasing the number of observations.

Comparison with other methods

If more than two intensities of stimulus are used, and the subject is still
instructed to classify them into two categories according to intensity, then
one would expect all values of ¥ and M? to lie near a straight line. A

11-2



164 H. B. BARLOW

probit regression line can then be calculated as described by Finney (1947),
and from its slope F can be derived as above. This method is laborious in
calculation but accurate: for instance, if 50 flashes are delivered at 6
intensities yielding probabilities of seeing of about 0-5, 7, 30, 70, 93 and
99-59,, then the sampling error in log ¥ is 0-084 log. units. This is better
than the two-point method with a total 100 flashes ( 4 0-11 log. units),

05
P1 =50, m= 400
P, = abscissa, n,= 400
0-41- Total 800
w .
&
= Py = abscissa, ny= 50
o P, = abscissa, ny = 50
5§03 Total 100
k]
>
3
g 02
-
s
&a
Value for n =50, total 300
0% at these 6 values of P
Py \Pz Py
P, Ps P
0 ] ] 1 -
50 40 30 20 10 0
50 60 70 80 90 100
Probability

Fig. 2. Accuracy of the estimate of F by various methods. Ordinates, standard
deviation of log F': abscissae, probabilities of exceeding the criterion for theintensities
used in the determination. Top curve; logF calculated from a fixed threshold
(50 %) intensity and another variable intensity, using 400 trials at each, total 800.
Lower curve; from two points equally spaced above and below 50 %, intensity,
using 50 trials at each, total 100. Arrow on ordinate scale; from slope of probit
regression line based on 50 trials at each of 6 intensities, total 300, the intensities
used corresponding to the probabilities shown on abscissa scale. For equal accuracy
the second method (using 5 and 95 9, intensities) requires rather fower test flashes
than the full frequency-of-seeing curve, and many fewer than the first method.

but worse than the two-point method would be with a total of 300 flashes
(+0-064 log. units). The two-point method has the advantage of concen-
trating observations at the values of ¥ which yield maximum information
on the slope of the regression line, and further advantages in the simplicity
of the experimental procedure and the calculation.

Another interesting comparison can be made with the method of esti-
mating quantum efficiency from threshold (509, seen) and the false-
positive rate. The top curve of Fig. 2 shows the sampling error expected
for various false-positive rates when the estimate is based upon a total of
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800 stimuli, 400 of threshold intensity, and 400 of zero intensity to measure
false positives. The curve shows that this is less efficient than either of the
other methods, even with the large number of responses (800) employed
in the present example.

Error of approximations

The main approximation is the substitution of the normal distribution
of the square roots for the Poisson distribution that the numbers of quanta
absorbed in successive trials must actually obey. This is not accurate when
¢ is small, and when P is near 0 or 1. The order of error introduced is best
shown by examples. Take first a case where ¢ is about as small as is en-
countered in practice with good observers, and where the values of P are
not too extreme. From Poisson tables (e.g. Molina, 1942), one finds that
for ¢ = 5, changing the average number of quanta absorbed from 2 to 9
changes P from 0-053 to 0-945. If the average numbers of quanta sent into
the eye from the dimmer and brighter flashes had been 20 and 90 quanta,
and if the subject had classified them as brighter in the proportions above,
then the quantum efficiency should be 0-10. The calculation from equation
(1) gives instead 0-103, which is a trivial error.

If one takes situations more unfavourable to the approximation,
bigger errors occur. For instance, with ¢ = 2, and values of P near 0-05
and 0-95, the calculated value exceeds the true value by about 129%,; if
P, is very low the error can be worse still, and the calculated figure would
be double the true figure for P, = 0-001, ¢ = 2. But it is easy to avoid
these extreme conditions, and elsewhere the approximation is good.

The approximations involved in calculating the sampling error of F are
more serious, and the results given should be taken only as a rough guide.
From the fact that the experimental reproducibility tends to be better
than the sampling error would admit (see Table 1, Barlow, 1962) it is
probable that the calculation overestimates the error when the number of
trials is small.

DISCUSSION
Relation to other efficiency measures

Since the notion of quantum efficiency is somewhat unfamilar, it may
help to compare it with the mechanical efficiency of, say, an electric motor.
This would normally be defined as the ratio of the mechanical energy
available in the output to the electrical energy supplied. If there were
difficulties in quantifying the output—as there are in the case of the eye’s
output—then one could measure efficiency by the ratio of electric energy
required by an ideal, fully efficient, electric motor to that required by the
actual motor. This is equivalent to the ratio used in defining F above. It
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should, however, be noticed that although both mechanical and quantum
efficiencies are defined as the ratio of energies, in the latter case it is not
the loss of energy through inefficiency that interests us: it is the loss of
information as to the exact value of the light intensity, or the loss of
accuracy in its internal representation. It is, however, unnecessary to get
involved in the definitions of ‘information’ or ‘accuracy’ used in com-
munication theory or statistics, because common sense determines un-
ambiguously that the ‘efficiency’ of absorption is simply the fraction of
light absorbed, whatever the light is used for. In order that the efficiency
of the later stages of the visual process shall be on the same scale we are
forced to represent loss of information or accuracy in a way that might
otherwise seem strange—i.e. as the reduction in ‘sample size’ that would
cause the same inaccuracy.

Range of applicability of quantum efficiency

The use of this measure of visual performance is restricted in two ways.
First, it can only be applied when the task is sufficiently precisely defined
for it to be possible to calculate a theoretical lower limit; for instance, one
cannot speak of the quantum efficiency of intensity discrimination without
specifying the time allowed for the task, for there is no theoretical lower
limit to the intensity required for the discrimination if the time is un-
limited. Secondly, it is not directly relevant in cases where factors other
than the discrimination of light intensities limit performance: for instance,
in the case of the highest critical fusion frequency or minimum resolvable
angle of the eye, quantum efficiency seems irrelevant, because factors
other than intensity discrimination are most important in determining the
position of these limits. If the performance is reduced below the optimum
by reducing the light intensity, then intensity discrimination probably
becomes important again, and the calculation of quantum efficiency may
enable one to sort out the various factors involved. In complicated situa-
tions like this, expressing the results as quantum efficiencies may be
enlightening. For instance, most measures of visual performance show a
decrease on decreasing the light available, and one is thus prompted to
look for the causes of reduced performance at low intensities. It will be
shown in the following paper (Barlow, 1962) that the overall quantum
efficiency for intensity discrimination decreases at high intensities: when
quantum fluctuations are taken into account we see that it is the decline
of efficiency at high intensities that requires an explanation.

Advantages as a psychophysical method
Discussion of psychophysical method tends to be more productive of
argument than of knowledge, but in the wide range of tasks for which it is
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both applicable and relevant the measurement of quantum efficiency has
the following advantages over other measures of performance: (1) It is an
absolute measure in which the biological performance is compared with a
theoretical physical limit and not with an arbitrary standard or biological
norm. (2) It provides a common scale for comparing performance at
different tasks: thus it may be possible to answer such time-worn questions
as ‘Is movement perception better than form perception in the peripheral
field of vision?’ (3) It provides a common scale for comparing psycho-
physical and physiological responses: for instance, the efficiency of a subject
detecting a light stimulus under certain conditions can be compared with
the efficiency with which the resting discharge of a retinal ganglion cell is
changed by a similar stimulus under similar conditions. (4) The fact that
sensory experiments involve a subjective element can cause uncertainty
and disagreement in their interpretation. Brindley (1960), for instance,
defines an attitude that is more rigorous than most, but even this requires
a ‘psychophysical linking principle’ that is questionable. In estimating
efficiencies one abstracts from the subject’s responses something that has
an indisputable physical meaning without assuming any additional prin-
ciples. Furthermore, efficiencies can be measured for tasks other than
matching and threshold determinations that the rigorous school habitually
uses to test its hypotheses. It can, for instance, be applied to discrimina-
tions made on the brightness of the pair of stimuli (Barlow, 1962), and it
could in principle be applied to any visual discrimination, and, with only
minor modifications, to tasks involving other modalities of sensation.

In spite of these advantages it would be a mistake to advocate the
measurement and calculation of quantum efficiency as a substitute for the
simple determination of thresholds. Instead it should be thought of as
supplementing or completing such determinations, for it combines in a
single figure information from the mean value of the threshold (or other
discriminant level) and from its variability as indicated by the slope of
the psychometric function: being an absolute figure, it then enables com-
parisons to be made where they would otherwise be unjustifiable.

SUMMARY

The overall quantum efficiency of vision is defined, a new method of
determining it is described, and the difficulties, limitations, and advantages
of this and previous methods are discussed.

I am greatly indebted to R. Clark Jones, P. Felgett, D. V. Lindley, W. A. H. Rushton,
and others for conversations, correspondence, and criticism on this subject.
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