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1 Variable importance from random forest

Random forest returns several measures of variable importance. The most reliable measure of variable
importance is based on the decrease of classification accuracy when values of a variable in a node of a tree
are permuted randomly (Breiman, 2001; Bureau et al., 2003; Remlinger, 2004). This measure is sometimes
reported as such, and sometimes it is reported after scaling it, or dividing by a quantity somewhat
analogous to its standard error (“somewhat analogous” because the data used to obtain that “standard
error” are not truly independent, and thus the true standard error can be severely underestimated). We
use in this paper the unscaled importance measure, because it allows us to compare directly runs with
different settings of ntree and mtry (in contrast, scaled importances increase monotonically as we increase
the value of ntree).

2 Microarray data sets

The data sets Colon, Prostate, Lymphoma, SRBCT and Brain were obtained, as binary R files,
from Marcel Dettling’s web site http://stat.ethz.ch/~dettling/bagboost.html. The data sets and
their preprocessing are fully described in Dettling & Bühlmann (2002).

Leukemia dataset From Golub et al. (1999). The original data, from an Affymetrix chip, comprises
6817 genes, but after filtering as done by the authors we are left with 3051 genes. Filtering and
preprocessing is described in the original paper and in Dudoit et al. (2002). We used the training
data set of 38 cases (27 ALL and 11 AML) in the original paper (the observations in the “test
set” are from a different lab and were collected at different times). This data set is available from
[http://www-genome.wi.mit.edu/cgi-bin/cancer/datasets.cgi] and also from the Bioconduc-
tor package multtest ([http://www.bioconductor.org]).

Adenocarcinoma dataset From Ramaswamy et al. (2003). We used the data from the 12 metastatic
tumors and 64 primary tumors. The original data set included 16063 genes from Affymetrix
chips. The data (DatasetA Tum vsMet.res), downloaded from [http://www-genome.wi.mit.edu/
cgi-bin/cancer/], had already been rescaled by the authors. We took the subset of 9376 genes
according to the UniGene mapping, thresholded the data, and filtered by variation as explained by
the authors. The final data set contains 9868 clones (several genes were represented by more than
one clone); of these, 196 had constant values over all individuals.

NCI 60 dataset From Ross et al. (2000). The data, from cDNA arrays, can be obtained from [http://
genome-www.stanford.edu/sutech/download/nci60/index.html]. The raw data we used, which
is the same as the data used in Dettling & Bühlmann (2003); Dudoit et al. (2002), is the one in
the file “figure3.cdt”. As in Dettling & Bühlmann (2003); Dudoit et al. (2002) we filtered out genes
with more than two missing observations and we also eliminated, because of small sample size, the
two prostate cell line observations and the unknown observation. After filtering, we were left with
a 61 x 5244 matrix, corresponding to eight different tumor types (note that, as done by previous
authors, we did not average the two observations with triplicate hybridizations). As in Dudoit et al.
(2002) we used 5-nearest neighbor imputation of missing data using the program GEPAS (Herrero
et al., 2003) (http://gepas.bioinfo.cnio.es/cgi-bin/preprocess); unlike Dudoit et al. (2002),
however, we measured gene similarity using Euclidean distance from the genes with complete data,
instead of correlation: Troyanskaya et al. (2001) found Euclidean distance to be an appropriate
metric. Finally, as in (Dudoit et al., 2002, p. 82) gene expression data were standardized so that
arrays had mean 0 and variance 1 across variables (genes).

Breast cancer dataset From van ’t Veer et al. (2002). The data were downloaded from [http://
www.rii.com/publications/2002/vantveer.htm] (we used the files ArrayData less than 5yr.zip,
ArrayData greater than 5yr.zip, ArrayData BRCA1.zip, corresponding to 34 patients that devel-
oped distant metastases within 5 years, 44 that remained disease-free for over 5 years, and 18 with
BRCA1 germline mutations and 2 with BRCA2 mutations). As did by the authors, we selected only
the genes that were “significantly regulated” (see their definition in the paper and supplementary
material), which resulted in a total of 4869 clones. Because of the small sample size, we excluded
the 2 patients with the BRCA2 mutation. We used 5-nearest neighbor imputation for the missing
data, as for the NCI 60 data set. Finally, we excluded from the analyses the 10th subject from the
set that developed metastases in less than 5 years (sample 54, IRI000045837, in the original data
files), because it had 10896 missing values out of the original 24481 clones, and was an outstanding
outlying point both before and after imputation. The breast cancer dataset was used both for two
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class comparison (those that developed metastases within 5 years vs. those that remain metastases
free after 5 years) and for three group comparisons.

Tab-separated text files for these data sets are available from [http://ligarto.org/rdiaz/Papers/
rfVS/randomForestVarSel.html].

3 Generation of simulated data

We have simulated data under different number of classes of patients (2, 3, 4), number of independent
dimensions (1 to 3), and number of genes per dimension (5, 20, 100). In all cases, the number of subjects
per class has been set to 25 (a number which is similar to, or smaller than, that of many microarray
studies). The data have been simulated from a multivariate normal distribution. All “genes” have a
variance of 1, and the correlation between genes within a dimension is 0.9, whereas the correlation
between genes among dimensions is 0. In other words, the variance-covariance matrix is a block-diagonal
matrix as:

Σ =


a 0 0 . . . 0
0 a 0 . . . 0
...

...
...

...
...

0 0 0 . . . a

 ,

where

a =

 1 0.9 . . . 0.9
0.9 1 . . . 0.9
...

...
...

...

 .

The class means have been set so that the unconditional prediction error rate (see McLachlan (1992))
of a DLDA using one gene from each dimension is approximately 5%; and each dimension has the same
relevance in separation. Specifically, the class means used are:

• One dimension:

– Two classes: µ1 = −1.65, µ2 = 1.65.
– Three classes: µ1 = −3.58, µ2 = 0, µ3 = 3.58.
– Four classes: µ1 = −3.7, µ2 = 0, µ3 = 3.7, µ4 = 7.4.

• Two dimensions:

– Two classes:µ1 = [−1.18,−1.18], µ2 = [1.18, 1.18].
– Three classes: µ1 = [0, 0], µ2 = [3.88 cos(15), 3.88 sin(15)],

µ3 = [3.88 cos(75), 3.88 sin(75)].
– Four classes: µ1 = [1, 1], µ2 = [4.95, 1], µ3 = [1, 4.95], µ4 = [4.95, 4.95].

• Three dimensions:

– Two classes:µ1 = [−0.98,−0.98,−0.98], µ2 = [0.98, 0.98, 0.98].
– Three classes: µ1 = [2.76, 0, 0], µ2 = [0, 2.76, 0], µ3 = [0, 0, 2.76].
– Four classes: µ1 = [2.96, 0, 0], µ2 = [0, 2.96, 0],

µ3 = [0, 0, 2.96], µ4 = [2.96, 2.96, 2.96]

After the genes that belong to the dimensions are generated, we add another 2000N (0, 1) variables and
another 2000 U [−1, 1] variables to the matrix of “genes”. For each combination of number of dimensions
* number of classes * number of genes per dimension we generate 4 data sets.

All simulated data files used are available (in R format)from [http://ligarto.org/rdiaz/Papers/
rfVS/randomForestVarSel.html].

4 Choosing mtry and ntree

Figure“error.vs.mtry.pdf”shows the OOB error rate plotted against the mtry factor for different ntree and
nodesize. The mtry factor = {0, 0.05, 0.1, 0.17, 0.25, 0.33, 0.5, 0.75, 0.8, 1, 1.15, 1.33, 1.5, 2, 3, 4, 5, 6, 8, 10, 13},
where an mtry factor of 0 means mtry = 1 variable. Values of ntree = 1000, 2000, 5000, 10000, 40000 for
the simulated data (both with and without signal) and ntree = 1000, 2000, 5000, 10000, 20000, 40000 for
the real microarray data sets. The values of nodesize were 1 (the default) and 5.
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5 Backwards elimination of variables using OOB error

5.1 Simulated data

Classes # Vars Error rate
94 (10, 24, 75) 0.527

2 148 (15, 38, 94) 0.478
19 (12, 30, 75) 0.461
38 (12, 38, 94) 0.502

118 (19, 48, 94) 0.676
3 94 (24, 48, 75) 0.695

48 (24, 48, 75) 0.705
148 (19, 48, 94) 0.67
75 (28, 60, 94) 0.756

4 94 (30, 48, 94) 0.755
94 (30, 60, 94) 0.757

118 (38, 60, 94) 0.745

Table 1: simplify.no.signal.02 Number of variables selected and error rate (estimated using the
.632+ bootstrap method, with 200 bootstrap samples) from simulated data without signal. Results
shown for four replicates of each condition. Values in parenthesis are the 25th percentile, median, and
75th percentile of the number of variables selected when running the procedure on the bootstrap samples.
The parameters used where fraction.dropped = 0.2, ntree = 2000, ntreeIterat = 1000, nodesize =
1,mtryFactor = 1, seRule = 1. The error rates estimated are comparable to the error rates from always
betting on the most common class (in this case all are equiprobable, and those error rates correspond to
50% in the 2 class case, 66% in the 3 class case and 75% in the 4 class case).

Classes # Vars Error rate
65 (5, 33, 65) 0.523

2 65 (9, 33, 131) 0.461
65 (17, 33, 131) 0.454
33 (17, 65, 131) 0.507

263 (33, 65, 131) 0.667
3 263 (33, 49, 131) 0.692

131 (33, 65, 131) 0.701
131 (33, 65, 131) 0.67
131 (33, 65, 131) 0.756

4 131 (33, 65, 131) 0.758
263 (33, 65, 131) 0.754
263 (33, 65, 131) 0.751

Table 2: simplify.no.signal.05 Number of variables selected and error rate (estimated using the .632+
bootstrap method, with 200 bootstrap samples) from simulated data without signal. Results shown for
four replicates of each condition. Values in parenthesis are the 25th percentile, median, and 75th percentile
of the number of variables selected when running the procedure on the bootstrap samples. The parameters
used where fraction.dropped = 0.5, ntree = 5000, nodesize = 1,mtryFactor = 1, seRule = 1. Recall
that, with fraction.dropped = 0.5, we eliminate 50% of the variables at each iteration (see text), which
explains the set of values 33, 65, 131, 263 (number of variables in step t = number of variables in step
t + 1 - round (number of variables in step t + 1 * 0.5)). The error rates estimated are comparable to the
error rates from always betting on the most common class (in this case all are equiprobable, and those
error rates correspond to 50% in the 2 class case, 66% in the 3 class case and 75% in the 4 class case).
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Classes Dimensions Genes/dimension # Vars Error rate
2 1 5 1411 (2, 2, 3) 0.023
2 1 20 2 (2, 2, 3) 0.054
2 1 100 5 (2, 2, 3) 0.032
2 2 5 8412 (2, 3, 96) 0.052
2 2 20 4 (2, 2, 5) 0.058
2 2 100 3 (2, 2, 3) 0.086
2 3 5 5 (3, 17, 188) 0.121
2 3 20 5 (2, 5, 178) 0.083
2 3 100 3 (2, 2, 3) 0.102
3 1 5 3 (2, 2, 3) 0.014
3 1 20 243 (2, 3, 5) 0.067
3 1 100 5 (2, 2, 3) 0.051
3 2 5 244 (3, 5, 176) 0.066
3 2 20 4345 (3, 5, 10) 0.062
3 2 100 306 (3, 4, 8) 0.022
3 3 5 16457 (6, 42, 276) 0.039
3 3 20 8 (3, 8, 19) 0.064
3 3 100 3 (3, 5, 9) 0.061
4 1 5 8408 (2, 7, 220) 0.031
4 1 20 2 (2, 2, 4) 0.046
4 1 100 2 (2, 2, 3) 0.04
4 2 5 8 (2, 4, 8) 0.018
4 2 20 6 (2, 3, 5) 0.024
4 2 100 10 (4, 8, 12) 0.04
4 3 5 919 (12, 114, 276) 0.058
4 3 20 2 (4, 8, 24) 0.092
4 3 100 5010 (3, 7, 17) 0.072

1 The 25th percentile, median, and 75th percentile of number of variables selected when running on another 10 data sets
(generated with the same parameters) were: 8.25, 155.00, 261.30.
25, 38, 134.
32.00, 2.00, 2.75.
48.25, 101.50, 241.50.
53, 3, 5.
63.25, 6.00, 8.00.
716.0, 52.0, 591.8.
87.0, 46.0, 107.3.
95.25, 15.00, 235.50.
103.25, 4.50, 6.00.

Table 3: simplify.signal.02 Number of variables selected and error rate (estimated using the .632+
bootstrap method, with 200 bootstrap samples) from simulated data with signal. Values in parenthesis
are the 25th percentile, median, and 75th percentile of the number of variables selected when running
the procedure on the bootstrap samples. The parameters used where fraction.dropped = 0.2, ntree =
2000, ntreeIterat = 1000, nodesize = 1,mtryFactor = 1, seRule = 1
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Classes Dimensions Genes/dimension # Vars Error rate
2 1 5 2 (2, 2, 2) 0.023
2 1 20 2 (2, 2, 3) 0.051
2 1 100 17 (2, 2, 3) 0.033
2 2 5 2 (2, 2, 7) 0.048
2 2 20 2 (2, 2, 3) 0.06
2 2 100 3 (2, 2, 3) 0.089
2 3 5 1251 (2, 7, 125) 0.129
2 3 20 20302 (2, 3, 253) 0.088
2 3 100 3 (2, 2, 3) 0.111
3 1 5 2 (2, 2, 3) 0.01
3 1 20 2 (2, 2, 3) 0.066
3 1 100 2 (2, 2, 3) 0.052
3 2 5 3 (3, 7, 15) 0.064
3 2 20 2533 (3, 7, 15) 0.063
3 2 100 9 (2, 5, 9) 0.024
3 3 5 5014 (7, 47, 251) 0.036
3 3 20 7 (3, 11, 31) 0.062
3 3 100 5 (3, 5, 9) 0.058
4 1 5 7 (2, 3, 63) 0.032
4 1 20 3 (2, 2, 3) 0.045
4 1 100 2 (2, 2, 2) 0.038
4 2 5 2 (2, 7, 15) 0.017
4 2 20 2 (2, 3, 7) 0.024
4 2 100 9 (9, 17, 33) 0.036
4 3 5 15 (15, 63, 251) 0.059
4 3 20 3 (3, 7, 31) 0.091
4 3 100 17 (3, 9, 33) 0.075

1 The 25th percentile, median, and 75th percentile of number of variables selected when running on another 10 data sets
(generated with the same parameters) were: 15, 47, 204.
2 2, 2, 193.
3 2, 5, 27.
4 15, 47, 251.

Table 4: simplify.signal.05 Number of variables selected and error rate (estimated using the .632+
bootstrap method, with 200 bootstrap samples) from simulated data with signal. Values in parenthesis
are the 25th percentile, median, and 75th percentile of the number of variables selected when running
the procedure on the bootstrap samples. The parameters used where fraction.dropped = 0.5, ntree =
5000, ntreeIterat = 5000, nodesize = 1,mtryFactor = 1, seRule = 1
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5.2 Real microarray data sets
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Data set Error rate # Vars # Vars bootstrap Freq. vars
mtry factor = 1, s.e. = 0, ntree = 5000

Leukemia 0.074 2 2 (2, 2) 0.42 (0.32, 0.5)1

Breast 2 cl. 0.337 39 9 (3, 19) 0.14 (0.1, 0.19)
Breast 3 cl. 0.339 39 19 (9, 39) 0.2 (0.14, 0.31)
NCI 60 0.315 327 81 (41, 81) 0.1 (0.05, 0.18)
Adenocar. 0.187 5 3 (2, 9) 0.06 (0.06, 0.2)
Brain 0.211 11 21 (11, 43) 0.29 (0.26, 0.4)
Colon 0.155 15 7 (3, 15) 0.3 (0.25, 0.4)
Lymphoma 0.037 63 15 (6, 63) 0.36 (0.29, 0.47)
Prostate 0.059 11 5 (2, 23) 0.41 (0.28, 0.5)
Srbct 0.038 19 19 (19, 37) 0.76 (0.56, 0.92)

mtry factor = 13, s.e. = 0, ntree = 5000
Leukemia 0.09 2 2 (2, 2) 0.4 (0.29, 0.52)1

Breast 2 cl. 0.334 39 9 (4, 39) 0.14 (0.09, 0.22)
Breast 3 cl. 0.364 77 19 (5, 39) 0.12 (0.09, 0.16)
NCI 60 0.353 81 81 (41, 81) 0.28 (0.2, 0.4)
Adenocar. 0.224 9 5 (2, 9) 0.14 (0.12, 0.16)
Brain 0.202 21 21 (11, 43) 0.28 (0.22, 0.46)
Colon 0.171 7 7 (2, 15) 0.45 (0.38, 0.49)
Lymphoma 0.036 63 63 (15, 125) 0.46 (0.35, 0.57)
Prostate 0.066 755 47 (5, 755) 0.18 (0.12, 0.27)
Srbct 0.042 19 37 (37, 73) 0.84 (0.66, 0.98)

mtry factor = 1, s.e. = 1, ntree = 5000
Leukemia 0.091 2 2 (2, 2) 0.37 (0.29, 0.46)1

Breast 2 cl. 0.344 19 3 (2, 6) 0.08 (0.05, 0.13)
Breast 3 cl. 0.376 3 9 (3, 19) 0.31 (0.27, 0.34)
NCI 60 0.35 21 41 (21, 81) 0.34 (0.19, 0.42)
Adenocar. 0.202 2 2 (2, 3) 0.17 (0.16, 0.18)1

Brain 0.205 11 21 (11, 43) 0.34 (0.28, 0.48)
Colon 0.172 7 2 (2, 3) 0.29 (0.19, 0.3)
Lymphoma 0.032 125 31 (7, 125) 0.31 (0.24, 0.46)
Prostate 0.061 2 3 (2, 11) 0.9 (0.8, 1)1

Srbct 0.03 73 37 (19, 37) 0.36 (0.2, 0.58)
mtry factor = 13, s.e. = 1, ntree = 5000

Leukemia 0.081 2 2 (2, 2) 0.45 (0.32, 0.6)1

Breast 2 cl. 0.353 5 3 (2, 9) 0.28 (0.16, 0.32)
Breast 3 cl. 0.392 39 5 (3, 9) 0.08 (0.05, 0.15)
NCI 60 0.414 81 41 (21, 41) 0.13 (0.08, 0.24)
Adenocar. 0.227 5 2 (2, 3) 0.14 (0.08, 0.14)
Brain 0.201 11 21 (21, 43) 0.33 (0.27, 0.58)
Colon 0.193 3 2 (2, 7) 0.31 (0.25, 0.34)
Lymphoma 0.042 63 31 (7, 125) 0.38 (0.29, 0.5)
Prostate 0.072 2 5 (2, 23) 0.96 (0.92, 1)1

Srbct 0.042 19 37 (37, 73) 0.8 (0.68, 0.97)

1Since there are only two variables, the values here are the actual frequencies of those two variables, not the 25th and 75th
percentiles.

Table 5: stability-5000 Error rate and stability of results of backwards elimination of variables us-
ing OOB error, evaluated using 200 bootstrap samples. Results for fraction.dropped = 0.5, ntree =
5000, ntreeIterat = 5000. Error rate is the error rate estimated using 0.632+ bootstrap method. “#
Vars” denotes the number of variables selected on the original data set. “# Vars bootstrap” shows the
median (1st quartile, 3rd quartile) number of variables selected when the procedure is run on the bootstrap
samples. “Freq. vars” is the median (1st quartile, 3rd quartile) of the frequency with which each variable
in the original data set appears in the variables selected when the procedure is run on the bootstrap
samples.
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Data set Error rate # Vars # Vars bootstrap Freq. vars
mtry factor = 1, s.e. = 0, ntree = 20000

Leukemia 0.076 2 2 (2, 2) 0.44 (0.28, 0.61)1

Breast 2 cl. 0.325 19 9 (3, 19) 0.18 (0.14, 0.24)
Breast 3 cl. 0.342 39 19 (9, 39) 0.21 (0.14, 0.32)
NCI 60 0.325 327 81 (41, 81) 0.12 (0.07, 0.19)
Adenocar. 0.188 9 3 (2, 9) 0.12 (0.1, 0.19)
Brain 0.196 11 21 (11, 43) 0.34 (0.25, 0.54)
Colon 0.174 15 3 (2, 7) 0.23 (0.18, 0.34)
Lymphoma 0.036 125 15 (7, 125) 0.25 (0.18, 0.37)
Prostate 0.059 23 11 (3, 23) 0.28 (0.23, 0.48)
Srbct 0.029 73 19 (19, 37) 0.3 (0.16, 0.52)

mtry factor = 13, s.e. = 0, ntree = 20000
Leukemia 0.081 2 2 (2, 2) 0.4 (0.22, 0.57)1

Breast 2 cl. 0.329 19 9 (3, 39) 0.21 (0.15, 0.29)
Breast 3 cl. 0.351 77 19 (9, 39) 0.12 (0.09, 0.18)
NCI 60 0.348 81 41 (41, 81) 0.28 (0.22, 0.42)
Adenocar. 0.202 5 5 (2, 9) 0.22 (0.2, 0.24)
Brain 0.194 11 43 (21, 43) 0.4 (0.34, 0.63)
Colon 0.173 15 7 (2, 15) 0.26 (0.23, 0.35)
Lymphoma 0.043 125 47 (7, 125) 0.29 (0.13, 0.44)
Prostate 0.069 755 47 (3, 755) 0.19 (0.14, 0.26)
Srbct 0.044 37 37 (37, 73) 0.62 (0.5, 0.84)

mtry factor = 1, s.e. = 1, ntree = 20000
Leukemia 0.08 2 2 (2, 2) 0.47 (0.32, 0.61)1

Breast 2 cl. 0.346 9 3 (2, 9) 0.16 (0.1, 0.26)
Breast 3 cl. 0.362 19 5 (3, 19) 0.16 (0.12, 0.24)
NCI 60 0.346 21 41 (21, 81) 0.38 (0.26, 0.48)
Adenocar. 0.204 5 2 (2, 3) 0.08 (0.07, 0.13)
Brain 0.208 11 21 (11, 43) 0.32 (0.25, 0.56)
Colon 0.177 7 2 (2, 3) 0.28 (0.22, 0.36)
Lymphoma 0.038 63 31 (3, 125) 0.41 (0.33, 0.47)
Prostate 0.06 2 3 (2, 11) 0.94 (0.89, 1)1

Srbct 0.03 73 37 (19, 37) 0.32 (0.17, 0.54)
mtry factor = 13, s.e. = 1, ntree = 20000

Leukemia 0.08 2 2 (2, 2) 0.43 (0.26, 0.61)1

Breast 2 cl. 0.352 19 3 (2, 9) 0.13 (0.1, 0.18)
Breast 3 cl. 0.386 19 5 (3, 9) 0.15 (0.08, 0.2)
NCI 60 0.404 81 41 (21, 41) 0.17 (0.11, 0.28)
Adenocar. 0.223 5 2 (2, 5) 0.12 (0.1, 0.16)
Brain 0.199 11 32 (21, 43) 0.46 (0.37, 0.64)
Colon 0.189 3 2 (2, 7) 0.34 (0.31, 0.36)
Lymphoma 0.042 63 31 (7, 125) 0.36 (0.29, 0.48)
Prostate 0.07 2 5 (2, 47) 0.95 (0.91, 1)1

Srbct 0.051 19 37 (19, 73) 0.82 (0.63, 0.94)

1Since there are only two variables, the values here are the actual frequencies of those two variables, not the 25th and 75th
percentiles.

Table 6: stability-20000 Error rate and stability of results of backwards elimination of variables
using OOB error, evaluated using 200 bootstrap samples. Results for fraction.dropped = 0.5, ntree =
20000, ntreeIterat = 20000. Error rate is the error rate estimated using 0.632+ bootstrap method.
“# Vars” denotes the number of variables selected on the original data set. “# Vars bootstrap” shows
the median (1st quartile, 3rd quartile) number of variables selected when the procedure is run on the
bootstrap samples. “Freq. vars” is the median (1st quartile, 3rd quartile) of the frequency with which
each variable in the original data set appears in the variables selected when the procedure is run on the
bootstrap samples.
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Data set Error rate # Vars # Vars bootstrap Freq. vars
mtry factor = 1, s.e. = 0, ntree = 5000, ntreeIterat = 2000
Leukemia 0.084 2 2 (2, 2) 0.4 (0.3, 0.5)1

Breast 2 cl. 0.331 14 9 (5, 23) 0.2 (0.14, 0.29)
Breast 3 cl. 0.345 56 18 (9, 31) 0.14 (0.1, 0.22)
NCI 60 0.319 230 60 (30, 94) 0.12 (0.08, 0.21)
Adenocar. 0.181 6 3 (2, 8) 0.14 (0.13, 0.18)
Brain 0.213 11 14 (8, 22) 0.24 (0.17, 0.44)
Colon 0.167 18 3 (2, 9) 0.19 (0.18, 0.29)
Lymphoma 0.04 73 12 (5, 73) 0.34 (0.24, 0.42)
Prostate 0.061 18 5 (2, 12) 0.21 (0.16, 0.38)
Srbct 0.043 22 18 (11, 27) 0.54 (0.36, 0.88)
mtry factor = 1, s.e. = 1, ntree = 5000, ntreeIterat = 2000
Leukemia 0.091 2 2 (2, 2) 0.38 (0.26, 0.52)1

Breast 2 cl. 0.343 6 4 (3, 7) 0.22 (0.1, 0.26)
Breast 3 cl. 0.367 11 7 (4, 14) 0.2 (0.1, 0.3)
NCI 60 0.355 19 34 (19, 60) 0.32 (0.29, 0.44)
Adenocar. 0.205 8 2 (2, 4) 0.08 (0.06, 0.09)
Brain 0.199 9 14 (7, 22) 0.28 (0.22, 0.46)
Colon 0.181 5 3 (2, 5) 0.3 (0.24, 0.38)
Lymphoma 0.038 91 15 (4, 91) 0.3 (0.21, 0.4)
Prostate 0.06 2 3 (2, 5) 0.93 (0.86, 1)1

Srbct 0.045 52 18 (11, 27) 0.27 (0.18, 0.45)
mtry factor = 1, s.e. = 0, ntree = 2000, ntreeIterat = 1000
Leukemia 0.087 2 2 (2, 2) 0.38 (0.29, 0.48)1

Breast 2 cl. 0.337 14 9 (5, 23) 0.15 (0.1, 0.28)
Breast 3 cl. 0.346 110 14 (9, 31) 0.08 (0.04, 0.13)
NCI 60 0.327 230 60 (30, 94) 0.1 (0.06, 0.19)
Adenocar. 0.185 6 3 (2, 8) 0.14 (0.12, 0.15)
Brain 0.216 22 14 (7, 22) 0.18 (0.09, 0.25)
Colon 0.159 14 5 (3, 12) 0.29 (0.19, 0.42)
Lymphoma 0.047 73 14 (4, 58) 0.26 (0.18, 0.38)
Prostate 0.061 18 5 (3, 14) 0.22 (0.17, 0.43)
Srbct 0.039 101 18 (11, 27) 0.1 (0.04, 0.29)
mtry factor = 1, s.e. = 1, ntree = 2000, ntreeIterat = 1000
Leukemia 0.075 2 2 (2, 2) 0.4 (0.32, 0.5)1

Breast 2 cl. 0.332 14 4 (2, 7) 0.12 (0.07, 0.17)
Breast 3 cl. 0.364 6 7 (4, 14) 0.27 (0.22, 0.31)
NCI 60 0.353 24 30 (19, 60) 0.26 (0.17, 0.38)
Adenocar. 0.207 8 3 (2, 5) 0.06 (0.03, 0.12)
Brain 0.216 9 14 (7, 22) 0.26 (0.14, 0.46)
Colon 0.177 3 3 (2, 6) 0.36 (0.32, 0.36)
Lymphoma 0.042 58 12 (5, 73) 0.32 (0.24, 0.42)
Prostate 0.064 2 3 (2, 5) 0.9 (0.82, 0.99)1

Srbct 0.038 22 18 (11, 34) 0.57 (0.4, 0.88)

1Since there are only two variables, the values here are the actual frequencies of those two variables, not the 25th and 75th
percentiles.

Table 7: stability-02 Error rate and stability of results of backwards elimination of variables using
OOB error, evaluated using 200 bootstrap samples. Results for fraction.dropped = 0.2. Error rate is the
error rate estimated using 0.632+ bootstrap method. “# Vars” denotes the number of variables selected
on the original data set. “# Vars bootstrap” shows the median (1st quartile, 3rd quartile) number of
variables selected when the procedure is run on the bootstrap samples. “Freq. vars” is the median (1st
quartile, 3rd quartile) of the frequency with which each variable in the original data set appears in the
variables selected when the procedure is run on the bootstrap samples.
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Data set Error rate # Vars # Vars bootstrap Freq. vars
Shrunken centroids; mimimizing error rate then maximizing log-likelihood

Leukemia 0.025 3051 3051 (102, 3051) 0.64 (0.6, 0.68)
Breast 2 cl. 0.324 31 71 (33, 340) 0.58 (0.54, 0.65)
Breast 3 cl. 0.396 2166 4562 (3272, 4869) 0.9 (0.86, 0.92)
NCI 60 0.256 4703 4590 (3485, 5232) 0.82 (0.72, 0.92)
Adenocar. 0.177 1 11 (4, 20) 0.66 (0.66, 0.66)1

Brain 0.163 5270 2070 (459, 4026) 0.42 (0.32, 0.55)
Colon 0.123 23 26 (20, 70) 0.77 (0.57, 0.89)
Lymphoma 0.028 2796 3336 (2664, 4026) 0.88 (0.82, 0.92)
Prostate 0.088 11 8 (4, 14) 0.57 (0.37, 0.78)
Srbct 0.012 209 206 (130, 470) 0.68 (0.56, 0.86)
Shrunken centroids; mimimizing error rate then minimizing number of genes selected
Leukemia 0.062 82 46 (14, 504) 0.48 (0.45, 0.59)
Breast 2 cl. 0.326 31 55 (24, 296) 0.54 (0.51, 0.66)
Breast 3 cl. 0.401 2166 4341 (2379, 4804) 0.84 (0.78, 0.88)
NCI 60 0.246 5118 4919 (3711, 5243) 0.84 (0.74, 0.92)
Adenocar. 0.179 0 9 (0, 18) NA (NA, NA)2

Brain 0.159 4177 1257 (295, 3483) 0.38 (0.3, 0.5)
Colon 0.122 15 22 (15, 34) 0.8 (0.66, 0.87)
Lymphoma 0.033 2796 2718 (2030, 3269) 0.82 (0.68, 0.86)
Prostate 0.089 4 3 (2, 4) 0.72 (0.49, 0.92)
Srbct 0.025 37 18 (12, 40) 0.45 (0.34, 0.61)

Nearest Neighbor with variable selection
Leukemia 0.056 512 23 (4, 134) 0.17 (0.14, 0.24)
Breast 2 cl. 0.337 88 23 (4, 110) 0.24 (0.2, 0.31)
Breast 3 cl. 0.424 9 45 (6, 214) 0.66 (0.61, 0.72)
NCI 60 0.237 1718 880 (360, 1718) 0.44 (0.34, 0.57)
Adenocar. 0.181 9868 73 (8, 1324) 0.13 (0.1, 0.18)
Brain 0.194 1834 158 (52, 601) 0.16 (0.12, 0.25)
Colon 0.158 8 9 (4, 45) 0.57 (0.45, 0.72)
Lymphoma 0.04 15 15 (5, 39) 0.5 (0.4, 0.6)
Prostate 0.081 7 6 (3, 18) 0.46 (0.39, 0.78)
Srbct 0.031 11 17 (11, 33) 0.7 (0.66, 0.85)

1Only one variable was selected.
2No variables were selected.

Table 8: Stability (and error rates) of results from two alternative approaches for variable selection,
evaluated using 200 bootstrap samples. “# Vars” denotes the number of variables selected on the original
data set. “# Vars bootstrap” shows the median (1st quartile, 3rd quartile) number of variables selected
when the procedure is run on the bootstrap samples. “Freq. vars” is the median (1st quartile, 3rd quartile)
of the frequency with which each variable in the original data set appears in the variables selected when
the procedure is run on the bootstrap samples. For details on the methods, see text.

6 Variable importance: relation with Kruskal-Wallis and ANOVA
rankings

In figure 1 we show the relationship between variable importances from random forest and the p-values
obtained from testing, for each gene, the null hypothesis of no differential expression, using both Kruskal-
Wallis non-parametric test and an ANOVA (an ANOVA ranking is the same as a t-test ranking in the
two-group case). As can be seen from the figure, the relationship between the variable importance from
random forest and either of Kruskal-Walli’s or ANOVA’s is often much weaker than the relationship
between the rankings of ANOVA and Kruskal-Wallis. Thus, there is no evidence that the variable
importances from random forest are very similar to the rankings of importance we would obtain from
doing Kruskal-Wallis tests on each gene.

The above can be observed more clearly if we carry out rank correlation tests (i.e., Spearman’s
correlation coefficient) between the rankings from each of random forest, Kruskal-Wallis and ANOVA.
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Figure 1: Relationship between random forest’s variable importance and p-values from ANOVA and
Kruskal-Wallis tests. The p-values from ANOVA and Kruskal-Wallis tests correspond to testing, for each
gene, the null hypothesis of no differential expression among classes. For ease of interpretation, we use
− log10 p − value when showing the p-values from Kruskal-Wallis and ANOVA. Each three consecutive
(along the horizontal dimension) scatterplots corresponds to a data set.
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Data set All genes 100 most important genes
from random forest

rF - KW rF-ANOVA KW-ANOVA rF - KW rF-ANOVA KW-ANOVA
Leukemia 0.401 0.398 0.937 0.48 0.119 0.342
Breast 2 cl. 0.193 0.198 0.903 0.214 0.173 0.683
Breast 3 cl. 0.301 0.294 0.968 0.216 0.034 0.797
NCI 60 0.442 0.439 0.954 -0.295 0.237 0.225
Adenocar. 0.114 0.125 0.539 0.212 -0.084 0.609
Brain 0.408 0.379 0.91 0.242 0.205 0.796
Colon 0.39 0.393 0.955 0.574 0.597 0.78
Lymphoma 0.526 0.528 0.983 0.487 0.176 -0.006
Prostate 0.245 0.252 0.751 0.202 0.248 0.297
Srbct 0.614 0.572 0.922 0.462 0.357 0.373

Table 9: Rank correlation between importances from random forest, −log10 p-values from Kruskal-Wallis
and −log10 p-values from ANOVA. rF: random Forest; KW: Kruskal-Wallis.

These correlation coefficients are shown in table 9. It can be argued that the correlation ought to be
considered only for the most important genes according to random forest, since the figures above show
that random forests importances are very flat for the least important genes. Thus, we have recomputed
the correlation using only the 100 most important genes according to random forests. This table clearly
shows that the rankings from random forest and Kruskal-Wallis are less similar than the rankings from
Kruskal-Wallis and ANOVA.
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