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ABSTRACT A mathematical method for determining the stability properties of
a uniform nerve membrane is developed. Two basically similar tests of stability
are considered: examination of the real characteristic roots of the linearized
equations and application of a modified Nyquist criterion to the linearized alter-
nating current admittance. The method is applied to the Hodgkin-Huxley equa-
tions for the squid axon membrane at 6.3°C to decide theoretically whether
stable membrane behavior might be expected in a space clamp experiment. The
equations are solved for step depolarizations similar to those used in voltage
clamp experiments. Each solution can be represented by a trajectory in the
phase space of the variables V, m, h, and n. The stability of motion of a phase
point on a given trajectory, and hence the adequacy of the control of the mem-
brane potential, is shown to be a function of the effective conductance in series
with the membrane. (For a patch of membrane away from the point controlled.
by feedback, the effective conductance is the combined conductance of the
axial current electrode, axoplasm, and an external layer of sea water, all in
series.) In particular, there is a (uniquely determined) critical conductance,
defined as the minimum effective series conductance consistent with stability,
associated with each point on the trajectory. During a step depolarization the
critical conductance goes through a maximum. The values of such maxima as a
function of voltage are closely similar to the negative slopes of the peak inward
current versus voltage curve. This empirical correlation may be helpful in the
prediction of stability in experimental situations.

INTRODUCTION

In voltage clamp experimepts on the squid giant axon (Cole, 1949; Hodgkin,
Huxley, and Katz, 1952; Cole and Moore, 1960), a step change of the measured
membrane potential is maintained by electronic feedback. The membrane current
required for a cathodal step usually shows (1) an initial capacitative surge, (2) an
early, transient current, and (3) a slower, prolonged current.!

1 Hodgkin and Huxley (1952) identified the early current as sodium and the slower current as
potassium.
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However, irregularities in membrane current have been observed during de-
polarizations of 15 to 50 mv from the resting potential (Frankenhaeuser and
Hodgkin, 1957; Tasaki and Bak, 1958; Tasaki and Spyropoulos, 1958; Taylor,
Moore, and Cole, 1960). These irregularities arise in parts of the membrane with-
out adequate voltage control and seem to be associated with axial electrodes of
high impedance (Tasaki and Spyropoulos, 1958; Taylor, Moore, and Cole, 1960).
The appearance of such anomalies raised the question, under what experimental
conditions stable control of a nerve membrane might be expected.

A stationary state of a physical system is considered stable if small perturba-
tions from that state do not tend to increase with time. Otherwise it is unstable.
For example, a rigid pendulum at rest hanging vertically would be in stable
equilibrium, while if rotated 180° it would be in unstable equilibrium. Similarly, a
patch of axon membrane is called stable if small perturbations from either a sta-
tionary state or a given transient do not tend to increase with time. Otherwise, the
patch is called unstable and irregularities in membrane current and voltage can
occur. Irregularities can also result from non-uniformities in an axon.

The main purpose of this paper is to present a theoretical analysis of the sta-
bility properties of a space-clamped axon, and to show that these depend strongly
on the resistance in series with the membrane (primarily axial electrode and axo-
plasm). The Hodgkin-Huxley equations (Hodgkin and Huxley, 1952) are used
for this study mainly because they are the only complete mathematical formulation
available for the squid giant axon. However, the analytical methods used in this
paper could be applied to other models of the nerve, and similar results are to be
expected.

TWO PATCH MODEL

Voltage clamp experiments on squid axons are carried out in this laboratory in the
following manner (Cole and Moore, 1960). The potential difference across the
membrane is measured between a microelectrode just inside the membrane and a
small, external electrode nearby. The difference between a step command voltage
and the membrane potential is amplified several hundredfold and applied to a
platinized platinum wire, 80-100u in diameter, inserted along the nerve axis. Cur-
rent from this electrode passes through the membrane to a central, external elec-
trode and two lateral guard electrodes. The high gain amplifier delivers the
membrane current necessary to maintain the measured potential approximately at
the desired clamping potential.

The linear cable model of nerve has been modified to include the shunting
effect of the axial wire present in these experiments (Cole and Moore, 1960;
Taylor, Moore, and Cole, 1960). The characteristic length for electrotonic spread
is a fraction of a millimeter during rest, and slightly less during activity. Thus, the
membrane potential a few millimeters from the microelectrode does not appre-
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ciably influence the potential measured by the microelectrode. If the longitudinal
axoplasm conductance between adjacent areas is ignored, we arrive at the two
patch model (Taylor and FitzZHugh, 1959; Taylor, Moore, and Cole, 1960) shown
in Fig. 1. This model will be used to present the concepts and results of the present
study. However, the mathematical methods described and the answers obtained
can be applied to more detailed networks.

.|||._

FIGURE 1 The two patch model. The first patch (subscript 1) represents a small,
uniform area of membrane at the control point. The second patch (subscript 2) repre-
sents an equal area of membrane a few mm away. The conductance g represents axial
current electrode, axoplasm, and a small layer of sea water just outside the nerve.
The first patch is made electrically stable by the feedback amplifier. The second patch
is stable only if g is larger than a certain amount, to be determined.

The patches of membrane are equal in area and sufficiently small that each
patch may be considered uniform. The first patch is at the control point; the
second patch is more than 2.5 mm away (Cole, 1961). The series conductance g
represents the wire surface, axoplasm, and a small layer of sea water around the
nerve, all in series. For the present we shall treat g as a dissipative, frequency-
independent element. Any resistance between the microelectrode and external
electrode in series with the membrane capacity is neglected. A large amplifier gain
p is used to clamp the membrane potential V; in the first patch at the command .
value V,. The essential difference between the patches is that random voltage
fluctuations in the first patch are controlled by the high gain amplifier, while in the
second patch they are not. A small fluctuation arising in the second patch might
grow to the extent that the intended voltage course was no longer followed.

In our calculations, the Hodgkin-Huxley equations at 6.3°C are used to repre-
sent each patch. The first study of this model was made by Taylor and FitzHugh
(1959) with the aid of an analog computer. Their results have been published in
detail (Taylor, Moore, and Cole, 1960). Step potentials ¥, were applied to the
control amplifier and reproduced by the first patch. The potential ¥, across the
second patch also followed V, when g was large enough. However, when g was
made small V, deviated from a step, and notches, similar to those seen experi-
mentally, appeared in the current patterns. When the two series conductances had
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different values, a condition used to simulate axon non-uniformity, the potential
V2 across the second patch always deviated from ¥;. The second patch was stable
when the values of the conductances were large, and unstable when they were
small.

In this paper, we shall consider only the uniform case where each patch has the
same series conductance. This has the advantage that the exact mathematical solu-
tion of the response of the second patch is the same as for the first patch, while
for different conductances each combination would require a separate solution.
The disadvantage is that the results are applicable only to spatially uniform axons.

MATHEMATICAL INTRODUCTION

Space will not permit a complete exposition of the mathematical methods used.
They are based on standard methods of the theory of nonlinear differential equa-
tions, as described in the books of Minorsky (1947), Andronow and Chaikin
(1949), Bellman (1953), Lefschetz (1957), Nemytskii and Stepanov (1960),
and others. In what follows we will ignore many difficulties of mathematical rigor
and apply this theory in what we believe to be an appropriate way to our problem.

The results of this study are most simply expressed in terms of a quantity which
we shall call the critical conductance g,. A series conductance larger than this value
is necessary for stability in the second patch, while a smaller conductance can
cause instability. The concept of stability will be first applied to the Hodgkin-
Huxley equations for a steady state, and then modified to apply to the transient
associated with a voltage clamp pulse. During a given step depolarization g, varies
with time, going through a maximum. If the series conductance is larger than this
maximum value, the second patch will be stable throughout the pulse. Two com-
plementary methods of calculating g., from the characteristic equation and from
the Nyquist stability criterion, will be described in the following two sections.

CHARACTERISTIC EQUATION

A mathematical criterion for stability will be first outlined for a general system, and
then applied to the Hodgkin-Huxley equations in the two patch model. Consider a
physical system represented by a set of simultaneous, first order differential equa-
tions of this form

dxi/dt=Fi(xl!x2s'°°,xn) i=1,2,°°',n.

The singular or equilibrium points of the system are defined by dx,/dt = O for all i.
A singular point is’stable if, for any small neighborhood in the x phase space en-
closing the point, the phase point (X1, X2, * * * , X,) remains indefinitely in the
neighborhood when perturbed from the singular point by an amount smaller than
a predetermined quantity. Otherwise, a small perturbation might grow, moving the
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phase point some distance from the singular point, which, in this case, would be
unstable.

To determine whether a singular point is stable or not, the equations are ex-
panded in Taylor’s series about the point (Adams, 1957) and the non-linear terms
are discarded. The result is

d(éx)/dt = D my ox; i=1,2, -+ ,n, 1

i=1

where my; = 9F;/dx;, evaluated at the singular point, and 8x; is the perturbation of
x; from the singular point. Liapunov’s theorem (Minorsky, 1947; Lefschetz, 1957)
states that (ignoring certain borderline cases) the stability of the singular point
8x; = 0, for all {, in the linear system represented by equation (1) is the same as
the stability of the original singular point in the nonlinear system. A solution of the
form

ox; = a; exp (\f) (2
satisfies equation (1) if

(M — \DA = 0, 3)
where M is the coefficient matrix with elements my;, I is the identity matrix, and A
is the column vector with elements a;. A non-trivial solution for A exists if the de-
terminant

IM — AI| = o. (4)
This characteristic equation is of n'® degree in A, with n roots, real or complex. If
the real part of each X satisfying this equation is less than zero, all perturbations 8x
from the singular point tend to decrease with time, and the singular point is stable.
If at least one root has a positive real part, the singular point is unstable.

We apply this analysis to the Hodgkin-Huxley equations

V = I/C — guam®h(V — V)/C — gxn*(V — Vg)/C — Gu(V — v.)/C
= a1 — m) — B.m

h=a(l —h) — Bih

A= a,(l —n) — B.n.

A dot is used to indicate differentiation with respect to time. The symbols used are
those used by Hodgkin and Huxley (1952).

LIST OF SYMBOLS
1 = membrane current density, positive outward? (pamp/cm?®)

V = membrane potential as mv deviation from resting potential, depolarization
positive?

2 The sign convention of I and V is opposite to that used by Hodgkin and Huxley (1952). The
o’s and g’s, which are functions of V, have been changed accordingly.
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8na = fnam’h

gxn4

g0 = 8&na + gx | g1 = infinite frequency membrane conductance

Tm = 1/(an + B.) in msec.

Zm = 360m°h(V — Vy)[dan/dV — (da./dV + dB,/dV)m]r, in mmho/cm
L, = Tw/gs inhenries cm’

7 = 1/(a; + B,) in msec.

g = 120m*(V — Vyo)[daw/dV — (day/dV + dBy/dV)h]r, in mmho/cm’
L, = 7,/g in henries cm®

7o = 1/(a, + B,) in msec.

g, = 144n*(V — Vi)[da,/dV — (da,/dV + dB,/dV)n]r, in mmho/cm’

. . 2
7./8, in henries cm

o
]
]

2

S
Il

V. = axial wire potential (mv)

conductance in series with the membrane (mmho/cm?)

g, = critical value of g which separates the region of stai)ility from that of
instability (mmho/cm®)

Considering now the second patch, the current I, in the equations is replaced by
(Vo — V2)g. When g is positive the Hodgkin-Huxley equations have only one
singular point for each pair of values of g and V,.3 The equations are linearized
about this point, holding ¥, constant, to give

d(8v)/dt = V/aV) 6V + 8V/dm) 6m + (3V/dh) 6h + (3V/0n) én (5

d(dm)/dt = (0m/dV) 8V + (9m/dm) ém (6)
d(sk)/dt = (Oh/dV) 8V + (3h/dh) 5h (7
d(én)/dt = (0r/dV) 8V + (9r/dn) én. (8)

The parameters in equations (5) through (8) pertain to the second patch, al-
though the subscript 2 has been omitted. '

The elements of the matrix M, equations (1) and (3), are the partial deriva-
tives in these equations evaluated at the singular point, and the characteristic
equation, equation (4), is

g+ FQ) = o, )]
where

FQ\) = go + AC + ga/(1 + A7) + 2/(1 + A1i) + g/(1 + A7) (10)

8 This is given by the intersection of the line I = g(V. — V) with the curve of steady-state
current versus voltage.
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The details of this derivation are given in the Appendix. The symbols used are
given in the List of Symbols.

In Fig. 2, F(A) in mmho/cm? versus X in msec™ is shown for the resting poten-
tial. A is generally complex but in Fig. 2 it is restricted to real values. There are
three simple poles of F(A) at —1/r,,, —1/73, and —1/r,. These are indicated by
dashed lines crossing the abscissa. The real roots of the characteristic equation are
given by the projections onto the A axis of the intersections of the F(A) curve with
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FIGURE 2 F()\) for real values of A as calculated from the Hodgkin-Huxley equa-
tions, 6.3°C, at the resting potential. The characteristic equation, which describes the
stability properties of the second patch, is g + F(A\) = 0, g being the series conduct-
ance. The real roots of this equation are given by the A values of the intersections of
F(\) with the horizontal line F(A\) = —g. Unstable behavior is possible when a root
is positive. F(\) is in mmho/cm?, A\ is in msec.

a horizontal line at ordinate —g. For g > 0.812 mmho/cm? the four roots of the
equation are real and negative. For g < —0.897 the four roots are real, and at
least one is positive.

In the region —0.897 < g < 0.812 there are two negative real roots of the
characteristic equation and a pair of complex conjugate roots,* having either posi-
tive or negative real parts. When g is slightly larger than —0.897, the real part

4 Since the coefficients in equation (9) are real, if a complex root satisfies the equation, so does
its conjugate.
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must be positive, while for g slightly less than 0.812, the real part is negative. It
can be shown that between these two extremes there is a single value of conduct-
ance, the critical conductance, which gives rise to two complex roots which are
pure imaginary numbers. However, the value of g, cannot be determined from
Fig. 2 in an easy manner.

The reciprocal of a positive real root of the characteristic equation (in this case
for a series conductance less than —0.897 mmho/cm?) is a time constant, as given
in equation (2), associated with the growth of unstable perturbations.

Fig. 3 is similar to Fig. 2 except the potential is —20 mv (hyperpolarized). At this

T
=5

FIGURE 3 Same as Fig. 2 except the potential is —20 mv (hyperpolarized).

potential gxa, gx, &m, &1, and g, are small and F()) is essentially given by the first
two terms in equation (10), except when A lies in a region around one of the three
vertical asymptotes. These asymptotes have A values different from Fig. 2 since the
time constants associated with m, k, and n are functions of voltage. The values of
F(X) near the vertical asymptote on the right, given by A = —1/r,, have different
signs in Figs. 2 and 3. This is because g, is positive at the resting potential and
negative at —20 mv.

From Fig. 3 we see that the values of conductance for which equation (9) has
complex roots are narrowly bracketed and extend from minus the maximum of
the branch of the F(A) curve second from the left to minus the minimum of the
branch third from the left. It can be shown analytically that when these two ex-
tremes lie in the left half plane, such as in Fig. 3, the complex roots can have only
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negative real parts. The critical conductance, given by —F(0), is —0.296 mmho/
cm2. When the critical conductance is negative, as here, the second patch is stable
for any positive g.

Thus far the analysis has been applied only to singular points, and has not been
used to give the stability of the transient response of the second patch to a voltage
clamp pulse. During a pulse a trajectory in the phase space of the variables V, m,
h, and n is traced out by each patch. By solving the equations for a step change in
membrane potential, the trajectory for the first patch, made stable by feedback,
can be determined. This is also the exact, unperturbed mathematical solution for
the second patch equations. However, we want to know if this intended response
of the second patch is stable. If the phase point is moved a small distance from the
trajectory, does it follow another path close to the original one, tending to return
to it (stable), or does it move away to follow a different path (unstable)?

Kamenkov (1953) has defined stability for a finite time interval such as we are
considering. Geometrically stated, a trajectory is stable at a given point over a
finite time interval of duration r if all perturbed phase points within some suffi-
ciently small ellipsoid centered on the point in question at ¢ = ¢, remain within the
ellipsoid as its center moves through phase space along the trajectory, until at least
t = to + 7. Kamenkov showed that if all roots of the characteristic equation at the
point at ¢ = t, have negative real parts, the trajectory is stable at that point over
some finite interval = > 0. If any root has a positive real part, the trajectory is un-
stable. Therefore, to determine the stability of the second patch, we will examine
the roots of the characteristic equation evaluated at operating points selected at 0.1
msec. intervals on the unperturbed trajectory. As before, ¥, can be treated as a
constant. The degree or seriousness of any instability predicted by this analysis
cannot be easily determined from the methods used in this paper.

In the calculations to follow, values of m, h, and n for —20 mv are used as
initial conditions for each cathodal pulse. Compared with the resting potential,
previous hyperpolarization of the Hodgkin-Huxley model results in larger peak
inward currents and more of a tendency towards instability. Since the most power-
ful axons and the hyperpolarized axons are the most difficult to control experi-
mentally, these initial conditions were chosen (Frankenhaeuser and Hodgkin, 1957;
Cole and Moore, 1960).

During a step change of membrane potential, F(A) changes with time, starting
from the curve shown in Fig. 3. Since the three poles of F(A) are negative, the
three left branches of the F(A) curve always lie in the left half plane and give rise
only to negative roots of the characteristic equation. Therefore, only the right-hand
branch of the curve need be considered when looking for positive roots associated
with instability.

At time zero, a step command pulse of 30 mv is applied to the input of the
amplifier and instantaneously reproduced across both patches. In Fig. 4, the right-
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hand branch of the F(A) curve is shown for times 0+, 0.2, 0.5, 1.0, 1.5, and 2.5
msec. At time zero the discontinuity in ¥ produces two immediate changes in F()).
The A value of the vertical asymptote of the curve changes discontinuously from
—0.176 mmho/cm? (corresponding to ¥V = —20 mv) to —0.317 mmho/cm?
(corresponding to ¥ = 30 mv) because of the discontinuous change in r,. Simul-
taneously, the asymptotic values of F(A) change from — to +c because of the
instantaneous change in sign of g, associated with crossing the potassium equilibrium

L F(N

—=—80

FIGURE 4 The right branch of the F()\) curve for various times following a cathodal
step of 30 mv from the resting potential. The initial conditions were —20 mv. For
times after 04 the curve extends into the lower right quadrant, indicating that un-
stable behavior is possible if the series conductance is too small. The time constant in
msec. associated with unstable behavior, positive A, is the reciprocal of A. Note the
change in scale from the previous two figures.

potential Vx. After time zero, the curve changes continuously and finally ap-
proaches the steady state curve for 30 mv, not shown in the figure.

From the curve at 0.2 msec., a positive and a negative real root of the char-
acteristic equation are obtained graphically for ¢ < 27 mmho/cm?, the critical
conductance. Two negative real roots are obtained when g is between 27 and 28.
For values of g between 28 and 60, the characteristic equation has two negative
roots and a pair of complex roots. It can be shown that if the minimum in the
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right hand branch of the F(A) curve lies in the left half plane, the complex roots
have negative real parts.

At 1.0 msec. the minimum in the curve has moved into the right half plane and
has a value of —71 mmho/cm? Therefore, a restricted range of values of the
series conductance greater than 71 mmho/cm? will give rise to characteristic roots
which are complex with positive real parts. There is no easy method for obtaining
the value of the critical conductance from Fig. 4.

Thus, the curves shown in Fig. 4 give a clear picture of the time course of the
positive real roots of the characteristic equation for a particular series conductance.
However, these curves do not adequately describe the behavior of the characteristic
equation when there is a region of conductances which give rise to complex roots
with positive real parts. This region, when it exists, is particularly important be-
cause it includes the critical conductance. In this case, it is desirable to study the
roots of the characteristic equation in a different manner.

NYQUIST CRITERION

The real and imaginary parts of any complex roots of equation (9) can be found
by trial and error computations for each value of g selected. This complexity is
necessary to get the numerical values of the roots. However, the value of the
critical conductance can be obtained much more simply by applying a modifica-
tion of the Nyquist criterion (Nyquist, 1932) to the generalized admittance calcu-
lated from the linearized Hodgkin-Huxley equations.

The Hodgkin-Huxley equations are linearized, as before, about either a singular
point or a non-singular operating point. No substitution for membrane current is
made. The Laplace transforms of these linearized equations (Churchill, 1944),
using bars to indicate the transformed functions, are
poV =0V/aV) sV + (8V/dm) 6m + (9V/oh) h + (3V/dn) 6n + (3V/I) 81
pom = (dm/dV) sV + (dm/dm) om
p oh = (9h/0V) sV + (9h/0h) sh
pon = 31/ V) 5V + (3i/dn) on,
where p is the transform variable. The generalized admittance, defined by

A(p) = 31/5V,
is obtained using Cramer’s rule
AP) = 8o + PC + g./(1 + pra) + &/(1 + p7) + 2./(1 + pr).  (11)
The admittance function is equal to F(p) (cf. equations (35) and (36) of Hodgkin _
and Huxley (1952)).

The A.c. admittance 4 (jo), obtained when jo replaces p, suggests the equivalent circuit
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shown in Fig. 5.5 The membrane capacity is shunted by paths for sodium, potassium, and
leakage currents. A conductance and inductance in series represents each of the linear
approximations of the time dependent processes represented by m, h, and n. This is simi-
lar to the representation of a variable conductance with a single time constant given by
Cole (1947). The conductances ga, g, and g, can be positive or negative, but the corre-
sponding inductances must have the same sign since the time constants are positive.® The
sign of the conductance changes as the voltage moves from one side of the equilibrium
potential of the ion in question to the other. For potentials between Vx and V., the

I

Im 9h 9 %
-1 9 g g
C — Na L, L K L L
IN’l IKl I"l

FIGURE 5 The equivalent A.c. circuit for the linearized Hodgkin-Huxley membrane.
The infinite frequency conductances of sodium and potassium, gnva and gg, are
shunted by series conductance and inductance elements representing m, k, and n. The
elements for sodium activation, gn and L., are both negative, and are responsible for
the tendency towards instability present during voltage clamp pulses.

sodium activation process (m) gives a negative conductance (g.), while sodium inac-
tivation (k) and potassium activation (n) give positive conductances (g, and g.). It is
this negative conductance associated with sodium activation that can cause instability in
the Hodgkin-Huxley axon during a voltage clamp pulse.

The generalized admittance may now be used to represent each membrane in
the two patch model. A small perturbing voltage § V, is applied to the axial wire.
The perturbation of the second patch current is

Ap) oV = (V. — 8 V)s.

This expression can be rearranged to give an overall transfer function from the wire
to the second patch

sV/sv. = g/lg + AW (12)
Although there is no negative feedback from the potential of the second patch

5 j is identically equal to \/—1 and « is equal to 2= times the frequency.

¢ A negative conductance and inductance in series are formally equivalent to a negative conduct-
ance in parallel with a positive capacitance and positive conductance in series. Thus, the terms
inductive and capacitative reactances can be used to describe these time dependent, ionic
processes.
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to the axial wire, the transfer function, equation (12), is similar to those developed
in the theory of servomechanisms, and the Nyquist criterion can be employed to
determine the stability of the second patch. The reader interested in the details of
the Nyquist criterion may refer to one of the numerous books on the subject, such
as James, Nichols, and Philips (1947) or Truxal (1955). The appropriate analy-
sis shows that the second patch is stable if the denominator of the transfer function
given by equation (12) has no zeros with positive real parts (compare with equa-
tion (9)). The essential result is that the critical conductance is given by the
negative value of the intersection farthest left which the A.c. admittance locus
makes with the real axis. This intersection will be referred to as the “left” inter-
section.

The a.c. admittance locus at the resting potential, as calculated from equation
(11), with and without a static capacity of 1uf/cm?, is shown in Fig. 6a. The ad-
mittance locus of a constant conductance in parallel with a static capacity is a

1.0+ a b
iB
—with C
05 ———wirroutr C B B
o T
0.5
\\\ ”/
-o.5F -

FIGURE 6 (a) The admittance of the Hodgkin-Huxley membrane at 6.3° for the
resting potential. The susceptance (ordinate) and conductance (abscissa) are in
mmho/cm?®. The dashed curve is the ionic part; the heavy curve includes a parallel
static capacity of luf/cm?®. The arrow shows the direction of increasing frequency. The
left intersection of the admittance locus with the abscissa gives the negative value of
the critical conductance. A series conductance greater than the critical value results
in stable behavior, while a smaller conductance can cause unstable behavior. The ionic
admittance is essentially the same as given by Cole (1955) in Fig. 16. (b) Similar to
Fig. 6a for a potential of —20 mv. At this potential the sodium and potassium con-
ductances are negligible, so the ionic conductance is mostly leakage.
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vertical, straight line. The curved shape of the Hodgkin-Huxley locus is caused by
the reactances associated with m, h, and n. The critical conductance is —0.446
mmho/cm? which means the second patch is stable at the resting potential for any
positive g.

In Fig. 6b the admittance for —20 mv is shown. As in Fig. 3, the membrane is
seen to approximate a constant conductance and capacity in parallel.

At time zero a cathodal step of 30 mv with respect to the resting potential is ap-
plied to the hyperpolarized membrane model. Admittances for times 0+, 0.2, 0.5,
1.0, 1.5, and 2.5 msec. are shown in Fig. 7. At time O+ the admittance has

X/
A@f’#) \—l.s N2s (msec.) i

FIGURE 7 Admittances for various times following a cathodal step from —20 mv to
30 mv. The scale is different from Fig. 6. The critical conductance goes through a
maximum at 1 msec. with a value of 82 mmho/cm?.

changed slightly from that shown in Fig. 6b. At 0.2 msec. the curve has enlarged
and moved to the left. The curve continues in this direction until at 1 msec. it turns
and starts towards the right. For a long enough pulse the admittance curve would
reach the steady state curve for 30 mv, not shown in the figure.

The negative of the critical conductance, —g,, can be read from the left inter-
section of the admittance locus with the real axis. For times 0+ and 0.2 msec. these
intersections occur at zero frequency and, as was seen in Fig. 4, the critical con-
ductance gives rise only to real roots of the characteristic equation. At the later
times the left intersection occurs at a frequency greater than zero, and the critical
conductance gives rise to two imaginary roots. The 1 msec. locus shows a peak
value of critical conductance of 82 mmho/cm?. Conductances between —68 and
—82 mmho/cm? are encircled twice by the complete Nyquist plot, showing that
two roots have positive real parts. Unfortunately, these admittance diagrams do not
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readily give information on the magnitudes of the real parts of the roots of the
characteristic equation.

Curves of critical conductance versus time following step depolarizations of 20,
30, 40, and 50 mv are shown in Fig. 8. (The values of critical conductance were
interpolated from admittance locus plots such as those shown in Fig. 7.) During
a given step depolarization, the second patch is stable if the series conductance is
greater than the maximum critical conductance calculated for that voltage.

A summary of the critical conductance calculations is given in Fig. 9 in the
curve labeled Nyquist. The maxima of the curves of critical conductance versus

] ! |
30

80

40

® TIME OF PEAK INWARD —
CURRENT

O TIME OF MAXIMUM g
FROM ISOCHRONAL
CURRENT-VOLTAGE
CURVES

I
1.0 1.5

TIME (msec.)

FIGURE 8 Critical conductance in mmho/cm? versus time following step depolariza-
tions of 20, 30, 40, and 50 mv. The peaks in the curves occur earlier for the larger
depolarizations, and precede the occurrence of peak inward current and maximum
isochronal g.. Each curve separates a region of conductance values associated with
stable behavior (above) from a region capable of causing unstable behavior (below).

time, such as shown in Fig. 8, are plotted as a function of clamping potential. At
29 mv the maximum critical conductance has a peak value of 83 mmho/cm?2.

QUASI-STEADY STATE CHARACTERISTIC

One of the purposes of this study was to develop a criterion for deciding experi-
mentally whether stable space clamp behavior could be expected from a given
length of fresh axon. Cole and Moore (1960, Appendix D) suggested using the
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FIGURE 9 Maximum critical conductance for each voltage step calculated by three
methods. The curve labeled Nyquist gives the values obtained from the Nyquist
criterion. The peak inward current curve is determined on the assumption that the
peak inward current versus voltage curve for the membrane is a quasi-steady state
characteristic. See text for details on isochronal curve. All calculations were made on
the Hodgkin-Huxley equations, 6.3°C, with initial conditions of —20 mv (hyper-
polarization).

experimentally obtained peak inward current versus voltage curve as a quasi-
steady state characteristic of ionic conductance. At a given voltage, the critical
conductance of a membrane having this characteristic is equal to the negative slope
of the curve. To examine the validity of this quasi-steady state approximation for
the Hodgkin-Huxley equations, we calculated the values of peak inward current
from the equations. The critical conductances, obtained from interpolations of
these currents, are shown in Fig. 9 in the curve labeled peak inward current. This
curve has a maximum value of 76 mmho/cm? and is sufficiently similar to the
curve labeled Nyquist to justify the approximation of Cole and Moore and of Cole
(1961), at least with respect to the Hodgkin-Huxley axon.

Somewhat along the same line, the curves of current versus voltage at different
times can be used as quasi-steady state characteristics, from which a critical con-
ductance for each voltage at each time can be obtained. The maximum values in
time of these critical conductances, each one calculated from pairs of calculations
made 0.01 mv apart, are shown in the curve labeled isochronal.

The three curves shown in Fig. 9 are quite similar. However, the times as-
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sociated with peak inward current, maximum Nyquist critical conductance, and
maximum isochronal critical conductance are different, as seen in Fig. 8. These
differences are more pronounced at the larger depolarizations.

DISCUSSION

The mathematical analysis presented thus far should be useful in two ways to the
physiologist interested in voltage clamp experiments on squid giant axons. First, it
provides an analytical method which, when applied to the Hodgkin-Huxley equa-
tions, defines a region of values of the series conductance for which instability can
be expected in an indefinitely long, uniform axon. Second, the correlation in the
Hodgkin-Huxley equations of the maximum critical conductance with both the
negative slope of the peak inward current versus voltage curve and the largest
negative slope of the isochronal inward current versus voltage curves gives some
basis for assuming the same correlation to exist in the nerves used in experiments
at the present time. It must be strongly emphasized that the Hodgkin-Huxley equa-
tions represent an empirical description of the voltage clamp currents, and the con-
clusions derived from them here are entirely independent of any physical inter-
pretations given to any symbols other than I and V.

Although the present analysis has been restricted primarily to a study of space
clamp stability, the mathematical methods employed can be directly applied to the
investigation of other stability phenomena. The most general case would be an
arbitrary voltage source V,(¢) connected to the membrane through a series con-
ductance g. As an example (see FitzHugh, 1961), the response of a uniform patch
of membrane to constant current pulses can be explored by using step changes of
V., and then allowing g to approach zero and ¥, to approach infinity in such a way
as to make gV, approach the constant current value. For an indefinitely long cur-
rent pulse, an unstable singular point for g = O at the appropriate point on the
steady-state current versus voltage curve implies a response of an infinite train of
action potentials. A stable singular point implies a response of at most a finite
number of action potentials.

Admittances in the entire frequency range including zero cycles per second have
been calculated from the Hodgkin-Huxley equations. The low frequencies might
appear irrelevant, since the times associated with the duration of voltage clamp
pulses and membrane transients are usually in milliseconds. However, these fre-
quencies are needed to complete the closed curve in the admittance plane which is
used in the Nyquist criterion. In fact, the point (—g., 0) on the admittance curve
occurs in this frequency range, usually between O and 100 cycles per second for
6.3°C. Although these low frequency admittances can have no experimental realiza-
tion during the early part of a voltage clamp pulse, they are nonetheless helpful in
locating regions of conductance for which the characteristic equation has roots
with positive real parts.
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When the series conductance is close in value to the critical conductance, and
the point (—g,, 0) on the admittance locus occurs for a frequency greater than zero,
small perturbations oscillate at about that same frequency. These oscillations de-
crease or increase in magnitude, depending respectively on whether g > g, or g <
g, Some examples of such oscillations are given by Huxley (1959). Similarly,
there is a rough agreement between the frequencies of oscillation reported by
Tasaki et al. (Tasaki and Bak, 1958; Tasaki and Spyropoulos, 1958) and the
values which we have calculated but shall not present in detail.

The two patch model gives a picture of the stability properties of membrane at
the control point and of membrane some distance away. The first patch is always
controlled by the high gain amplifier, while the second patch is controlled if g >
g, and uncontrolled if g < g,. Experimentally, an area of membrane near the con-
trol point might be expected to have intermediate stability. This can be represented
by a linked two patch model. A conductance G, representing the longitudinal con-
ductance of the axoplasm between the patches, is connected between the two points
marked ¥; and ¥V, in Fig. 1. When the appropriate analysis is carried out, the ex-
pression analogous to the denominator of equation (12) is found to be approxi-
mately

Ap)+26+¢g=0.

The Nyquist criterion indicates that the effective series conductance to the second
patch is 2G + g, instead of g. When the second patch represents membrane far
from the control point, G approaches zero which agrees with the unlinked two
patch model. As membrane closer to the control point is simulated by the second
patch, G becomes larger and stability is more easily maintained.

The Nyquist criterion can be applied to networks more detailed than the two
patch model. In such networks the membrane properties are represented by the
A.c. admittance. However, the admittance loci which we have calculated from the
Hodgkin-Huxley equations are applicable only to parts of the membrane which
have followed a step change in potential prior to the time of calculation. Ad-
mittance loci for parts of the membrane which have followed a different time
course must be computed as needed. One of us (RF) has begun to analyze the
linear cable model of uniform nerve to determine the conditions necessary for
stability during a step voltage pulse. Perfect seals which block longitudinal current
flow are used for boundary conditions at each end of the clamped nerve. Stability
for an indefinitely long length of clamped nerve requires the same minimum series
conductance as the two patch model. As the length is shortened, this critical value
is decreased until, for an infinitesimal length, the nerve is always stable. Mathe-
matically, the effect of having a finite length is equivalent with respect to stability
to the addition of a conductance in parallel with the series conductance and having
a value inversely proportional to length squared. This conductance acts in the same
way as the term 2G in the linked two patch model and is negligible when the length
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of nerve is more than several space constants. As mentioned previously, the space
constant of a squid giant axon with an axial electrode is less than 1 mm.

When instability is predicted by the Nyquist criterion, the admittance locus does
not give information on the electrical events which will actually occur. The amount
small perturbations grow will depend on the magnitude of the perturbations, the
magnitude of the positive real parts of the unstable roots, and the length of time
the system is unstable. In addition, an unstable solution may enter a region of
phase space in which the approximation of the original linearization of the differ-
ential equations is poor. If this happens, the nonlinearities become important, and
the actual solutions must be obtained from the complete nonlinear equations. Some
investigations along these lines have been completed by Taylor et al. (Taylor and
FitzHugh, 1959; Taylor, Moore, and Cole, 1960) and by Cole (1961).

The remainder of the discussion will be devoted to a consideration of the changes
in the stability properties of the membrane produced by changes in certain terms
in equations (11) and (12).

Capacity. The effect of membrane capacity on the stability properties can
be seen graphically from a plot of the ionic admittance. A static capacity added in
parallel raises the curve of the ionic admittance by an amount «C at each point,
as shown in Fig. 6. This decreases the critical conductance in those cases where the
left intercept does not occur at zero frequency. However, in no case does the critical
conductance become less than the value given by the negative of the zero frequency
admittance.

The static capacity may be replaced by a polarization element with an admittance
(joC)* as considered by Curtis and Cole (1938). From their data we selected a
phase angle of 75° (« = 5/6) and a capacity of 1uf/cm? at 1 kilocycle as repre-
sentative of the squid giant axon. When in parallel with the ionic admittance, this
element, represented by a straight line in the admittance plane with slope tan(er/2),
shifts each point on the ionic admittance both up and to the right.

The following values of critical conductance are obtained at 1 msec. for a 30 mv
depolarization (see Fig. 7): (1) 82.4 mmho/cm? without a parallel capacity, (2)
82.1 mmho/cm? with a parallel capacity of 1uf/cm2, and (3) 81.7 mmho/cm?
with the parallel polarization element. Differences between these values are small.

Temperature. The effect of temperature on the critical conductance can
also be seen graphically. In the Hodgkin-Huxley equations, an increase of tempera-
ture decreases the time constants of m, s, and n with a Q;o of 3. At temperature
T, 1'3,30 = TT(I)T, O = 3(T_6'3)/10, and equation (11) becomes

A(jw) = g0 + j(w/Pr)P:C + gu/[1 + j(w/Pr)7n]
+ a/[1 + jlw/®r)7] + g./[1 + i(w/®Pr)7a],

where the +’s are appropriate for 6.3°C. A change in temperature produces a change
in the critical conductance equivalent to that produced by multiplying the mem-
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brane capacity by ¢. This causes the axon to have more of a tendency for unstable
behavior at lower temperature.

On the other hand, Moore (1958) has shown that raising the temperature from
5°C to 25°C increases the peak sodium conductance and steady-state potassium
conductance by 4 per cent per degree relative to 15°C. If these effects are inter-
preted as equivalent changes of gy, and gx, the ionic admittance would spread in all
directions from the origin as the temperature was increased, and the critical con-
ductance would increase. On the basis of rough calculations, these two opposite
effects of temperature combine to give a net increase in critical conductance with
an increase in temperature.

Electrode Polarizability. The assumption that the series conductance is
constant and frequency independent is not strictly valid under the usual experimen-
tal conditions. The element included in the series conductance which probably devi-
ates most from being constant is the axial electrode. If the admittance of this is
represented by a polarization term of the form (pC,)?, we can replace g in equation
(12) by g(pC.)* / [g + (pC.)°]. This change results in predicted instability for
many cases where the left intersection of the admittance locus with the real axis
occurs in the left half of the admittance plane and for all cases where the zero fre-
quency admittance is also in the left half plane. On this basis it would seem impossi-
ble to clamp adequately any good axon. Rough calculations using a value of %2
for x and a value for C, appropriate for the electrodes used in this laboratory indi-
cate that the time constant associated with the instability is large if g is much larger
than g.. Thus, the growth of unstable perturbations might be sufficiently small to
prevent their being serious. At any rate, the electrode polarizability must be con-
sidered as a factor which tends to make the system unstable.

CONCLUSIONS

Application of the Nyquist criterion to the A.c. admittance of the Hodgkin-
Huxley equations has been successful in giving an analytical basis both for unstable
axon behavior during voltage clamp experiments and for the computed results on
the two patch model. The axial current electrode, axoplasm, and small layer of sea
water surrounding the nerve, all in series, should have a combined conductance
greater than 83 mmho/cm?—or resistance less than 12 ohm cm?>—to insure stability
for all pulses preceded by a 20 mv hyperpolarization. To extend this analysis to
nerves presently being studied experimentally, either an adequate mathematical
description of them must be available or certain assumptions must be made. The
simplest assumption, which we showed was reasonable for the Hodgkin-Huxley
axon, is to take the negative of the slope of the peak inward current versus voltage
curve as an approximation to the critical conductance which would be determined
from more exact calculations. The average of the peak value of this quantity for the
squid giant axons studied in this Laboratory is 250 mmho/cm?, with some axons
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giving values up to 500 mmho/cm? (Cole and Moore, 1960). As the calculated
conductance of the axoplasm plus the small, external layer of sea water does not
exceed 500 mmho/cm?, perfect electrodes would give a series conductance close in
value to the critical conductance. As non-uniformities (Taylor, Moore, and Cole,
1960) and electrode polarization make stable control more difficult, one must en-
tertain the rather pessimistic view, based on the above assumption, that adequate
voltage control over a few millimeters of “hot” axon might be impossible. Such
space clamp failure would necessitate the use of techniques for measuring mem-
brane current through a small, relatively uniform area about the control point.

We are grateful to Dr. Robert E. Taylor for many helpful suggestions and criticisms. Most of
the calculations of F(A) and the A.c. admittance were done on an IBM 650 digital computer at
the National Institutes of Health, and we are indebted to Mr. John Witmer for assistance in
using the computer.

A preliminary report has been made (Chandler, 1961).
Received for publication, September 5, 1961.
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APPENDIX

Starting with the Hodgkin-Huxley equations for the second patch and omitting the sub-
script 2 we have

V= (V.= V)g/C = jnrm’h(V — Vxo)/C — gxn'(V — V&)/C — jgu(V — V.)/C

an(l — m) — Bnm

a(l — k) — Bk

an(l — n) — Bun.

‘The coefficients in equations (5) through (8) are
my = @V/3V) = —g/C — gnam’h/C — jxn'/C — §1/C
my = @V/dm) = —3gnamh(V — Vx.)/C

3 = (6V/0h) = "‘ﬁN-ms(V - Vm)/C

me = 3V/3n) = —4gen®(V — Vg)/C

my = @m/aV) = (1 — m)(da,/dV) — m(dB./dV)

My = (0m/3m) = —(atm + Bm)

my, = (0h/3V) = (1 — h)(dar/d V) — h(dB/d V)

mas = (Oh/3h) = —(as + Bu)

my = (0a/aV) = (1 — n)(da,/dV) — n(dB,/dV).

my = (9h/dn) = —(an, + B.).

m
h

n

m

-
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In matrix notation we can write (5) — (8) as
d(év)/ar my myp mga my [ 8V
d(dm)/dt| _ |ms my O O [|ém|
d(éh)/adt my O my 0 [|6h

d(8n)/dt my; 0 0 Myy on
We assume a solution of the form

0V = ay exp (\D)
om = a, exp (\1)
Sh = a), exp (\D)
én = a, exp (\),

and get
ay my Mz Mz My, |Gy
Aexp ) [P = exp (Ar) | T 0 0)am ,
a mg; 0 M3z 0 a

myy 0 0 Myys) (Qp
which reduces to

my — N my mys Mmyy avi
my, mey; — N O 0 am| _ 0
ma; 0 mgg — N O a,
my, 0 0 myy — N a,.J

The a’s are different from zero only if the determinant

my; — N my Mg my

ma; mspay — )\ 0 0 = 0.
Mmaz, 0 mgs — N O

mg 0 0 Myy — k

Evaluating this we get
(myy — N)(maz — N)(maz — N)(mge — N) — mygmg(mza — N)(mey — \)
— miamg(mag — N)(mey — N) — myamy(mag — N)(mgz — \) = 0,
which gives
—muC 4+ AC + (miamaC/mas)/(1 — N/ my,)

+ (mlamuc/msa)/(l - >\/mss) + (mumuc/m«)/(l - )\/m«) = 0,
the same as equation (9).
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