Sbalzarini et al. — Supplementary Material

Governing equation

Isotropic diffusion of a scalar quantity in the-dimensional Euclidean spaé&¢” (m = 1, 2, 3)
is described by the spatio-temporal evolution of its locadaentration:(x, ¢) on a given closed
bounded domaif? C E™ with boundaryof? for a time intervald < ¢t < 7. The governing
equation is the unsteady diffusion equation

%:Dv%(m,t) forx e {Q\0Q}, 0<t < T, (1)

whereD denotes the scalar diffusion coefficient &vdlis the Laplace operator. The initial
concentration field is specified by

c(x,t =0) =co(x) xeQ, t=0.

As soluble proteins do not spontaneously cross the meminen@ssumed boundary con-
dition is the zero fluNeumanrcondition
oc
a—:Vc(w,t)-n:O forx e 0, 0<t<T,
mn
wheren is the outer unit normal 08(2, V¢ is the gradient of the concentration fielavith
respect to the locatiom, and the dot denotes the scalar product of two vectors. Vaheec
rather than the flux is prescribed to be zero on the boundayhdundary condition is called a
zero valueDirichlet condition.

Particle Methods

Particle methods rely on the formulation of the quantitiesterest as integral operators that
are subsequently discretized using as quadrature poaltsdations of computational elements.
The computational elements then can be viewegkasclescarrying a physical quantity called
strength The patrticle attributes (strength and location) can beifiadso as to satisfy the un-
derlying governing equation. Following this procedureyadtionc is discretized onto particles
in three steps:

e Step 1: Integral Representatioklsing the Diraci-function identity, the functior can
be expressed as an integral operator

c(x) = /c(y) iy —x)dy forx, y € Q.



The above integral can be discretized on a set of computdtedlements. Such a dis-
cretization does however not enable the recovery of thetibmealues at locations other
than those occupied by the particles. To circumvent thigcdity, the 5-function is re-
placed by a mollified approximation resulting in:

e Step 2: Integral Mollification.
olw) = [ etw) Gy - @) dy.

Note that
ce(x) = c(x) + O(€),

wherer depends on the vanishing moments of the mollifying functjonFor positive
symmetric functions, such as a Gaussias; 2.

e Step 3: Mollified Integral DiscretizationThe mollified integral is discretized ovéy
particles using a quadrature rule

N
c(x) = Z LpCe(xy — ),

where the strengtli’, = I'(z,) is an extensive property of the particles that depends
on the particular quadrature rule. Here we use the rectangule setting the particle
volumesy, = ™ and thusl', = c(x,)h™ wherem is the space dimension ards the
inter-particle distance. Using this discretization weant

h\° h\°®
C?(w) =c(x)+ O (;) =c(x) +0(e")+ O <;) )
wheres depends on the number of continuous derivatives of the fyiolj function ¢..
For a Gaussian — oc.

It is important to note that for the approximation to be cetesit, it is required that the
distanceh between any two particles is always less than their mollsigoporte, thus

h
—<1.
€

See (4, 6) for further details on approximations of contumifunctions by particles.



Particle Methods for Diffusion

The simulation of diffusion by particle methods can be foleted in the above mentioned
framework. Solving the diffusion equation begins by expieg its solution in integral form.
Without any boundary conditions this can be accomplishecbmgidering the Green’s function
solution to the governing equation

o0

(1) = / G, y, )eoly) dy | @)

— o0

with Green'’s function being

1 1 «
whereexp|-] stands for the exponential function amgdmeans the-th component of the
vectorz.

The method of random walk

In the context of the random walk (3), the integral solutigq.(2) is interpreted probabilistically
as follows: PlaceV randomly spaced particles at initial position% p=1,...,N and assign
to each particle a strength bf = hmco(wg) whereh is the inter-particle spacing. Let then the
particles undergo a random walk by changing their positadreach time step according to

n+l _ _n n
Ly _wp+€p’

whereg; are independent, identically distributed Gaussian randeators with all com-
ponents having meam and varianc&mDdt, whereot is the simulation time step size. The
method is consistent since as we let the numibef particles go to infinity we observe that the
expected distribution of the particle strength in spaceveages to the integral solution (Eq. 2).
The random walk is however a stochastic method. This fagtdiits convergence capabilities
since the variance of the mean &f independent, identically distributed random variables is
given by1/v/N times the individual variance of a single random variabfelenchmark case).
Moreover, the solution deteriorates further with incraggiffusion constant since the variance
of the random variables becomes larger.

The isotropic PSE method for infinite domains

Rather than discretizing Eq. 2 directly, the PSE method ednced in (5) approximates the
Laplace operator by an integral operator that allows ctersigvaluation on the particle loca-
tions. This integral operator is found to be:



Vie(z) = 2 / (c(y) — cl@)) n.(y — ) dy + O () . @3)

wheren.(x) = e ™n(x/¢) is a kernel function inn dimensions that has to fulfill certain
moment conditions (explicitly stated in (5) or (4)). An exalmof such a kernel function im =
1 dimensionis the Gaussian kernel given in Eq. 10. The appratxon error of above operator is
O(€") with r being the order of the method (see (4) for a rigorous erratitnent). Discretizing
Eq. 3 using the rectangular quadrature rule with the partmtationse, as quadrature points
leads to:

V2ne ey (T, — ), (4)

q#p

wherel', andl’, are the particle strengths as defined earlier. The quadrettor isO(h/¢€)*
wheres is the number of continuous derivatives of the kernel florcti(x) andh is the inter-
particle spacing. It is noteworthy that this operator is the& only possibility of discretizing
the Laplacian onto particles. Compared to other detertenisffusion schemes (see (4) for
details), the PSE has however the big advantage of beingo@ive (i.e. exact conservation
of the total strength in the system).

As outlined earlier, the approximatiafi to the continuous concentratierat any location
and time can be reconstructed from the vald,}eat particle locations using:

Zr )o@y (t) — @),

where(.(z) = e ™((x/¢) is the mollifier function that the particles “carry aroundrhe
final PSE scheme is easily obtained by inserting Eq. 4 intdlEq.

dcl
—P De?> (T, —al)  Vpe{l,...,N}. (5)
a#p

This is anN-body problem as for each particle it involves a sum ovetraldther particles.
However, since the kernel is chosen to be local, only the nearest neighbors of eacitleart
significantly contribute to its sum. The simulations impérha Verlet list algorithm (12) for
nearest neighbor search and interactions are only cadclilztween particles that are closer
than a cut-off radius of, = 3¢ resulting in a computational cost that scales linearly it
number of particles. It can be seen from Eq. 5, that in ordemulate diffusion, the strengths
of all the particles change (i.e. they exchange mass) windie tocations remain constant. This
is in contrast to the method of random walk where the parstiengths are constant but their
locations change. Having the particles at fixed locatiorsstha convenient side-effect that all
the geometry handling only needs to be done once when iritiglthe particles.



Extending the PSE for diffusion in complex geometries

The PSE algorithm as described above only applies to infitteains. For diffusion in con-
strained geometries, the PSE needs to be modified to takadntant the prescribed boundary
conditions. For homogeneous boundary conditions in the giffat (compared to the core size
e of the mollification kernet,) boundaries a straightforward method consists of placimgom
particles in ar.-neighborhood outside of the simulation domain. In the ltesy method of
images Eq. 3 becomes

Veela) =2 [ (cly) ~ @) (nly — @) £y + @) dy+ O (©)
and the method is represented as
ot
8—5 = De™? Z(Fq —Iy) (ne(wg — @) £ (g +2,)) V. (7)

a#p
The positive sign between the two kernel functions appbegéro flux Neumann boundary
conditions whereas the negative sign is to be taken in theeafamero value Dirichlet boundary
conditions. The method of images is however restrictedd@#se of zero boundary values. For
non-zero boundary values, the boundary conditions can fegaed by modifying the particle
strengths in the vicinity of the boundary (7).

Benchmark case

The convergence properties of the PSE method and the metmaddom walk are illustrated
on the problem of solving Eqg. 1 on the one dimensional fi.e= 1) line 2 = [0, co) subject to
the following initial and boundary conditions:

2

c(r,t =0) =co(x) =ze™™ z €[0,00), t=0 (8)
clx=0,t) =0 r=0,0<t<T.

Using the method of images, the exact solution of this probkefound to be

ex _ € —z%/(144Dt)
c(z,t) —(1 n 4Dt)3/26 : 9)

Both random walk and PSE simulations of this test case aferpged with a varying num-
ber of particles to study their spatial convergence bemavio order to meet the boundary
condition atr = 0 the random walk solution is calculated falV particles initially uniformly
placed on the ling¢— X, X] such thatV particles have locations) > 0. The domain boundary
X has to be chosen large enough such tiat, t) < ¢ (with ¢ being the machine epsilon of
the computer) for the whole duration of the simulation. Eatlthe2N particles is assigned
a strength of’, = X¢,(|22])/N. Then the particles undergo a one-dimensional random walk.
To recover the solution at a later time stepthe domain of solutiorf0, X] is subdivided into



M disjoint intervals of sizéx = X /M and the particles are sampled in these intervals as fol-
lows: each intervaj = 1, ..., M is assigned the sum of the strengths of all the particlegavi
positions betweef; — 3/2)dx and(j — 1/2)dx, thus

. 1 . no 1L .
(= 1)dz,not) = g Z {Fp C(J - 1oz <y + 551’ < jéx}

p

forj=1,..., M.

For the PSE, the method as given by Eqg. 5 is implemented. Thadawy condition is
treated in the same way as for the random walk, i.e. the iatér/X, X| is covered withe N
uniformly spaced particles at locations, p = 1,...,2N. This is the method of images since
it is equivalent to using mirror kernels as in Eq. 7. The irgarticle spacing i& = X/(N —1).
Initially each particle is assigned a strengtigf= Xc¢,(|z,|)/N, as in the random walk case.
The PSE scheme (Eg. 5) is discretized in time using the akpliter method. The strengths of
the particles are therefore updated in each timestep), 1,2. .. as follows:

hDét L
— > (T =T9) n(wg—=z,)  Vpe{l,...,2N}.
q#p

For . the following 2*¢ order Gaussian kernel is used:

n+l _ 1n
Fp _1—‘10+ €

1 2 2
_ —x?/4e 10
nw) = g =e (10)
which fulfills all the requirements stated in (5) in 1D at arde= 2. The concentration
values at particle locations, and simulation time points, = ndt are recovered as

P (2, t") =T - N/X .

Supplementary Fig. 2 shows the random walk and PSE solugioaginal time ofl’ = 10
time units forN = 50 particles and a diffusion constant Bf= 10~ (length unitsj/time unit.

The accuracy of the simulations for different numbers ofipl@s is assessed by computing
the final RMS error

N 1/2
1 exr
Ervs = N p;(] (c“(zp, T) — c(xp, T))2 (11)

for eachN. The resulting convergence curves are shown in a doubleitbgac plot in
supplementary Fig. 3.

For the random walk one observes the characteristic slowezgance ofO(1/v/N) as
it has been estimated in (8). For the PSE, a convergenc® bfN?) is observed which is
in agreement with the employed®order kernel function. Below an error af—% machine
precision is reached. It can be seen that the RMS error of$kesinulations is several orders of



magnitude lower than the one of the random walk simulationgife same number of particles.
Using only 100 particles, the PSE is already close to magtrieeision. It is evident from these
results that to get a reasonable accuracy using the meth@hddm walk, large numbers of
particles are necessary.

To extend the validation, a 3D benchmark case in a simpledhg@nce recovery setting
where the exact analytic solution can be calculated is alesidered (9). The PSE is compared
to the exact solution as well as to a finite difference and doamwalk solution of the same
problem. The PSE consistently has an RMS error at least @&m ofdnagnitude below the other
methods while being more than an order of magnitude fasser shrandom walk simulation of
the same accuracy.

Simulating diffusion in the lumen of the Endoplasmic Reticu
lum

The method of PSE is applied to the simulation of fluoresceacevery in the Endoplasmic
Reticulum (ER). Hereby, the diffusive motion of a fluoredtetabeled soluble protein in the
ER lumen is simulated and the total fluorescence intenssigiénan originally bleached region
B is monitored over time. We assume the species of interesfftsel normally (i.e. no anoma-
lous diffusion) and freely within the confines of the ER lunieénin the following, the FRAP
value at time,, = ndt is defined as

F(ty) = NLB > dt), (12)

peB

whereNj; is the total number of particles inside the initialy bleatelumeB andc)(t,,)
is the PSE solution of the concentration fielld.order to focus on the influence of organelle
geometry, we use the idealized initial condition

0 ifaec{QnB)
CO(""):{ ko ifae{Q\ B} (13)

Using more realistic initial conditions (1, 13) would leaveall conclusions unchanged as
their effects would equally apply to all simulations.The initially bleached volume is taken
to be the square cylinder defined by:

B =p.a] x[r,s] x [0, L]

{O<p<q<Lz (14)

0<r<s<lLl,,

with (L., L,, L,) being the extent of the ER in all spatial directions. Withlmss of gener-
ality, the constant initial concentration outside the bhead area is chosen to ke= 1 as this
simply corresponds to normalizing the FRAP curves with eespo the pre-bleach value. The



assumption of a homogeneous initial concentration distio outside the bleached area seems
feasible due to the following facts:

1. After transfection, the cells are incubated for at leé&haurs. During this time they
express the green fluorescent protein which is assumeddly fitégfuse in the ER lumen
and to fill it completely. Experiments show that a protein easily move across the
whole ER in about 20 s. Therefore a homogeneous distribuigide the ER is assumed
after 12 hours.

2. The experimenter chooses “healthy” cells, i.e. cellschtaxhibit a more or less homo-
geneous fluorescence inside the ER.

More realistic initial conditions (1, 13) can readily be saisfied by accordingly setting
the initial strengths of the particles.

The geometric domainQ for the simulations are reconstructed samples of real BR-str
tures from VERO cells as described in the methods sectioheofrtain text. The shape of a
particular ER sample is captured by a stack of serial sextising confocal fluorescence light
microscopy. These stacks are then used to reconstructifhesof the ERs in three dimensions
in a computer. The reconstructed surfaces are represemiest@ed as triangulations (10) and
checked to enclose a connected space with no holes or ictiersein its surface. Figure 2 of
the main manuscript shows a sample outcome of such a regotistr procedure.

All PSE simulations are run for the same value of the diffusim constantD = 3 -
1075 b%/6t (scaled with the lateral edge length of the bleached region and the simulation
time step dt) in order to be able to study the influences of geometry. All snulations are
run to a final time of 7" = 2000 §t. The PSE kernel support és= 2.222 for all runs.

Since the bleached areas of the different ER samples cafifterent numbers of particles
and the total number of particles also varies among santpkedjfferent FRAP curves will have
different asymptotic levels &s— oo. Moreover, the FRAP curves will normally not recover to
1 even if the protein is fully mobile. This is due to the zerxfhoundary condition and the fact
that the total mass in the domain is conserved. In order tdleeta compare the FRAP curves
of the simulation runs amongst each other, they are norethly their respective steady-state
valuec... Therefore, they all asymptotically recoveri® leaving the different geometries as
the only source of variations. Initially, the total masshe system is given by

N
my =Y h"ch =h"(N - Np),
p=1
whereNp is the number of particles inside the bleached area. Threr keuality makes use
of the initial condition as given by Eq. 13 and the cholce- 1. The asymptotic value of the
concentration is given by homogeneously distributing théss among all the particles, thus



Co = Jpm = N (15)
Figure 4a of the main text shows the resulting normalized PRArvesF (t)/c,, for 4
different ER samples. As expected they differ due to gegmafttuences as all simulations
have been done using the same diffusion constant. The ngchakl-times of the curves vary
within the interval[5.7, 14.2], introducing an uncertainty of a factor of at least 2.5. Miaixt
figure 3 shows snapshots of the concentration distributiamsample ER shape at simulation
times 0.01, 0.25, 1.5 and 3.0. Only the part of the ER arouadbksached volume is shown.

Error analysis of 3D reconstruction and influence of the mi-
croscope’s optical anisotropy

In order to determine the optimal threshold (intensity vedue) for the 3D reconstruction of
the z-stacks, the reconstruction process is analyzed ggmtpetic geometries. For synthetic
geometries, we know what the correct outcome should loak Watificial random networks of
tubules are created in the computer. The networks is gesteaat a lattice ofn points.

An example withm = 20 x 20 x 3 is shown in supplementary Fig. 4. These geometries
are then convolved with a model of the (anisotropic) poimead function of a confocal micro-
scope. The lateral resolution of the microscope is expdease

A
R=5mn

with \ the wavelength of light an@/A the numerical aperture of the objective lens. The axial
resolution is defined as the distance between the nearesaidhest planes simultaneously in
focus and, according to (11),

_ 3nA
T 2NAZY

wheren is the refractive index of the medium. The ratipR is calledoptical anisotropy
of the microscope and it varies between about 1.6 and 5 fonwneial confocal microscopes.
The point spread function according to (14) is modeled imegpace direction as

Ji(ar) ) ?

r

d

P(r) = (2

with
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andJ; the Bessel function of first kind. For the axial directian:; = aR/d. The values
used for our work aré = 510nm, NA = 1.4, andn = 1.

Successive convolution witR(r) in all three spatial directions yields a simulated z-stack
of plane images as shown in supplementary Fig. 5. Each pixbkise images is replaced by a
Poisson-distributed random number with an expectatiomevatjual to the original pixel value.
This realistically simulates the effects of CCD camera gl noise (2). The section images
are normalized such that all intensity values are betwearmd®85.

The so obtained images are reconstructed using Imaris BléBi¢, Inc.) and the resulting
reconstructed volumes compared the the original ones. @Wiatibn is measured as the relative
number of voxels that are not correctly reconstructedtfiey are missing in the reconstructed
geometry, but are present in the original one, or vice vers&)pplementary Fig. 6 shows
the resulting total reconstruction errors for various shiids and optical anisotropies for a
test geometry with an expected number of 2 connections @&rching point0.15 ym tubule
radius, and an average distancé gim between tubuleshis corresponds to a volume-filling
ratio of 0.3. The ER fills on average 1/3 of the bounding volumand is thus of comparable
density. Similar studies are also done for larger tubules (radi2sm) and a lower connection
density (avg. 1 connection per braching point). A total ofifledent geometries is analyzed
for 5 different anisotropy values (1, 2, 3, 4, 6, 8) each anddewange of thresholds. The
corresponding plots are not shown as they are very simildrd@ne in supplementary Fig. 6
and lead to the same conclusions.

We also determine the largest threshold for which the rdcocted network geometry is
still connected (i.e. in one piece). It turns out that theirapt threshold is close to or larger
than this limit for all anisotropies larger than 1 and all getries studied. For the experimental
ER samples we thus always use the largest possible thresiadth yields a connected ER
reconstruction, since the most important objective towasldistic computer simulations is to
preserve the topology of the organelle. The anisotropy efgarticular microscope used is
about 2.14, the optimal threshold can thus be expected tedsonably close to the largest
possible one.

For the sensitivity of the reconstruction outcome with exgfgo the threshold setting, we
find that varying the threshold b¥10% around the optimum changes the reconstruction error
by +4...8% for anisotropies of 2 and 3. Using above-mentioned rule ofrth, such large
threshold deviations will however never occur.

Chosing the reconstruction threshold as outlined presengthe topology of the tubular
network. The reconstruction errors will however still cause the tubules to appear thicker
or thinner than they are in reality. The error in the predicte d diffusion speed is directly
proportional to this size error. For an anisotropy of 2, the total relative recontstruction
error is 28%, composed of 16% missing voxels and 12% excessxals. A tubule thus
appears on average 4% thinner than it actually is. This transates into a 4% error in the
predicted diffusion constant, which increases to 9% for an aisotropy of 3. Compared to
the various experimental uncertainties, these errors cortgute no significant reservation.
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Supplementary figure legends

Supplementary figure 1

a: Simulated FRAP curve compared to experimental measuretiagst

Random walk simulation of fluorescence recovery curves in 2[and 3D. Both a 2D
simulation on the square plane[0, L] x [0, L] (solid) and a 3D simulation in the cubic
box [0, L] x [0, L] x [0, L] (dashed) using the same computational diffusion constand =
1.56 - 10~* L? /6t and zero flux boundary conditions are performed.10° particles are used
for both simulations. Each curve is averaged from 5 computaons using different random
number series. The asymptotic level of 0.9375 is shown as atté line.

b: The influence of confinement: Diffusion in a cube versus difin in the ER.

Both simulations are made using the same diffusion constantDepending on which
ER geometry sample is used the recovery half-time for the ERase (solid) is 1.8—4.2 times
the one of the cube (dashed). The average volume-filling cdiefent of the ER is about
0.33. Both curves are normalized by their respective asymptic level to allow geometric
comparison.

Supplementary figure 2

Comparison of random walk and PSE solutions for the benckicese. The random walk (a)
and PSE (b) solutions of the benchmark case at fime 10 are shown ¢ircles) along with
the exact solutionsplid line). For both methodsv = 50 patrticles, a time step aoft = 0.1,
D = 10"*andX = 4 are used. The random walk solution is sampled/n= 20 intervals of
ox = 0.2. For the PSE a core size of h is used.

Supplementary figure 3

Convergence curves for random walk and PSE. The RMS erreuseéhe number of particles
for the random walk t(iangleg and the PSEdfrcles) solutions of benchmark case at time
T = 10 are shown. For both methodé = 50 particles, a time step @ = 0.1, D = 10~* and

X = 4 are used. The random walk solution is sampled/in= 20 intervals oféx = 0.2 and for
the PSE a core size ef= h is used. The RMS error is calculated according to Eq. 11. We us
single machine precision and thus expect the curves to ¢tdf/eklow an error of about0—°.

Supplementary figure 4

Example of an artificial tubular network geometry used teasshe quality of 3D reconstruc-
tion. The random network is generated dtba 20 x 3 lattice with an average of 2 tubules being
connected in each grid point. The radius of the tubulgs1is ym, the distance between two
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grid points isl um. (a) shows the full network, imaged at an anisotropy of 3r@ednstructed
with a threshold of 50. (b) showsdax 4 x 3 subset imaged at anisotropy 1 and reconstructed
with a threshold of 110.

Supplementary figure 5

Artificial z-stack created from the sample geometry of sapmntary Fig. 4b. After convolving

the geometry to model the effect of confocal imaging with aisa@tropy of 4, 15 serial section
images at an axial distance of Qu&h are taken. The same geometry is also tested using up to
53 sections (images not shown). Progressing from left tat agd top to bottom, the simulated
confocal plane moves from the bottom of the object to its top.

Supplementary figure 6

Relative reconstruction errors for the sample geometryuppementary Fig. 4b and different
optical anisotropies and reconstruction thresholds. dlais shows the pixel intensity iso-
value value used for the 3D reconstruction. The intensityasin the images are between 0
and 255. They axis shows the relative reconstruction error, which is theber of incorrect
voxels in the reconstructed volume divided by the total nenab voxels in the original volume.
Lines are shown for various anisotropies. The squares rharkatgest threshold for which a
connected reconstruction resulted. For the idealized abarisotropy 1, the reconstruction is
always connected.
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a: Whole network, anisotropy 3

b: 4 x 4 x 3 closeup, anisotropy 1

Figure 4: Supplementary Material, Sbalzarini et. al.
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