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Sbalzarini et al. – Supplementary Material

Governing equation

Isotropic diffusion of a scalar quantity in them-dimensional Euclidean spaceEm (m = 1, 2, 3)
is described by the spatio-temporal evolution of its local concentrationc(x, t) on a given closed
bounded domainΩ ⊂ Em with boundary∂Ω for a time interval0 < t 6 T . The governing
equation is the unsteady diffusion equation

∂c

∂t
= D∇2c(x, t) for x ∈ {Ω \ ∂Ω} , 0 < t 6 T , (1)

whereD denotes the scalar diffusion coefficient and∇2 is the Laplace operator. The initial
concentration field is specified by

c(x, t = 0) = c0(x) x ∈ Ω, t = 0 .

As soluble proteins do not spontaneously cross the membranethe assumed boundary con-
dition is the zero fluxNeumanncondition

∂c

∂n
= ∇c(x, t) · n = 0 for x ∈ ∂Ω, 0 < t 6 T ,

wheren is the outer unit normal on∂Ω, ∇c is the gradient of the concentration fieldc with
respect to the locationx, and the dot denotes the scalar product of two vectors. If thevaluec
rather than the flux is prescribed to be zero on the boundary, the boundary condition is called a
zero valueDirichlet condition.

Particle Methods

Particle methods rely on the formulation of the quantities of interest as integral operators that
are subsequently discretized using as quadrature points the locations of computational elements.
The computational elements then can be viewed asparticlescarrying a physical quantity called
strength. The particle attributes (strength and location) can be modified so as to satisfy the un-
derlying governing equation. Following this procedure, a functionc is discretized onto particles
in three steps:

• Step 1: Integral Representation.Using the Diracδ-function identity, the functionc can
be expressed as an integral operator

c(x) =

∫

c(y) δ(y − x) dy for x, y ∈ Ω .
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The above integral can be discretized on a set of computational elements. Such a dis-
cretization does however not enable the recovery of the function values at locations other
than those occupied by the particles. To circumvent this difficulty, theδ-function is re-
placed by a mollified approximation resulting in:

• Step 2: Integral Mollification.

cǫ(x) =

∫

c(y) ζǫ(y − x) dy .

Note that
cǫ(x) = c(x) + O(ǫr) ,

wherer depends on the vanishing moments of the mollifying functionζǫ. For positive
symmetric functions, such as a Gaussian,r = 2.

• Step 3: Mollified Integral Discretization.The mollified integral is discretized overN
particles using a quadrature rule

ch
ǫ (x) =

N
∑

p=1

Γpζǫ(xp − x) ,

where the strengthΓp = Γ(xp) is an extensive property of the particles that depends
on the particular quadrature rule. Here we use the rectangular rule setting the particle
volumesvp = hm and thusΓp = c(xp)h

m wherem is the space dimension andh is the
inter-particle distance. Using this discretization we obtain

ch
ǫ (x) = cǫ(x) + O

(

h

ǫ

)s

= c(x) + O(ǫr) + O

(

h

ǫ

)s

,

wheres depends on the number of continuous derivatives of the mollifying functionζǫ.
For a Gaussians → ∞.

It is important to note that for the approximation to be consistent, it is required that the
distanceh between any two particles is always less than their mollifiedsupportǫ, thus

h

ǫ
< 1 .

See (4, 6) for further details on approximations of continuous functions by particles.
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Particle Methods for Diffusion

The simulation of diffusion by particle methods can be formulated in the above mentioned
framework. Solving the diffusion equation begins by expressing its solution in integral form.
Without any boundary conditions this can be accomplished byconsidering the Green’s function
solution to the governing equation

c(x, t) =

∞
∫

−∞

G(x, y, t)c0(y) dy , (2)

with Green’s function being

G(x, y, t) =
1

(4πDt)m/2
exp

[

− 1

4Dt

m
∑

i=1

(xi − yi)
2

]

,

whereexp[·] stands for the exponential function andxi means thei-th component of the
vectorx.

The method of random walk

In the context of the random walk (3), the integral solution (Eq. 2) is interpreted probabilistically
as follows: PlaceN randomly spaced particles at initial positionsx0

p, p = 1, . . . , N and assign
to each particle a strength ofΓp = hmc0(x

0
p) whereh is the inter-particle spacing. Let then the

particles undergo a random walk by changing their positionsat each time stepn according to

xn+1
p = xn

p + ξn
p ,

whereξn
p are independent, identically distributed Gaussian randomvectors with all com-

ponents having mean0 and variance2mDδt, whereδt is the simulation time step size. The
method is consistent since as we let the numberN of particles go to infinity we observe that the
expected distribution of the particle strength in space converges to the integral solution (Eq. 2).
The random walk is however a stochastic method. This fact limits its convergence capabilities
since the variance of the mean ofN independent, identically distributed random variables is
given by1/

√
N times the individual variance of a single random variable (cf. benchmark case).

Moreover, the solution deteriorates further with increasing diffusion constant since the variance
of the random variables becomes larger.

The isotropic PSE method for infinite domains

Rather than discretizing Eq. 2 directly, the PSE method as introduced in (5) approximates the
Laplace operator by an integral operator that allows consistent evaluation on the particle loca-
tions. This integral operator is found to be:
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∇2c(x) = ǫ−2

∫

(c(y) − c(x)) ηǫ(y − x) dy + O (ǫr) , (3)

whereηǫ(x) = ǫ−mη(x/ǫ) is a kernel function inm dimensions that has to fulfill certain
moment conditions (explicitly stated in (5) or (4)). An example of such a kernel function inm =
1 dimension is the Gaussian kernel given in Eq. 10. The approximation error of above operator is
O(ǫr) with r being the order of the method (see (4) for a rigorous error treatment). Discretizing
Eq. 3 using the rectangular quadrature rule with the particle locationsxp as quadrature points
leads to:

∇2
ǫ,hc

h(xh
p) = ǫ−2

∑

q 6=p

(Γq − Γp)ηǫ(xq − xp) , (4)

whereΓq andΓp are the particle strengths as defined earlier. The quadrature error isO(h/ǫ)s

wheres is the number of continuous derivatives of the kernel function η(x) andh is the inter-
particle spacing. It is noteworthy that this operator is notthe only possibility of discretizing
the Laplacian onto particles. Compared to other deterministic diffusion schemes (see (4) for
details), the PSE has however the big advantage of being conservative (i.e. exact conservation
of the total strength in the system).

As outlined earlier, the approximationch
ǫ to the continuous concentrationc at any location

and time can be reconstructed from the valuesch
p at particle locations using:

ch
ǫ (x, t) =

∑

p

Γp(t)ζǫ(xp(t) − x) ,

whereζǫ(x) = ǫ−mζ(x/ǫ) is the mollifier function that the particles “carry around”.The
final PSE scheme is easily obtained by inserting Eq. 4 into Eq.1:

∂ch
p

∂t
= Dǫ−2

∑

q 6=p

(Γq − Γp)ηǫ(x
h
q − xh

p) ∀ p ∈ {1, . . . , N} . (5)

This is anN-body problem as for each particle it involves a sum over all the other particles.
However, since the kernelηǫ is chosen to be local, only the nearest neighbors of each particle
significantly contribute to its sum. The simulations implement a Verlet list algorithm (12) for
nearest neighbor search and interactions are only calculated between particles that are closer
than a cut-off radius ofrc = 3ǫ resulting in a computational cost that scales linearly withthe
number of particles. It can be seen from Eq. 5, that in order tosimulate diffusion, the strengths
of all the particles change (i.e. they exchange mass) while their locations remain constant. This
is in contrast to the method of random walk where the particlestrengths are constant but their
locations change. Having the particles at fixed locations has the convenient side-effect that all
the geometry handling only needs to be done once when initializing the particles.
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Extending the PSE for diffusion in complex geometries

The PSE algorithm as described above only applies to infinitedomains. For diffusion in con-
strained geometries, the PSE needs to be modified to take intoaccount the prescribed boundary
conditions. For homogeneous boundary conditions in the case of flat (compared to the core size
ǫ of the mollification kernelζǫ) boundaries a straightforward method consists of placing mirror
particles in arc-neighborhood outside of the simulation domain. In the resulting method of
images Eq. 3 becomes

∇2c(x) = ǫ−2

∫

(c(y) − c(x)) (ηǫ(y − x) ± ηǫ(y + x)) dy + O(ǫr) (6)

and the method is represented as

∂ch
p

∂t
= Dǫ−2

∑

q 6=p

(Γq − Γp) (ηǫ(xq − xp) ± ηǫ(xq + xp)) ∀ p . (7)

The positive sign between the two kernel functions applies for zero flux Neumann boundary
conditions whereas the negative sign is to be taken in the case of zero value Dirichlet boundary
conditions. The method of images is however restricted to the case of zero boundary values. For
non-zero boundary values, the boundary conditions can be enforced by modifying the particle
strengths in the vicinity of the boundary (7).

Benchmark case

The convergence properties of the PSE method and the method of random walk are illustrated
on the problem of solving Eq. 1 on the one dimensional (i.e.m = 1) line Ω = [0,∞) subject to
the following initial and boundary conditions:

{

c(x, t = 0) = c0(x) = xe−x2

x ∈ [0,∞), t = 0
c(x = 0, t) = 0 x = 0, 0 < t 6 T .

(8)

Using the method of images, the exact solution of this problem is found to be

cex(x, t) =
x

(1 + 4Dt)3/2
e−x2/(1+4Dt) . (9)

Both random walk and PSE simulations of this test case are performed with a varying num-
ber of particles to study their spatial convergence behavior. In order to meet the boundary
condition atx = 0 the random walk solution is calculated for2N particles initially uniformly
placed on the line[−X, X] such thatN particles have locationsx0

p > 0. The domain boundary
X has to be chosen large enough such thatc(X, t) < ε (with ε being the machine epsilon of
the computer) for the whole duration of the simulation. Eachof the2N particles is assigned
a strength ofΓp = Xco(|x0

p|)/N . Then the particles undergo a one-dimensional random walk.
To recover the solution at a later time stepn, the domain of solution[0, X] is subdivided into
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M disjoint intervals of sizeδx = X/M and the particles are sampled in these intervals as fol-
lows: each intervalj = 1, . . . , M is assigned the sum of the strengths of all the particles having
positions between(j − 3/2)δx and(j − 1/2)δx, thus

cRW ((j − 1)δx, nδt) =
1

δx

∑

p

{

Γp : (j − 1)δx < xn
p +

1

2
δx 6 jδx

}

for j = 1, . . . , M .

For the PSE, the method as given by Eq. 5 is implemented. The boundary condition is
treated in the same way as for the random walk, i.e. the interval [−X, X] is covered with2N
uniformly spaced particles at locationsxp, p = 1, . . . , 2N . This is the method of images since
it is equivalent to using mirror kernels as in Eq. 7. The inter-particle spacing ish = X/(N −1).
Initially each particle is assigned a strength ofΓp = Xco(|xp|)/N , as in the random walk case.
The PSE scheme (Eq. 5) is discretized in time using the explicit Euler method. The strengths of
the particles are therefore updated in each time stepn = 0, 1, 2 . . . as follows:

Γn+1
p = Γn

p +
hDδt

ǫ2

∑

q 6=p

(

Γn
q − Γn

p

)

ηǫ(xq − xp) ∀ p ∈ {1, . . . , 2N} .

Forηǫ the following 2nd order Gaussian kernel is used:

ηǫ(x) =
1

2ǫ
√

π
e−x2/4ǫ2 , (10)

which fulfills all the requirements stated in (5) in 1D at order r = 2. The concentration
values at particle locationsxp and simulation time pointstn = nδt are recovered as

cPSE(xp, t
n) = Γn

p · N/X .

Supplementary Fig. 2 shows the random walk and PSE solutionsat a final time ofT = 10
time units forN = 50 particles and a diffusion constant ofD = 10−4 (length units)2/time unit.

The accuracy of the simulations for different numbers of particles is assessed by computing
the final RMS error

ERMS =

[

1

N

N
∑

p=0

(cex(xp, T ) − c(xp, T ))2

]1/2

(11)

for eachN . The resulting convergence curves are shown in a double logarithmic plot in
supplementary Fig. 3.

For the random walk one observes the characteristic slow convergence ofO(1/
√

N) as
it has been estimated in (8). For the PSE, a convergence ofO(1/N2) is observed which is
in agreement with the employed 2nd order kernel function. Below an error of10−6 machine
precision is reached. It can be seen that the RMS error of the PSE simulations is several orders of
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magnitude lower than the one of the random walk simulations for the same number of particles.
Using only 100 particles, the PSE is already close to machineprecision. It is evident from these
results that to get a reasonable accuracy using the method ofrandom walk, large numbers of
particles are necessary.

To extend the validation, a 3D benchmark case in a simple fluorescence recovery setting
where the exact analytic solution can be calculated is also considered (9). The PSE is compared
to the exact solution as well as to a finite difference and a random walk solution of the same
problem. The PSE consistently has an RMS error at least an order of magnitude below the other
methods while being more than an order of magnitude faster than a random walk simulation of
the same accuracy.

Simulating diffusion in the lumen of the Endoplasmic Reticu-
lum

The method of PSE is applied to the simulation of fluorescencerecovery in the Endoplasmic
Reticulum (ER). Hereby, the diffusive motion of a fluorescently labeled soluble protein in the
ER lumen is simulated and the total fluorescence intensity inside an originally bleached region
B is monitored over time. We assume the species of interest to diffuse normally (i.e. no anoma-
lous diffusion) and freely within the confines of the ER lumenΩ. In the following, the FRAP
value at timetn = nδt is defined as

F (tn) =
1

NB

∑

p∈B

ch
p(tn) , (12)

whereNB is the total number of particles inside the initialy bleached volumeB andch
p(tn)

is the PSE solution of the concentration field.In order to focus on the influence of organelle
geometry, we use the idealized initial condition

c0(x) =

{

0 if x ∈ {Ω ∩ B}
k if x ∈ {Ω \ B} .

(13)

Using more realistic initial conditions (1, 13) would leaveall conclusions unchanged as
their effects would equally apply to all simulations.The initially bleached volumeB is taken
to be the square cylinder defined by:

B = [p, q] × [r, s] × [0, Lz]

{

0 6 p < q 6 Lx

0 6 r < s 6 Ly ,
(14)

with (Lx, Ly, Lz) being the extent of the ER in all spatial directions. Withoutloss of gener-
ality, the constant initial concentration outside the bleached area is chosen to bek = 1 as this
simply corresponds to normalizing the FRAP curves with respect to the pre-bleach value. The



8

assumption of a homogeneous initial concentration distribution outside the bleached area seems
feasible due to the following facts:

1. After transfection, the cells are incubated for at least 12 hours. During this time they
express the green fluorescent protein which is assumed to freely diffuse in the ER lumen
and to fill it completely. Experiments show that a protein caneasily move across the
whole ER in about 20 s. Therefore a homogeneous distributioninside the ER is assumed
after 12 hours.

2. The experimenter chooses “healthy” cells, i.e. cells which exhibit a more or less homo-
geneous fluorescence inside the ER.

More realistic initial conditions (1, 13) can readily be satisfied by accordingly setting
the initial strengths of the particles.

The geometric domainsΩ for the simulations are reconstructed samples of real ER struc-
tures from VERO cells as described in the methods section of the main text. The shape of a
particular ER sample is captured by a stack of serial sections using confocal fluorescence light
microscopy. These stacks are then used to reconstruct the surface of the ERs in three dimensions
in a computer. The reconstructed surfaces are represented and stored as triangulations (10) and
checked to enclose a connected space with no holes or intersections in its surface. Figure 2 of
the main manuscript shows a sample outcome of such a reconstruction procedure.

All PSE simulations are run for the same value of the diffusion constant D = 3 ·
10−5 b2/δt (scaled with the lateral edge lengthb of the bleached region and the simulation
time step δt) in order to be able to study the influences of geometry. All simulations are
run to a final time of T = 2000 δt. The PSE kernel support isǫ = 2.222 for all runs.

Since the bleached areas of the different ER samples containdifferent numbers of particles
and the total number of particles also varies among samples,the different FRAP curves will have
different asymptotic levels ast → ∞. Moreover, the FRAP curves will normally not recover to
1 even if the protein is fully mobile. This is due to the zero flux boundary condition and the fact
that the total mass in the domain is conserved. In order to be able to compare the FRAP curves
of the simulation runs amongst each other, they are normalized by their respective steady-state
valuec∞. Therefore, they all asymptotically recover to1.0 leaving the different geometries as
the only source of variations. Initially, the total mass in the system is given by

mt =
N

∑

p=1

hmch
p = hm(N − NB) ,

whereNB is the number of particles inside the bleached area. The latter equality makes use
of the initial condition as given by Eq. 13 and the choicek = 1. The asymptotic value of the
concentration is given by homogeneously distributing thismass among all the particles, thus
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c∞ =
mt

Nhm
=

N − NB

N
. (15)

Figure 4a of the main text shows the resulting normalized FRAP curvesF (t)/c∞ for 4
different ER samples. As expected they differ due to geometry influences as all simulations
have been done using the same diffusion constant. The recovery half-times of the curves vary
within the interval[5.7, 14.2], introducing an uncertainty of a factor of at least 2.5. Maintext
figure 3 shows snapshots of the concentration distribution in a sample ER shape at simulation
times 0.01, 0.25, 1.5 and 3.0. Only the part of the ER around the bleached volume is shown.

Error analysis of 3D reconstruction and influence of the mi-
croscope’s optical anisotropy

In order to determine the optimal threshold (intensity iso-value) for the 3D reconstruction of
the z-stacks, the reconstruction process is analyzed usingsynthetic geometries. For synthetic
geometries, we know what the correct outcome should look like. Artificial random networks of
tubules are created in the computer. The networks is generated on a lattice ofm points.

An example withm = 20 × 20 × 3 is shown in supplementary Fig. 4. These geometries
are then convolved with a model of the (anisotropic) point spread function of a confocal micro-
scope. The lateral resolution of the microscope is expressed as

R =
λ

2NA
,

with λ the wavelength of light andNA the numerical aperture of the objective lens. The axial
resolution is defined as the distance between the nearest andfarthest planes simultaneously in
focus and, according to (11),

d =
3nλ

2NA2
,

wheren is the refractive index of the medium. The ratiod/R is calledoptical anisotropy
of the microscope and it varies between about 1.6 and 5 for commercial confocal microscopes.
The point spread function according to (14) is modeled in each space direction as

P (r) =

(

2
J1(ar)

r

)2

with

a =
2π · NA

λ
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andJ1 the Bessel function of first kind. For the axial direction:ax = aR/d. The values
used for our work areλ = 510 nm,NA = 1.4, andn = 1.

Successive convolution withP (r) in all three spatial directions yields a simulated z-stack
of plane images as shown in supplementary Fig. 5. Each pixel in these images is replaced by a
Poisson-distributed random number with an expectation value equal to the original pixel value.
This realistically simulates the effects of CCD camera shotpixel noise (2). The section images
are normalized such that all intensity values are between 0 and 255.

The so obtained images are reconstructed using Imaris 3 (BitPlane, Inc.) and the resulting
reconstructed volumes compared the the original ones. The deviation is measured as the relative
number of voxels that are not correctly reconstructed (i.e.they are missing in the reconstructed
geometry, but are present in the original one, or vice versa). Supplementary Fig. 6 shows
the resulting total reconstruction errors for various thresholds and optical anisotropies for a
test geometry with an expected number of 2 connections per branching point,0.15 µm tubule
radius, and an average distance of1 µm between tubules.This corresponds to a volume-filling
ratio of 0.3. The ER fills on average 1/3 of the bounding volumeand is thus of comparable
density. Similar studies are also done for larger tubules (radius0.25 µm) and a lower connection
density (avg. 1 connection per braching point). A total of 4 different geometries is analyzed
for 5 different anisotropy values (1, 2, 3, 4, 6, 8) each and a wide range of thresholds. The
corresponding plots are not shown as they are very similar tothe one in supplementary Fig. 6
and lead to the same conclusions.

We also determine the largest threshold for which the reconstructed network geometry is
still connected (i.e. in one piece). It turns out that the optimal threshold is close to or larger
than this limit for all anisotropies larger than 1 and all geometries studied. For the experimental
ER samples we thus always use the largest possible thresholdwhich yields a connected ER
reconstruction, since the most important objective towardrealistic computer simulations is to
preserve the topology of the organelle. The anisotropy of the particular microscope used is
about 2.14, the optimal threshold can thus be expected to be reasonably close to the largest
possible one.

For the sensitivity of the reconstruction outcome with respect to the threshold setting, we
find that varying the threshold by±10% around the optimum changes the reconstruction error
by +4 . . . 8% for anisotropies of 2 and 3. Using above-mentioned rule of thumb, such large
threshold deviations will however never occur.

Chosing the reconstruction threshold as outlined preserves the topology of the tubular
network. The reconstruction errors will however still cause the tubules to appear thicker
or thinner than they are in reality. The error in the predicte d diffusion speed is directly
proportional to this size error. For an anisotropy of 2, the total relative recontstruction
error is 28%, composed of 16% missing voxels and 12% excess voxels. A tubule thus
appears on average 4% thinner than it actually is. This translates into a 4% error in the
predicted diffusion constant, which increases to 9% for an anisotropy of 3. Compared to
the various experimental uncertainties, these errors constitute no significant reservation.
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Supplementary figure legends

Supplementary figure 1

a: Simulated FRAP curve compared to experimental measurementdata.

Random walk simulation of fluorescence recovery curves in 2Dand 3D. Both a 2D
simulation on the square plane[0, L] × [0, L] (solid) and a 3D simulation in the cubic
box [0, L] × [0, L] × [0, L] (dashed) using the same computational diffusion constantD =
1.56 · 10−4 L2/δt and zero flux boundary conditions are performed.105 particles are used
for both simulations. Each curve is averaged from 5 computations using different random
number series. The asymptotic level of 0.9375 is shown as a dotted line.

b: The influence of confinement: Diffusion in a cube versus diffusion in the ER.

Both simulations are made using the same diffusion constant. Depending on which
ER geometry sample is used the recovery half-time for the ER case (solid) is 1.8–4.2 times
the one of the cube (dashed). The average volume-filling coefficient of the ER is about
0.33. Both curves are normalized by their respective asymptotic level to allow geometric
comparison.

Supplementary figure 2

Comparison of random walk and PSE solutions for the benchmark case. The random walk (a)
and PSE (b) solutions of the benchmark case at timeT = 10 are shown (circles) along with
the exact solution (solid line). For both methodsN = 50 particles, a time step ofδt = 0.1,
D = 10−4 andX = 4 are used. The random walk solution is sampled inM = 20 intervals of
δx = 0.2. For the PSE a core size ofǫ = h is used.

Supplementary figure 3

Convergence curves for random walk and PSE. The RMS error versus the number of particles
for the random walk (triangles) and the PSE (circles) solutions of benchmark case at time
T = 10 are shown. For both methodsN = 50 particles, a time step ofδt = 0.1, D = 10−4 and
X = 4 are used. The random walk solution is sampled inM = 20 intervals ofδx = 0.2 and for
the PSE a core size ofǫ = h is used. The RMS error is calculated according to Eq. 11. We use
single machine precision and thus expect the curves to leveloff below an error of about10−6.

Supplementary figure 4

Example of an artificial tubular network geometry used to assess the quality of 3D reconstruc-
tion. The random network is generated on a20×20×3 lattice with an average of 2 tubules being
connected in each grid point. The radius of the tubules is0.15 µm, the distance between two
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grid points is1 µm. (a) shows the full network, imaged at an anisotropy of 3 andreconstructed
with a threshold of 50. (b) shows a4 × 4 × 3 subset imaged at anisotropy 1 and reconstructed
with a threshold of 110.

Supplementary figure 5

Artificial z-stack created from the sample geometry of supplementary Fig. 4b. After convolving
the geometry to model the effect of confocal imaging with an anisotropy of 4, 15 serial section
images at an axial distance of 0.2µm are taken. The same geometry is also tested using up to
53 sections (images not shown). Progressing from left to right and top to bottom, the simulated
confocal plane moves from the bottom of the object to its top.

Supplementary figure 6

Relative reconstruction errors for the sample geometry of supplementary Fig. 4b and different
optical anisotropies and reconstruction thresholds. Thex axis shows the pixel intensity iso-
value value used for the 3D reconstruction. The intensity values in the images are between 0
and 255. They axis shows the relative reconstruction error, which is the number of incorrect
voxels in the reconstructed volume divided by the total number of voxels in the original volume.
Lines are shown for various anisotropies. The squares mark the largest threshold for which a
connected reconstruction resulted. For the idealized caseof anisotropy 1, the reconstruction is
always connected.
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Figure 1: (Supplementary Material, Sbalzarini et al.)
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Figure 2: Supplementary Material, Sbalzarini et. al.
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Figure 3: Supplementary Material, Sbalzarini et. al.
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a: Whole network, anisotropy 3

b: 4 × 4 × 3 closeup, anisotropy 1

Figure 4: Supplementary Material, Sbalzarini et. al.
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Figure 5: Supplementary Material, Sbalzarini et. al.
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Figure 6: Supplementary Material, Sbalzarini et. al.


