Supplementary material for Rainey & Sykes – Optimizing Oriented Planar Supported Lipid Samples for Solid-State Protein NMR (2 pages). **Figure 1.** Static solid-state 31 P-NMR spectra acquired in homebuilt 6-turn 15x15x1.5 mm (inner dimensions) rectangular flattened copper wire coil. Samples were contained within a hollowed plastic rectangular form glued to two sheets of mica. (a) \sim 100 mg egg phosphatidylcholine; (b) \sim 200 μ L of 1 M phosphate buffer (pH \sim 4.7). Chemical shift values shown in (a) provide good simulation of lineshape using SIMPSON. **Table 1** (see following page). Lipid film morphologies observed from the set of eight solvents with varying dielectric constant (ϵ) used to test characteristics of lipid film morphology as cast on freshly cleaved muscovite mica.^a ## Rainey & Sykes – Biophys J. (2005) Supplementary material. Page 2 of 2. | Solvent | 8 | POPC deposit morphology | POPG deposit morphology | DOPA deposit morphology | DOPE deposit morphology | |-----------------|--------|---|---|---|---| | Chloroform | 4.81 | Localized clumps of transparent lipid. | Translucent film of localized, cloudy deposits. ^d | Localized film of transparent or translucent lipid. Layers apparent from separate aliquot application. | Poor plate coverage.
Translucent lipid film. | | Dichloromethane | 9.00° | Localized clumps of transparent lipid with improved spread compared to CHCl ₃ | Sparingly soluble. Localized white clumps; some opaque film with small bubbles. ^d | Transparent lipid film spread about application point. | Transparent lipid film spread about application point. | | 3-Pentanol | 14.07° | Tiny droplets of transparent lipid, dispersed well over wetted area | Not soluble. | Transparent film covering entire plate, islands of raised lipid. | Improved coverage by translucent film, some bubbles. | | HFIP | 16.70 | Semi-translucent film with very good plate coverage. Noticeable void area around point of solution application. | Translucent/white film with complete coverage. Small islands of elevated lipid. Void at point of application. Lipid collected at edges. | Sparingly soluble. Translucent film with many tiny bubble defects. Noticeable void area around point of solution application. | Translucent lipid film with full plate coverage and raised lipid islands over entire film. No consistent void at application point. | | 2-Propanol | 20.18 | Semi-translucent film with very good plate coverage. Major void area around point of solution application. | Not soluble. | Not soluble. | Not soluble. | | Ethanol | 25.30 | Semi-translucent film of lipid with many tiny bubble defects, very well dispersed over plate | Not soluble. | Not soluble. | Not soluble. | | THE | 27.68 | Translucent film of lipid with larger bubble defect | Not soluble. | Not soluble. | Translucent film covering entire plate with many lipid islands and ridges at plate edges. | | Methanol | 33.00 | Many islands of elevated lipid spread over plate | Not soluble. | Not soluble. | Not soluble | | Water " | 80.10 | Elevated striations of lipid spread over film covering plate; semi-translucent. | Elevated striations of lipid spread over film covering plate; semi-translucent. | Elevated striations (thinner than POPC or POPG) of lipid spread over film covering plate; semi- | Not soluble at 21°C |