
 1

SUPPLEMENTARY MATERIAL 

In the following, we give further details on the new algorithms presented in this paper 

and outlined in Figure S1, and discuss the methods used for spectral analysis of time series of F-

actin turnover. To facilitate the association with the main text, section titles in the supplementary 

material correspond to those in the paper. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S1: Flow chart of Fluorescent Speckle Microscopy 

(FSM) data analysis. Shaded boxes indicate modules with 

major modifications to the analysis framework described in 

(1). Iterative speckle extraction is applied to retrieve the 

significant number of speckles in clusters with substantial 

signal overlaps. Speckle tracking relies on iterative 

prediction of speckle positions. 
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ANALYSIS OF FLUORESCENT SPECKLES 

Iterative speckle extraction  

Speckle fusions induced by low-pass filtering and local maximum detection 

To determine the extent to which speckle proximity and signal-to-noise ratio (SNR) 

contribute to speckle fusions in a discrete image space, we performed Monte Carlo simulations 

counting the number of repeats where the local maximum operator successfully detected two 

proximate speckles. The two speckles were modeled as two-dimensional Gaussian intensity 

distributions with a relative intensity ratio 1 2/A I I=  and separated by a distance r . The distance 

r  was limited to values greater than the Sparrow criterion (2), i.e. under-noise free conditions 

and in a continuous image space, the two Gaussians produce two local maxima. For 1.0=A , the 

Sparrow criterion amounts to 3.2 pixels for a . . 1.4=N A , 100 X objective lens, and 6.7 µm pixel 

size. With 2.0=A , the value increases to 4.20 pixels. To simulate specific SNR conditions, we 

added normally-distributed noise values to the synthetic speckle signals. This signal was then 

subjected to low-pass filtering followed by local maximum detection.  

We analyzed the detection performance for the parameter ranges 1 3A< < , 4.0 5.5r< <  

pixels and four SNR values: ∞ , 10, 7, and 4. Fig S2a displays the success rate for an example 

with A = 1.5. The rate was defined as the number of Monte Carlo runs in which the local 

maximum operator detected two speckles divided by the total number of runs. With SNR = ∞ , 

two speckles of a certain intensity ratio are indistinguishable below a distance 0r . Notice that 

because of the intensity difference, the finite support of the low-pass filter and the finite 

resolution of the local maximum operator, 0r  is greater than the Sparrow criterion. In the 

following we refer to ( )0r A  as the generalized Sparrow criterion (GSC). If two speckles are 

detected at a distance 0r r< , at least one of them will represent a spurious, noise-induced 

speckle. The lower the SNR the higher is the number of speckles falsely detected below the GSC 

(Fig. S2a). Importantly, for distances 0r r> , the local maximum operator still fails to 

consistently detect both speckles. Those speckles have hitherto been lost by our detector but are 

now recovered by iterative speckle extraction (ISE). 
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We also examined the success rate of the local maximum operator as a function of the 

intensity ratio A  (Fig. S2b; for a fixed distance 4.6=r  pixels). The curve with SNR = ∞  

indicates the inverse of the GSC critA  for 0 4.6 pixels= =r r . For ratios critA A>  noise causes the 

detection of spurious speckles, while true speckles are missed in the range 1 critA A< < . 

Recovery of higher-order speckles to resolve fused speckles 

Some of the higher-order speckles are artifacts generated by the image subtraction. They 

violate the GSC. To exclude those, we test in any iteration if the distance of all newly extracted, 

higher-order speckles to any speckle extracted and accepted in previous iterations exceeds the 

GSC. To derive the GSC for two speckles at distance r, we consider the peak intensity ratio 

1 2 1/ 2 1/ 2, with BA I I I I I= ∆ ∆ ∆ = −  denoting the difference between the peak intensities 1/ 2I  and a 

common background BI . For low signal-to-noise ratio (SNR) conditions, the PSF can be 

approximated by a Gaussian with standard deviation 0.21 N.A.λ=s  (3). λ  and N.A. denote the 

emission wavelength of the fluorophore and the numerical aperture of the optics, respectively. 

For a coordinate system centered on the first speckle, the normalized intensity profile along the 

axis connecting the two speckles can thus be written as  

 
Figure S2: Success rate of the local maximum operator in detecting two proximate speckles after low-pass filtering. 

The success rate is a function of the signal-to-noise ratio (SNR) and the distance r (a); as well as the intensity ratio A

between the speckles (b). Curves with SNR = ∞  define the generalized Sparrow criterion (GSC) and the critical 

intensity ratio Acrit for detecting a true secondary speckle proximate to a primary speckle. Detection of a second local 

maximum below the GSC or larger than Acrit is caused by image noise. The two limits are interdependent. 
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Fig. S3a depicts the function for 1.5A =  and the three cases 0>r r  , 0<r r  and 0r r=  where 

0 3.9 pixels≈r denotes the GSC for the imaging setup used in our experiments. Eq. S1 has a 

second-order extremum ( ) ( ) 0′ ′′= =I x I x  only when 0r r= , defining a unique relationship 

between the critical intensity ratio critA  and the GSC 0r : 
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Fig. S3b shows the inverse of Eq. S2. We utilize Eq. S2 to eliminate spurious higher-order 

speckles as follows: after computation of the critical intensity ratio , ( )ij crit ijA r  between newly 

extracted speckles 1,..., Sj N=  and all speckles from previous iterations ,1,..., j Pi N=  falling into 

a circular search area of radius max 5.5 pixels=r , we test if any ratio = ∆ ∆ij i jA I I  is greater than 

,ij critA . If the test is passed the higher-order speckle j is rejected. 

 

 

Figure S3: Theoretical limits in separation of overlapping speckles. (a) Illustration of the superposition of two 

diffraction-limited 1D signals beyond ( 0>r r ), below ( 0<r r ), and at the generalized Sparrow criterion ( 0=r r ) for 

the intensity ratio A = 1.5. (b) Definition of 0 ( )r A  (inverse of Eq. S2). See text for an explanation of how Eq. S2 is 

used to discriminate spurious local maxima from true overlapping speckles. 
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General nearest-neighbor (GNN) tracking with motion propagation  

Enhanced speckle tracking by GNN and locally adaptive flow filtering 

 Fig. S4a illustrates the solution of global nearest neighbor tracking (Eq. 1, main text) for 

a simulated flow field with the characteristics 0.5× < <r d r  ( 3.6 0.6; 5.4 0.42= ± = ±d r , 

arbitrary units). As explained in the Algorithm section of the main text, for this configuration 

simple nearest neighbor tracking fails, even when executed with a global assignment for the 

resolution of topological conflicts. For the data shown here, the success rate of global nearest 

neighbor tracking reached 46% (number of correct links divided by number of simulated links). 

With GNN (Fig. S4b), the rate increases to 100%. The parameters for flow field simulation were 

set to be twice as hard as the most challenging conditions found experimentally in F-actin flow 

fields ( 1.9 pixels/frame; 5.4 1.23= = ±d r ; corresponding to a flow speed of 1.5 µm/min).  

The success rate stays 

100% even when 20% of 

the speckles disappear 

(Fig. S4c) or 20% 

speckles are added (Fig. 

S4d). These birth and 

death rates correspond to 

an average lifetime of 5 

frames (25 s) which is at 

least twice the rate 

observed in real 

experiments (shortest 

lifetimes amount to ~50 s, 

cf. Table S1). We can 

thus assume that in qFSM 

experiments GNN 

tracking is a minimal 

error source in trajectory 

reconstruction. 

Figure S4: Performance enhancement in tracking locally coherent speckle flow 

by Generalized Nearest Neighbor (GNN) assignment. The flow field was 

simulated to match the characteristics of the experimental flow fields. (a) Speckle 

assignments by a global nearest neighbor method. (b) Speckle assignment by a 

GNN method using predicted speckle motion between frames. (c–d) GNN 

methods deliver 100% correct assignments also under the perturbation of 20% 

birth and death events. 
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 This conclusion implies that GNN tracking is supported by an error-free motion model 

for the prediction of speckle positions between frames. The motion model is derived by iterative 

filtering of speckle tracks (cf. main text). With the coherent flow field assumed in the 

simulations of Fig. S4a-d, this was straightforward to achieve, but the filtering can become 

difficult in experiments with strong flow gradients. We investigated the performance of locally 

adaptive flow filtering in presence of a flow gradient and shear flow (Fig. S5). Whereas the 

reconstruction of shear flow fields greatly improved with the proposed adaptive filtering, the 

reconstruction of flow fields with gradients in the direction of flow (acceleration or slow down) 

was not optimal. However, for the purpose of predicting speckle motion this turned out to be less 

critical, as over- or underestimation of the speckle displacements in the gradient direction were 

generally corrected by the GNN speckle assignment. 
 

 
 

 

 

Fig. S5: Validation of gradient preserving 

vector filtering. (a) Left: simulated vector 

field with a gradient 1:3 in the direction of the 

flow field. Right: comparison of standard 

isotropic filtering (black) and adaptive, 

gradient-preserving filtering (red). (b)  Left: 

simulated vector field with a shear gradient. 

Right: comparison of standard isotropic 

filtering (black) and adaptive, gradient-

preserving filtering (red). Here, the second 

method markedly outperforms isotropic 

filtering. 

Validation of speckle extraction and tracking on living cells 

We also tested the performance of ISE and GNN tracking on live cell data. The results 

were presented in great detail in (4). Here, we summarize our finds as they relate to the 

improvement of speckle tracking and identification of birth and death events for the study of 

dynamic patterns of F-actin turnover. 
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First, we investigated how the image signal evolved throughout ISE. Time-lapse 

sequences of the residual images display the remarkable reduction of speckle flow with every 

iteration, demonstrating that the extracted speckles contain significant information of the 

network movement indeed (cf. Movie 2). After two or three iterations the residual images 

converged to a blurred signal with no further speckles to be detected. 

Next, we investigated how the speckle lifetime and the amounts of birth and death events 

with significant kinetic scores depended on the application of ISE and GNN tracking (Table S1). 

Both statistics served as measures of the completeness of trajectories and hence of the accuracy 

of the kinetic scores derived from intensity changes at trajectory endpoints. As expected, in all 

experiments the enhanced algorithms yielded longer speckle lifetimes. Interesting differences 

were observed for ISE and GNN contributions to lifetime extension with different cell models. 

Whereas in contact-inhibited cells (C) or cells with slow flow (M1 and M2) most of the lifetime 

extension was achieved by ISE, the lifetime increase in more rapid flow fields (M3) depended on 

GNN tracking. In contact-inhibited cells the number of events, i.e. trajectory ends, was 

substantially reduced by ISE, as higher-order speckles filled in false gaps in the trajectories of 

primary speckles. Quite unexpected, however, in migrating cells (M1 – M3) the application of 

ISE increased the number of birth and death events. The application of GNN tracking slightly 

reduced this number but the total effect of both algorithms was an addition of trajectory ends. 

This means that higher-order speckles happen to generate a number of statistically significant 

trajectories that never include a primary speckle. These trajectories were missed completely in 

previous qFSM analyses (1), changing the maps of F-actin turnover in important details (Fig. 1c-

d, main text). In line with this find was that ISE largely neutralized the integration of ghost 

speckles (speckles with a lifetime of only one frame, which are excluded from the kinetic 

analysis) into longer trajectories by adding new, higher-order ghost speckles (data shown in (4)). 

Therefore, as concluded in (1), ghost speckles are not an artifact caused by insufficient detection 

or tracking, but reflect fast mechanisms of F-actin turnover that are currently not captured by 

frame rates of 5 – 10 s.  

The last row of Table S1 summarizes the joint effect of extended lifetime and additional 

high-order speckle trajectories. To distinguish between true and false speckle births and deaths, 

i.e. between events associated with local monomer exchange and those due to noise, speckle 

losses and creations related to in- and out-of-focus movements, and due to spontaneous 
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accumulation of fluorophore clusters by filament fluctuations, the algorithm runs several 

statistical tests on the foreground and background intensity changes at the time point of 

appearance and disappearance (1). Only if all tests are passed at a user-defined confidence level, 

a kinetic score will be assigned to the event. Ultimately, the spatial and temporal density of these 

scores determines the resolution of the turnover maps. Together, the algorithmic extensions 

discussed in this paper increase the density of scores by 5 – 25 %. 

 
 

 
C 

v = 75 nm/min 

M1 

v = 290 nm/min 

M2 

v = 210 nm/min 

M3 

v = 460 nm/min 

 OE+NN ISE 
ISE+ 

GNN 
OE+NN ISE 

ISE+ 

GNN 
OE+NN ISE 

ISE+ 

GNN 
OE+NN ISE 

ISE+ 

GNN 

Lifetime 

(s) 

81.7 86.1 

+5.5% 

86.2 

+0.2% 

+5.6% 

62.2 68.6 

+10.3% 

 

70.0 

+2.1% 

+12.7% 

61.6 

 

 

65.7 

+6.6% 

 

66.5 

+1.3% 

+7.9% 

65.4 

 

67.3 

+2.9% 

78.5 

+16.5% 

+20.0% 

    
Lamellipodium 

Lamella 

68.1 

80.1 
 

51.2 

71.8 
 

50.8 

88.7 

Number 

of events 

357915 289774 

-19.0% 

 

287522 

-0.8% 

-19.7% 

140794 

 

156521 

+11.2% 

153227 

-2.1% 

+8.8% 

160270 189883 

+18.5% 

184823 

-2.7% 

+15.3% 

103291 123498 

+19.6% 

107043 

-13.3% 

+3.6% 

Number 

of scores 

62669 66141 

+5.0% 

 

65989 

-0.2% 

+4.8% 

35676 

 

43893 

+23.0% 

42707 

-2.7% 

+19.7% 

34320 43235 

+25.7% 

42484 

-1.5% 

+23.8% 

26545 34203 

+28.9% 

30520 

-10.8% 

+15.0% 

Table S1: Increase in speckle lifetime and number of births and death events with significant scores due to iterative 

speckle extraction (ISE) and generalized nearest-neighbor tracking with propagation of speckle motion (GNN), as 

compared to ordinary extraction and nearest-neighbor tracking (OE+NN) described in (3). Data is presented from a 

contact-inhibited cell (C) with a spatially stationary F-actin network, and from migrating cells (M1 – M3) with F-

actin networks undergoing retrograde flow. Also, for M1 – M3 average lifetimes for lamellipodium and lamella are 

distinguished. 
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RESULTS AND DISCUSSION 

 
Periodic patterns of La turnover are composed of a limited set of characteristic frequencies 
 

We studied the temporal evolution of F-actin turnover in the La by integrating kinetic 

scores in probing windows of 1.2 µm x 1.2. The windows followed the local retrograde flow of 

the network. We found local oscillatory behavior of assembly and disassembly (cf. main text).  

To investigate whether these oscillations displayed characteristic frequencies, we 

performed spectral analysis of the time series. Our movies were acquired over 600 – 1000 s 

before the speckles bleached. With a turnover periodicity of ~60 – 200 s (Fig. 5d-f) the finite 

time series of one window thus captured between 3 – 16 full periods. The number of significant 

birth and death events contributing to the kinetic score of a window amounted to 2 – 4 per time 

point. Therefore, at this high spatial resolution the noise level in the raw time series was very 

high and it was questionable if only a few observed full periods would allow robust spectral 

decomposition by Fourier Transformation.  

To answer this question, we simulated time series with a characteristic similar to the 

experimental data. We started with the superposition of four noise-free sine waves with periods 

of 34, 72, 97, and 114 s and same amplitude, sampled with 10 s sampling time over a period of 

600 s (Fig. S6 aI). Spectral analysis of this signal recovered only three of the four frequencies. 

They were contaminated by large errors (Fig. S6 aII), indicating that the information from one 

probing window is not sufficient to decompose the oscillatory behavior of the signal. We 

therefore generated a 10-times longer signal, simulating the concatenation of time series from 10 

probing windows. The analysis returned a satisfactory approximation of the real values (Fig. S6 

aIII). By extending the number of probing windows to 100 the four input frequencies were 

retrieved error-free (Fig. S6 aIV). 

We continued the analysis in Figure 4Sb by adding normally distributed noise to the time 

series (SNR=1). Both 1 (Fig. S6 bII), and 10 windows (Fig. S6 bIII) were not sufficient for 

reconstruction of the spectral characteristics. The spectra were contaminated by numerous side 

peaks with a magnitude greater than the one of the weakest frequency in the series (34 s). Even 

with 100 windows (Fig. S6 bIV) the spectra had a substantial noise floor. Together these tests 

indicated that averaging of at least 100 windows was required to warranty the recovery of a 

mixture of different frequencies from a signal with SNR = 1.  
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Figure S6: Spectral analysis of noisy sine wave mixtures sampled in sequences of 600 s at a rate of 10 s / frame. (a-

I) Superposition of four sine waves with periods of 34, 72, 97 and 114 s. These parameters were selected in 

agreement with the conditions observed in experimental data. (a-II) Power spectrum retrieved from 1 window. The 

three peaks were associated with a period of 32 s and its two lower harmonics 67 and 100 s. (a-III) Increasing the 

sampling period to 6000 s by concatenation of 10 sequences reduced the estimation error in the recovered spectra. 

(a-IV) Concatenation of 100 sequences yielded a perfect, noise-free power spectrum. (b) Same analysis as in (a) 

with addition of normally distributed noise. (c) Effect of phase shifts between concatenated sequences. (c-I) Two 

sequences of 600 s and a periodicity of 60 s are concatenated with a 180° phase shift. (c-II) Spectral decomposition 

of the signal in (c-I). The peak frequency localizes at 59 s; in parentheses: period calculated for two windows with 

no phase shift. (c-III) and (c-IV) Spectra calculated from 10 and 100 sequences. Similarly, the additional phase 

shifts between the sequences do not significantly deteriorate the recovery of the dominant frequency. 

 

 

In Fig. S6a-b, we showed that concatenation of sufficient probing windows yield signals 

long enough for spectral analysis. However, this comes at the price of introducing a phase shift at 

the end of every period representing the time series from one probing window. Assembly and 

disassembly of different windows are not in synchrony. We tested the effect of phase shifts on 

the spectral analysis by adding random phase shifts in the range (0°…360°) between the 

concatenated signal pieces from different windows. An example with 180° phase shift is 
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displayed in Fig. S6 cI). To separate the effects of signal mixtures and noise from the one of the 

phase shifts, we limited this analysis to a single sine wave with period 60 s. Phase shifts 

appeared to minimally affect the frequency recovery even at the single-window level (Fig. S6 

cII-IV). 

In summary, Fig. S6 shows that the spectral analysis of assembly and disassembly maps 

requires integration of a large number of probing windows. Whereas our simulations were 

realistic in terms of the chosen frequencies and amplitude noise levels, we did not consider 

fluctuations in the periodicity of the sine wave mixtures over time. Such fluctuations occur due 

to data noise, but they could also reflect significant transients in the mechanism of F-actin 

turnover. One way to examine temporal variations in the frequency spectra would be by wavelet 

analysis. However, these methods were not robust in presence of the high noise level of our data 

and they lose their advantages over the Fourier Transform if applied with the same averaging 

strategy as described above. Our labs are currently working on developing better fluorescent 

probes and image acquisition systems to acquire longer movies with less noise. This will enable 

us to extend the spectral analyses towards the identification of temporal transients. At this point, 

we had to limit the analysis to the assumption of a stationary process. The relatively low noise 

floor of the experimental spectra and the small number of characteristic frequencies of 

remarkable stability between cells, despite the differences in flow (Fig. 4), suggested that this 

assumption was mostly valid for the time scales analyzed in this paper.   
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