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Waiting Time Distributions

Two Random Walker Model

We consider two random walkers in one dimension confined by two reflecting bound-
aries M +1 sites apart. Since we want to model the process of mutation opening
preceding the sliding stage, we seek the distribution of times until encounter of both
walkers, given they started at opposite boundaries. Their motion is equivalent to
the motion of one walker on a triangular piece of the two dimensional square lat-
tice. The 2D walker on site (m,n) corresponds the state, where the left 1D walker
is m steps from the left boundary and the right 1D walker n steps from the right
boundary (see Fig. 3, main text). The 2D walker is reflected at the lines m = 0 and
n = 0. The line, where both coordinates add up to M − 1 corresponds to the cases,
when both walkers in 1D meet and is therefore an absorbing boundary for the 2D
walker.
The case, where the rates, at which the walker moves away and towards a boundary
(kin and kout) are independent of the site, has been solved by Schwarz and Poland
(1) using the methods of image charges.
The quantity we are interested in is the distribution of the time of the first en-
counter of the two random walkers in 1D, or equivalently the lifetime distribution
P (τ) of the random walker on the triangle. A walker sitting on any site (m,n) with
m = M − 2− n can hop on two absorbing sites with rate kin. The distribution of τ
is therefore given by

P (τ) = 2kin

M−2∑
n=0

P(n,M−2−n; τ), (1)
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where P(n, m; τ) is the probability of finding the walker on site (n,m) at time τ ,
given it started at site (0, 0). In the following we derive approximations of the
solution by Schwarz and Poland.

Unbiased Hopping

When the walker has no bias, e.g. kin = kout = k, P(n, m; τ) is given by a sum of
4M2 terms. The solution by Schwarz and Poland can be rearranged to

P(n, m; τ̃) =
1

M2

2M∑
r,s=1

e−2τ̃M2(2−cos πr
M
−cos πs

M )(1− (−1)r+s)

cos
π(2n + 1)r

2M
cos

πr

2M
cos

π(2m + 1)s

2M
cos

πs

2M
,

(2)

where the time variable has been rescaled as τ = τ̃M2/k. Only terms, where the
argument of the cosines in the exponent are close to 0 or 2π, contribute significantly
when τ̃ > 1/M2. After shifting the summation interval to r, s = −M . . .M−1,
significant terms are those the r, s close to 0. We can expand cosines with arguments
πr
M

or πs
M

and keep only the first non-vanishing contribution.

P(n, m; τ̃) ≈ 1

M2

∞∑
r,s=−∞

e−τ̃π2(r2+s2))(1− (−1)r+s) cos
π(2n + 1)r

2M
cos

π(2m + 1)s

2M
.

(3)
The range of summation can be safely extended to ±∞, as terms with big r, s
are exponentially small. Plugging this approximation into Eq. 1 yields, after some
algebra, using similar approximations as above,

P (τ̃) ≈ 2

M2

∞∑
r,s=−∞

e−
τ̃π2

M2 (r2+s2)) (1− (−1)r+s)(r2 + s2)

r2 − s2
(4)

Since only those terms with odd r+s contribute, we change the summation variables
to 2v = r + s− 1 and 2w = r − s− 1.

P (τ̃) ≈ 4

M2

∞∑
v=−∞

e−
τ̃π2

2
(2v−1)2 (−1)v

2v − 1

∞∑
w=−∞

e−
τ̃π2

2
(2w−1)2(−1)w(2w − 1) (5)

From this expression, we find a parameter-free lifetime distribution

P̃ (τ̃) = M2P (τ̃) = −16

π2

∂

∂τ̃
Q(τ̃)2, (6)
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Figure 8: The lifetime distributions for M = 3, 5, 10 and the approximation for large
M . The time axis is rescaled by M2.

where Q(τ̃) is given by

Q(τ̃) =
∞∑

n=1

(−1)ne−
π2(2n−1)2τ̃

2

2n− 1
(7)

The approximations involved are justified for large M . However, even for small
systems the agreement is excellent, as illustrated in Fig. 8.

Biased Hopping

When the rates kin and kout are different, there is no compact analytical expression
for P(n, m; t). However, the longterm behaviour of a such a biased random walker
is easily understood. If kin is bigger than kout, the walker approaches the absorbing
boundary steadily. In the opposite case, the walker will stay close to the origin
and only rare excursions will lead to absorption. Quantitatively, the hopping of
the random walker on the triangle is well approximated by suitably chosen one-
dimensional representation. To that end, we consider the probability to find the
walker on the line ν steps away from the origin.

P (ν; τ) =
ν∑

m=0

P(m, ν−m; τ) (8)

3



This amounts to projecting the motion of the random walker onto the symmetry
axis of the triangle. The time derivative of this quantity is very similar to a one
dimensional hopping process.

∂τP (ν; τ) = −2(kin + k−)P (ν; τ) + 2kinP (ν−1; τ) + 2koutP (ν+1; τ)

+ kout [P(0, ν; τ) + P(ν, 0; τ)− P(0, ν+1; τ)− P(ν+1, 0; τ)]
(9)

The contributions from the boundary terms in the second line depend on the ratio
of kin and kout. When kin � kout the walker rapidly approaches the absorbing
boundary. The probability P(0, ν; τ) of finding the walker on the reflecting boundary
is small, as it is unlikely to make equally many steps with high rate and a low rate.
In this case the boundary terms can be neglected entirely, so that the process reduces
entirely to a 1D first passage problem. Using standard methods described in ref. (2),
one finds, that the mean first passage time

〈τ〉 =
M − 1

2kin − 2kout

− kout

1−
(

kout

kin

)M−1

2(kin − kout)2
, (10)

increases linearly with the number of mutations M .

In the opposite limit, when kin � kout, 〈τ〉 increases as
(

kout

kin

)M−1

with M . In

this case equilibration along the line n = ν−m is fast compared to the lifetime
of the walker and P(m, ν−m; τ) is almost independent of m. Setting all terms
P(m, ν−m; τ) equal results in a 1D hopping process with site dependent rates. The
mean first passage time of this process can be calculated in much the same way,

yielding 〈τ〉 ∼
(

kout

kin

)M−1

with polynomial corrections.

In summary, we find that, depending on whether the walkers have an inward
bias, an outward bias or no bias, the mean lifetime scales linearly, exponentially or
quadratically with time. Since the force, at which kin and kout are equal, separates
regimes, where the waitingtime increases exponentially with M from linear scaling,
we call it critical force f̃c in the presence of mutations. The force f̃c converges
towards the critical force fc in the limit of no mutations.

Measuring Hopping Rates

So far, we have been concerned with the waitingtime distribution given a certain set
of rates, at which mutations open or close. These rates depend on the applied force
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Figure 9: Simplified system to measure the opening and closing rates of mutations.
The simulation starts from the ground state with all bases bound. We determine
the first-passage time distributions of the opening of the rightmost mutation and fit
these to a the first passage time distribution of a random walker.

and on the distance between consecutive mutations and have to be determined in
simulations.

As long as there are at least two mutations bound, the dynamics of the opening
and closing of mutations at one end is independent of the other end. To measure
the rates for a given pair of force and mutation density, we used a simplified system,
where a dsDNA with equidistant mutations is fixed on the right hand side and a
force is applied to the first base of the upper strand (see Fig. 9). This simplified
system is useful, as finite size effects are smaller when one walker crosses M mu-
tations as when two walkers cross M/2 mutations each. Furthermore, subtleties of
the mutual annihilation process do not enter the measurement. We measure the
distribution of the time it takes to open the rightmost mutation for the first time
and fit this distribution to the lifetime distribution of a random walker in one di-
mension between reflecting and absorbing boundary conditions. The rates kin and
kout are fit parameters. This is done for a range of forces and mutation densities and
the critical force f̃c for a certain mutation density can be extract from the crossing
of kin and kout. To further pin down f̃c, we generated data for many force values
slightly above and below f̃c and fitted a linear relation for each rate to all data sets
simultaneously. The crossing of the two resulting lines yield a robust estimate of f̃c.
Using a system of N = 240 basepairs, energy parameters εb = 1.11kT, ε` = 2.8kT
and different number of equidistant mutations, we determined f̃c over broad range
of mutation densities. The results are shown in Fig. 7(c) in the main text.
To check the reliability of the estimation of f̃c, we simulated waitingtime distribu-
tions by applying the force to both ends of the DNA and fitted the two random
walker model to the waitingtime distribution. The force, where kin and kout coin-
cide, reproduces the previously determined force f̃c. Furthermore, fitting the critical
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distribution (one fit parameter) to the waitingtime distribution with yields best fits
for f ≈ f̃c. The absolute value of the rates shows slight dependencies on the length
of the system (see below) and varies for fits to different setups.

Caveats of the Model

Equilibration of the loopdensity is only possible by propagation of loops from the
end beyond a newly broken mutation, or in other words by sliding the unstretched
strand some distance ∆d inward. The sliding velocity, however, is inversely propor-
tional to the length of the strand. Therefore, equilibration will slow down breaking
of mutations for supercritical forces deep inside the double strand and the linear
dependence of the waitingtime on the number of mutations will not persist for very
large systems.

It is clear from the microscopic mechanism leading to breaking and opening
of mutations (see main text and Fig. 10) that the rates kin and kout depend on
the force f . The rate kout also depends on the mutation density, since a great
distance between mutations corresponds to a large entropy barrier for mutation
closing, and hence a smaller closing rate kout. The microscopic opening rate kin is
expected to be more or less independent of the mutation density. When looking at
the opening and closing dynamics of an individual mutation, this is what we observe.
However, the equilibration of loop densities after an opening or closing event takes
some time. Therefore, successive microscopic opening and closing events are not
entirely uncorrelated, which makes an unambiguous definition of the microscopic
rates difficult. These correlations die out very quickly and it is still possible to
describe the observed lifetime distribution with an uncorrelated random walker.
The effective rates describing this motion both depend on mutation density and the
applied force.
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Figure 10: Left: Illustration of how the density of loops on the strands depends on
the state of the mutated bases in the sequence. In between bound mutations loops
are rare, as the formation of a loop costs initiation energy and shortens the system.
The same applies to the stretched strands outside bound mutations. The only part,
where a significant number of loops can be found, is the unstretched strand outside
the bound mutations. When a mutation is broken, loops move across the mutation
on the unstretched strand and locally both strands are shifted against each other.
Thereby, the bases that previously formed the mutated basepair become perma-
nently separated and the single strand part on the stretched strand grows. Right:
To support the cartoon-like picture of part (a), we measured the time averaged loop-
density, conditioned on a certain mutation state. Mutations are located at base 40
and 80, the parameters are εb = 1.11kT, ε` = 2.8kT and f = 10.7pN. We consider
only opening of mutation from the left, i.e. the rightmost base is kept fixed, as
in Fig. 9. When all mutations are bound (upper panel), the loopdensity is high
only on the unstretched strand to the left of the mutation at position 40. When
this mutation is broken (lower panel), loops can spread from the left end to the
mutation at position 80, yielding a fairly constant density interrupted only by the
permanent loop at the position of the mutated base. The hump to the left of the
broken mutation on the unstretched strand and to the right of the broken mutation
on the stretched strand indicate the position of the mutated base on the opposite
strand. A loop already present on one strand renders unbound bases on the other
strand more likely, as no additional loop initiation has to be paid. The vanishing
loopdensity at the end of the stretched strand indicates unbound ssDNA. Observe,
that this is the longer, the more mutations are broken.
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