
Extending a Spectrin Repeat Unit I. Linear Force-Extension

Response

Supplemental Material

Sterling Paramore, Gary S. Ayton, Dina T. Mirijanian, and Gregory A. Voth

Center for Biophysical Modeling and Simulation and Department of Chemistry, University

of Utah, 315 S. 1400 E. Rm 2020, Salt Lake City, Utah 84112-0850

NEMD Force

This section elaborates on the derivation of the NEMD force discussed in the text. In this

work, a thermodynamic force is defined as the partial derivative of the free energy under

isothermal conditions,

F0(L) = −

(

∂A

∂L

)

T

, (1)

where A is the free energy, L is the length of the simulation cell in the z direction, T is the

temperature, and the zero subscript signifies that the system is at equilibrium (or in the

quasi-static limit). An effective spring constant for the spectrin repeat unit can be obtained

by measuring the relationship between the force and extension, as described in more detail

in the main text.

Here, an expression for the derivative of Eq. 1 that can easily be measured using the

NEMD simulations will be constructed. The final result,

F0(L) = lim
ω→0
〈PzzV 〉/L, (2)

is intuitively obvious: the force is just the pressure in the z direction multiplied by the

cross-sectional area of the box. But the left-hand side of Eq. 2 is a thermodynamic quantity

defined by Eq. 1, whereas the right-hand side of Eq. 2 is obtained from the atomistic-

level simulations. There are a number of equivalent ways to derive Eq. 2. In this section,
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two derivations are discussed in order to highlight the formal link between thermodynamic

properties of the system and the atomistic-level dynamics.

To begin, consider the dissipation function (1, 2),

Ω(Γ) = βḢ(Γ)− Λ(Γ). (3)

In this equation, Γ ≡ (rN ,pN ,A ) is the phase space vector, indicating the location of the

trajectory in phase space at a particular time t, where rN ≡ (r1, r2, . . . , rN), and A is the

cross-sectional area. The specific case where Pxx = Pyy = 0 is considered, where no work

is done in the x and y directions. This aspect is reflected in the form of the dissipation

function. The instantaneous energy, or Hamiltonian, of the system is,

H(Γ) =
∑

i

pi

mi

+ Φ(rN), (4)

where Φ(rN ) is the potential energy of the system. The phase space compression factor Λ(Γ)

is given by the Liouville equation (3),

d ln f(Γ)

dt
= −Λ(Γ), (5)

where f(Γ) is the distribution function, or the probability of observing the system at a

particular point in phase space. The dissipation function, Eq. 3, can be directly related to

the reversible derivative of the free energy, as will be shown below. For the remainder of

this discussion, the problem will be restricted to the NEMD equations of motion employed

in the main text.

To show how the dissipation function is related to the free energy, consider the ensemble

average of the dissipation function divided by L̇,

kBT 〈Ω(Γ)〉/L̇ = 〈Ḣ(Γ)〉/L̇− kBT 〈Λ(Γ)〉/L̇. (6)

The thermodynamic internal energy, U , is just the ensemble average of the Hamiltonian,

(

∂U

∂L

)

T

= 〈Ḣ(Γ)〉/L̇, (7)

2



where the chain rule has been used to convert the partial derivative with respect to length

into time derivatives. Now define a new function,

S = −kB〈ln f(Γ)〉. (8)

It can be shown (4) that, at equilibrium, this function is equal to the entropy, or S =

limω→0 S . Taking the derivative of S reveals,

(

∂S

∂L

)

T

= kB〈Λ(Γ)〉/L̇, (9)

where a chain rule has again been used. Substituting Eqs. 7 and 9 into Eq. 6 and taking the

quasi-static limit gives,

lim
ω→0

kBT 〈Ω(Γ)〉/L̇ =

(

∂U

∂L

)

T

− T

(

∂S

∂L

)

T

. (10)

With the free energy defined as A = U − TS, it is easily recognized that,

(

∂A

∂L

)

T

= lim
ω→0

kBT 〈Ω(Γ)〉/L̇. (11)

Equation 11 represents the formal relationship between the dissipation function and the

thermodynamic properties of the system. The remainder of this discussion will be concerned

with deriving the expression for the dissipation function in terms of the equations of motion.

As described in the text, the NEMD equations of motion used in this particular study

are,

Γ̇ ≡























ṙi =
pi

mi

+ φ̇(rxî
ı + ryi

̂) + ε̇rzi
k̂

ṗi = Fi − φ̇(pxî
ı + pyi

̂)− ε̇pzi
k̂− αpi

˙A = 2φ̇A

. (12)

The thermostat multiplier α maintains a constant temperature by instantaneously adding

or removing heat from the system. The barostat term φ̇ maintains, on average, constant

pressure in the x and y directions (so that P = 〈 1
2
(Pxx+Pyy)〉 = 0), and ε̇ is the predetermined

strain rate in the z direction which drives changes in the length L of the simulation cell.

The form of these equations of motion could be used to generate a constant NPT ensemble
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at equilibrium (with the volume V substituted for the area A ). However, in the case that

P = 0 (i.e., no work is done in the x and y directions), these equations of motion can also

be employed to evaluate Eq. 11, as will be shown.

The equations of motion employed in this study can be used to find explicit expression

for the time derivative of the Hamiltonian and phase space compression factor which appear

in the equation for the dissipation function, Eq. 3. The time derivative of the Hamiltonian

is,

Ḣ(Γ) =

(

dH(Γ)

dΓ

)

·

(

dΓ

dt

)

, (13)

=
∑

i

[

pi

mi

· ṗi − Fi · q̇i

]

. (14)

Substituting in the equations of motion gives,

Ḣ(Γ) = −φ̇

[

∑

i

p2
xi
+ p2

yi

mi

+ Fxi
rxi

+ Fyi
ryi

]

− ε̇

[

∑

i

p2
zi

mi

+ Fzi
rzi

]

− α
∑

i

p2
i

mi

. (15)

The expressions for the instantaneous pressure tensor and kinetic temperature can be iden-

tified (5), giving,

Ḣ(Γ) = −(Pxx + Pyy)V φ̇− PzzV ε̇− 3NkBTkα. (16)

The phase space compression factor is (3),

Λ(Γ) =
∂

∂Γ
· Γ̇, (17)

which under these dynamics is given by,

Λ(Γ) =
∂

∂r
· ṙ +

∂

∂p
· ṗ +

∂

∂B
Ḃ, (18)

= −3Nα+ 2φ̇. (19)

Note that the −3Nα term is extensive, whereas the 2φ̇ term is intensive and thus will not

contribute to Λ(Γ) in the thermodynamic, or large N , limit (and the simulations verify this

approximation).
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Substituting Eqs. 16 and 19 into the equation for the dissipation function, Eq. 3, gives,

kBTΩ(Γ) = −(Pxx + Pyy)V φ̇− PzzV ε̇− 3NkBTkα + 3NkBTα. (20)

Taking the ensemble average of the dissipation function gives,

kBT 〈Ω(Γ)〉 = −〈PzzV 〉ε̇. (21)

In deriving Eq. 21, two approximations have been made. In the thermodynamic (large N)

limit, the instantaneous kinetic temperature approaches the temperature of the bath, so

〈αTk〉 ' 〈α〉T . Furthermore, since the x and y dimensions of the simulation cell are able to

fluctuate under zero stress (and thus can do no work), the terms involving Pxx and Pyy will

on average be zero. The simulations verified that these conditions were met and that Eq. 21

is valid. Equation 21 can also be written as,

kBT 〈Ω(Γ)〉/L̇ = −〈PzzV 〉/L. (22)

Substitution of this equation into Eq. 11 gives,

(

∂A

∂L

)

T

= − lim
ω→0
〈PzzV 〉/L, (23)

which, in turn, gives the final expression for force, Eq. 2.

An alternative way to derive Eq. 2 makes use of the simple thermodynamic identity

relating isothermal changes in the free energy to constant entropy changes in the internal

energy,
(

∂A

∂L

)

T

=

(

∂U

∂L

)

S

. (24)

The chain rule can again be used to convert derivatives with respect to length into derivatives

with respect to time,

F0(L) = −

(

∂〈H〉

∂t

)

S

(

∂t

∂L

)

S

. (25)

In the zero frequency or equilibrium limit (ω → 0), the constant entropy derivative is equal

to the adiabatic derivative. The adiabatic derivative of H is identical to Eq. 16, except that
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under adiabatic conditions no heat is exchanged and thus α = 0. Substituting these results

into Eq. 25 gives Eq. 2. Note that while Eq. 25 used the adiabatic time derivative, it is not

necessary that the equations of motion actually be propagated under adiabatic conditions.

The total derivative (as opposed to the partial derivative) of U involves both adiabatic and

isometric contributions (6),

dU =

(

∂U

∂V

)

S

dV +

(

∂U

∂S

)

V

dS. (26)

So even though the system is propagated under constant temperature equations of motion,

the adiabatic partial derivative of the internal energy still exists and is a well-defined quantity

that can be expressed in terms of the equations of motion.

As a final note, Eq. 2 motivates the definition of an instantaneous finite frequency force,

Fω = 〈PzzV 〉/L. (27)

This force can be shown to be equal to the derivative of the work, which can include irre-

versible contributions. The first law of thermodynamics can be written as,

U̇ = Ẇ + Q̇, (28)

where W is the work done on the system, U is the internal energy of the system, and Q is

the heat transferred to the system. Comparing Eq. 28 with the ensemble average of Eq. 16

reveals,

Ẇ = −〈PzzV 〉ε̇, (29)

Q̇ = −3NkB〈Tkα〉. (30)

Using the chain rule again it is found that,

Fω = −
dW

dL
. (31)

Subsequently, the dissipation function can be considered to be the time derivative of the

irreversible work.
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Figure 1: This figure shows two views of three periodic images of the spectrin repeat unit

studied using cyclic expansion NEMD. The C terminus is on the left and the N terminus

is on the right. The bottom figure shows that the linker must incur a slight bend in order

to connect with its image. Note that since all forces are calculated based on the minimum

image convention (5), the position of the “edges” of the periodic cell are inconsequential.

8



S. Paramore et al., Figure 1
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