Supplemental Materials

Electrostatic influence of PsaC protein binding to the PsaA/PsaB

heterodimer in Photosystem I

Hiroshi Ishikita, Dietmar Stehlik, John H. Golbeck and Ernst-Walter Knapp

Supplemental Discussion

Difference between the Henderson-Hasselbalch and the effective pK_a . The difference between the Henderson-Hasselbalch pK_a and the effective pK_a is pronounced especially for strong electrostatic coupling between different titratable residues. The latter pK_a relates directly to measurable protonation probability of the considered residue. For instance, we obtained a protonation probability of 0.27 H⁺ for Asp-B575 in the A_{1B}^{-} state of the P700-F_X core at pH 7 (see main text). This protonation probability yields the effective pK_a value of 6.6 for this residue according to the following equation (1)

$$pK_a = pH + \frac{1}{\ln 10} \ln \frac{\langle x \rangle}{1 - \langle x \rangle}$$
 (eq. S1)

where $\langle x \rangle$ is the protonation probability of the considered titratable residue. In cases where p K_a and solvent pH differ too much, the protonation probability $\langle x \rangle$ is close to zero or one. Under such circumstances the evaluated p K_a is error prone, since the numerical accuracies of the computed probabilities $\langle x \rangle$ are too low. In this case, the Henderson-Hasselbalch p K_a definition becomes more useful. Although, it is an invasive method, since it changes the protonation state of the considered residue by using a bias potential.

For the same charge state A_{1B}^{-} , the Henderson-Hasselbalch pK_a of Asp-B575 in the P700-F_X core evaluated with application of a bias potential is 6.9 (Table 1 in the main text), which differs by 0.3 pK_a units (corresponding to an energy of 18 meV) from that obtained with eq. S1. Asp-B575 is located in the inner water network between $A_{1A/B}$ and F_X (2). When we constrain the protonation state of Asp-B575 to be 0.5 H⁺ as is done with a bias potential (i.e. using the definition of the Henderson-Hasselbalch pK_a), we simultaneously obtain tiny changes of the protonation pattern of nearby titratable residues, namely deprotonation at Asp-B555, Asp-B558, Glu-B682 and Glu-F98 (see Fig. 1A in the main text). These local deprotonations induced by constraining Asp-B575 to be half protonated are the main source that yields different values for the Henderson-Hasselbalch and the effective pK_a .

Supplemental References

- 1. Ullmann, G.M., and E.W. Knapp. 1999. Electrostatic models for computing protonation and redox equilibria in proteins. *Eur. Bophys. J.* 28:533-551.
- Jordan, P., P. Fromme, H.T. Witt, O. Klukas, W. Saenger, and N. Krauß. 2001. Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. *Nature* 411:909-917.

Supplemental Table

Table S1: Calculated pK_a values of residues for the native PSI complex and the P700-F_X core in the P_B⁰ state.

residues of	redox	native	P700-F _X	residues of	redox	native	P700-F _X
PsaA	state ^a	PSI	core	PsaB	state ^a	PSI	core
Asp-A568		3.9	4.7	Asp-B555		4.1	5.6
(Asn-A571) ^b				Asp-B558		8.5	5.7
Asp-A579		-0.2	2.0	Asp-B566		-4.8	3.2
Arg-A583		22.3	13.6	Arg-B570		21.4	15.5
(Gln-A588) ^b				Asp-B575		5.4	5.1
					A_{1A}^{-}	8.9	8.3
					A_{1B}^{-}	7.4	7.0
					F_{X}^{-}	9.4	8.6
Glu-A699		-2.6	-2.4	Glu-B679		-4.2	-4.3
	A_{1A}^{-}	-2.7	-2.5		A_{1B}^{-}	-3.9	-3.9
Glu-A702		-1.3	2.6	Glu-B682		4.8	5.2
	A_{1A}^{-}	-1.3	2.8		A_{1B}^{-}	6.3	5.9
(Gln-A718) ^b				Lys-B702		16.4	10.0

^a If no redox state is indicated all redox active cofactors are in the neutral charge state.

^b Non-titratable residue in PsaA, which is symmetry related to a titratable residue in PsaB.