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SUPPLEMENTAL INFORMATION 
Trap stiffness and quadrant detector sensitivity calibration7 

To convert the voltage signals acquired from the quadrant detectors into their 

force equivalents, calibrations of trap stiffness and detector sensitivity are performed for 

each bead-actin-bead assembly trapped. 

After a bead-actin-bead assembly is trapped, the actin is briefly tensioned with a 

load of ~5 pN and made slack by moving the two optical traps ~100nm closer together 

than needed to reduce the tension to zero. This substantially reduces the correlated 

motion of the two beads. The voltage signals corresponding to the Brownian fluctuations 

of each bead are collected for 5 s at 20 kHz sampling rate. The power spectrum of the 

forces experienced by a particle trapped in a harmonic potential undergoing Brownian 

diffusion is expected to be a Lorentzian function with a roll off frequency (ƒc), dependent 

on the trap stiffness and a peak height dependent on the drag or Stoke’s coefficient. Fig. 

S1 shows power spectra of single beads held in each trap, and the curves used to fit them. 

The spectra can be fit to a Lorentzian function (1,2,3) using the equation: 
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where,  = power spectrum (units = VVS 2/Hz), and = frequency (units = Hz). For 

frequencies , the power spectrum is approximately constant, , such that:    
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where,  = Boltzmann’s constant, Bk γ  = the viscous drag coefficient of the particle (units 

= N·s·m-1), T = the absolute temperature, and C = the calibration constant to convert the 

voltage measurement from the photodiode into its force equivalent (units = pN·V-1). 

Fitting the data with the Lorentzian of Eq. S2, gives values of the calibration constant C 

and trap stiffness κtrap for each trapped bead from estimates of ,  ,  0S cf
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and,   

cƒγπ2κ =                    (S4) 

where  r ηπγ 6= , η  ≅ 0.001 N·s·m-2 and = radius of the trapped polystyrene bead = 

0.55 µm. 

r

 

SUPPLEMENTAL FIGURE LEGENDS 
FIGURE S1. Power spectrum analysis to determine trap stiffness and detector sensitivity. 

The power spectra of both traps with 1.1 µm diameter polystyrene beads trapped close to 

the surface of the experimental chamber are shown. Fits were performed as shown 
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previously (1,2,3) to determine the corner frequency (ƒc) and photodiode sensitivity (C). 

Motor trap: ƒc = 1080 Hz; C = 12.1 pN·V-1; Transducer trap: ƒc = 1010 Hz; C = 9.16 

pN·V-1. The corresponding stiffnesses ( trapκ ) of each trap are 0.066 pN/nm.  

 

FIGURE S2. Adjustment of the isometric clamp feedback gain. The response time of the 

isometric clamp was calibrated by trapping a pre-tensioned (~5 pN) bead-actin-bead 

assembly. A square wave command signal was applied as a perturbation, and the error 

signal on the transducer bead was measured. The t½ of the recovery of the error signal 

was 1 ms (top graph) and 10 ms (bottom graph) for two different feedback loop gains. 

Only integral gain was applied for the two feedback settings. 

 

FIGURE S3. A histogram of the co-variance of the Brownian motions of the two beads at 

the ends of an actin filament during transient interactions with myosin. The histogram 

was calculated for 60 s of data (a representative sample is shown in Figure 4 of the main 

text) of interactions acquired with no feedback using a window size of 1 ms. The 

histogram was fit with two Gaussian peaks. For this example, the higher-variance peak, 

corresponding to the Brownian motion of a free bead-actin-bead assembly, was centered 

at ~1.04 pN2 with a σ of  ~0.49 pN2. The lower-variance peak, corresponding to the 

actomyosin attached state was centered at ~0.27 pN2 with a σ of  ~0.17 pN2. These two 

peaks are well separated and thus, the bound and unbound states are easily distinguished. 

 

FIGURE S4. Schematic showing the motions of actomyosin and attached beads when 

acting on an immovable load (A-C) and when acting on the isometric clamp (D-G).  A 
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and D: Before attachment an actin binding site is immediately opposite a myosin head. B 

and E: Following myosin binding to actin there is no net displacement of actin or beads. 

C: After a power stroke the internal series elasticity of myosin (e.g. an elastic element in 

S2 or in the light chain domain) is stretched without displacing actin when it acts on an 

immovable load. F: If the trap stiffness is much lower than the myosin elasticity the actin-

bead assembly moves to the left rapidly and the feedback loop begins to act to restore the 

transducer bead to its original position. G: When the transducer bead is restored to its 

original position the feedback stops pulling further, the position of the myosin head is 

restored to its original position and its series elasticity is stretched the same amount as for 

an immovable load in C.  

 

FIGURE S5. Simulated (a) duration and (b) peak force distributions at two different 

feedback gains using rates that are independent of load. The differential equations 

included in the appendix were solved numerically to determine the probability 

distribution of events for a load independent model. 

 

FIGURE S6. Simulated (a) duration and (b) peak force distributions at two different 

feedback gains using a rate that is load dependent. The differential equations included in 

the appendix were solved numerically to determine the probability distribution of events 

for a model with only k23 load dependent. 

 

FIGURE S7. Simulated (a) duration and (b) peak force distributions at two different 

feedback gains using a rate that is load dependent. The differential equations included in 
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the appendix were solved numerically to determine the probability distribution of events 

for a model with only k34 load dependent. 

 

FIGURE S8. Simulated (a) duration and (b) peak force duration distributions at two 

different feedback gains using a rate that is load dependent. The differential equations 

included in the appendix were solved numerically to determine the probability 

distribution of events for a model with only k21 load dependent. 
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