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ABSTRACT Theoretical and experimental evidence suggests that the dissipation
of high frequency pressure waves in blood vessels is caused primarily by the visco-
elastic behavior of the vessel wall. In this theoretical analysis the vessels are con-
sidered as fluid-filled circular cylindrical shells whose walls have isotropic and
homogeneous viscoelastic properties and are subjected to an initial axial stretch
and a transmural pressure. If the wall material is incompressible and behaves
as a Voigt solid in shear, the results predict a decrease in wave amplitude per
wavelength which is essentially independent of frequency over a wide range. This
finding is in qualitative agreement with recent experiments on anesthetized dogs.
A parametric study also shows a great sensitivity of the dissipation to changes in
transmural pressure and axial stretch. Axisymmetric waves are only mildly dis-
persive, while all nonaxisymmetric waves are highly dispersive and exhibit much
stronger damping per wavelength at low frequencies than do axisymmetric waves.

INTRODUCTI ON

The transmission and generation of sounds and pulse waves within the cardiovascu-
lar system are phenomena of great importance in the diagnosis of circulatory dis-
orders. These phenomena are utilized mostly on an empirical basis since we lack a
satisfactory quantitative understanding of the mechanical behavior of the circula-
tory system. A reliable interpretation of sound generation and wave transmission
data calls for mathematical models of the cardiovascular system or components
thereof that have been validated by carefully planned experiments. A further
incentive to study these phenomena from the physical sciences point of view is
their usefulness in determining the elastic properties of arteries and veins and
the changes of these properties under physical and physiological stresses that may
for example be produced by trauma, prolonged weightlessness, or acceleration.
The proper elastic behavior of blood vessels in situations of stress is essential to
maintaining adequate circulation and is governed by intricate control mechanisms
that are not yet fully understood.
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The work presented here is part of a continued systematic study of the effects of
various parameters and properties of the cardiovascular system on the transmission
characteristics of sounds and pressure pulses. While this paper is of a theoretical
nature, it makes use of recent results obtained from experimental investigations of
the dispersion and dissipation of small sinusoidal pressure waves in various large
vessels of anesthetized dogs. It differs from earlier analytical efforts reviewed or
described in references 1 to 7 in the selection of the mathematical model for the
dynamic behavior of the blood vessels. We assume the vessels to behave like circu-
lar cylindrical shells filled with an inviscid compressible fluid and having walls with
isotropic and homogeneous viscoelastic properties. The waves are described by
small three-dimensional sinusoidal displacements of the middle surface of the shell
that are measured from an equilibrium configuration defined by a mean transmural
pressure and an initial axial strain. The fluid motion associated with the waves is
considered as irrotational and the displacement of the wall assumed to be governed
by the shell equations derived by Fliigge (8). We disregard the effect of a surround-
ing medium in this study, even though it may not be negligible in many cases. We
also neglect the influence of the viscosity of the blood which has been studied by
several investigators (3, 4, 6, 9) for certain types of waves. As such the mathematical
model defined by these assumptions is similar to that used by the authors in an
earlier study (10) except that now the vessel wall is viscoelastic rather than purely
elastic.
As in reference 10, we include again in our consideration waves which exhibit a

circumferential dependence of the corresponding displacements of the vessel wall.
For each circumferential wave number, we also find in the viscoelastic case infinitely
many waves with individual speeds of propagation, of which only the three slowest
waves are not due to the compressibility of the fluid. In this investigation we shall
again disregard all but the three slowest waves and denote these as waves of type I,
II, and III. In waves of type I the radial displacement component is dominant
at high frequencies, while in waves of type II, the circumferential, and in waves of
type III, the axial displacement component dominates at high frequencies. Of these
three types of waves, those of type II and III are less important from the practical
point of view, since only type I waves have associated with themselves substantial
fluctuations in fluid pressure.
From experimental evidence we know that the propagation of sounds and pulse

waves within the cardiovascular system is subject to strong dissipative mechanisms.
The dissipation of waves in blood vessels can be attributed to three main causes:
viscosity of the blood, viscoelastic behavior of the wall, and radiation of energy
into the surrounding medium. Some data on the combined effect of the various
dissipative mechanisms in arteries under in-vivo conditions have been obtained
by means of an indirect technique making use of simultaneous recordings of the
natural pulse wave at various points along the aorta and other arteries of anesthe-
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tized dogs. The data take into account the effects of reflections and dispersion
and are based on the debatable assumption that the propagation of pressure pulses
generated by the heart is governed by linear laws that permit a harmonic analysis.
The combined effect of the three main causes for dissipation has also been meas-

ured directly by a recently developed method based on artificially induced pertur-
bations in the form of trains of sinusoidal pressure waves. This direct method has
been applied to the thoracic and abdominal aorta and the inferior vena cava of
anesthetized dogs (11). The results obtained with it reveal a strong frequency de-
pendence of the dissipation per cm at frequencies between 12 and 200 cps while the
dissipation per wavelength is essentially independent of frequency within this range.
The dissipation per cm of the artificially induced sine waves exceeds by far the value
that could be attributed to the viscosity of the blood alone (12, 13). Considering in
addition that the dissipation of waves in the major vessels examined so far is essen-
tially the same when the vessels are exposed, we conclude that at higher frequencies
the primary cause for the attenuation must be the viscoelastic behavior of the
vessel walls.

Several mathematical models have been postulated for dissipative mechanisms
(3, 4, 6, 9, 14-16, 12) which take into consideration the viscosity of the fluid and/or
viscoelastic properties of the vessel wall, but which largely adhere to a membrane
analysis and exclusively consider only axisymmetric waves. Also, these models,
with the exception of that of reference 9, have neglected the presence of an axial
stretch and a transmural pressure. In our parametric study of dissipation and
dispersion we are considering axisymmetric as well as nonaxisymmetric waves and
include the effects of an axial stretch and a transmural pressure.

BASIC EQUATIONS

The signals considered are defined by the displacement components u, v, w of an
arbitrary point of the middle surface of the vessel in the axial, circumferential, and
radial direction, respectively. As illustrated in Fig. 1, the vessel is referred to a set of
cylindrical coordinates x, r, ,B such that r = a represents the middle surface of the
vessel wall. In this analysis we take into account the fact that blood vessels are
subjected to an initial axial stretch and a transmural pressure Ap. After application
of the initial axial stretch the ends of the vessel are assumed to be fixed. We inter-
pret r = a as the unperturbed equilibrium configuration of the middle surface in
the presence of a stationary axial stretch and a mean transmural pressure Ap.
The parameters u, v, w are thus interpreted as displacement components measured
from the equilibrium configuration. They are functions of the two coordinates
x and ,B, implying that the waves to be studied are two-dimensional in character.

In order to derive the differential equations of motion for the viscoelastic vessel
wall, we first consider the wall material to be elastic and then make use of the
Correspondence Principle. Accordingly we first assume the vessel to behave like
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FIGuRE 1 Coordinate system.

an elastic, homogeneous, isotropic and thin-walled circular cylindrical shell. Its
wall thickness is denoted by h, its Young's modulus by E, and its Poisson's ratio by
v. The axial stretch of the vessel gives rise to an initial axial tension Tio . In the pres-
ence of an external pressure p. , the transmural pressure Ap is given by

Ap= po-P (1)

where pi, is the internal fluid pressure in the absence of any disturbances.
For convenience we introduce the dimensionless stress resultants in the axial

and circumferential directions

q
T1(I- v2)

Eh ' (2)

q2 - - (3)
and the two-dimensional Laplacian operator

2
2 (2

V2= a2 + a2 (4)0ja2 (92

in which the nondimensional axial coordinate a is defined by

a=X (5)
a

The elastic behavior of the vessel wall is assumed to be governed by the linearized
equations for circular cylindrical shells derived by W. Flugge (8) which have been
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shown to be useful also in analyzing the vibrations of cylindrical shells that can no

longer be considered as thin-walled (17). Hence for small displacements from the
equilibrium configuration and for shells whose length remains unchanged after the
initial axial stretch has been applied we have the following differential equations
for the displacement components u, v, w:

a2u (92u 9W) 23Li,(u) + L12(v) + L13(w) + (qi + vq2) a + q_t2 = °0
Gj2 /J2 29, -

dlv (2v O9w 2vL21(u) + L22(v) + L23(w) + (q, + vq2) a + q2 a#2 +± ) -AW2 = 0,

L31(u) + L32(v) + L33(w) - (qi + vq2)W u-dv-w-

c2w
+ (*aW + &f) at = °- (6)

The differential operators Lij are defined as

2
+

( v) C2

+ 2

da2 2 C(+2 e2

C12 (l-v) j

23 2 2 c(l+2 )

L33 = 1 + e2(V2V2 + 2 C32 + 1)

L12 = L21 = V) 02
2 ladCIO

19 2
e 493 1 V) '03L13=L31 = v -e-( ( Ci) 92

da\2 3 2-dvd133
L23 = L32 = - e2 (3 -7v) 3)

where

e2 h2(8)e 12a2 (8)

The quantities L and ,Af are inertia parameters associated with the wall and the
fluid and can be written in the form
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w = ( Eh) a2(p, h) (9)

(l P2) 2-
amf (10)

where mf denotes the apparent mass of the fluid and is defined by the perturbation
pressure at the vessel wall as will be shown later.
The fluid contained within the vessel is assumed to be compressible and inviscid.

Besides this we assume that the flow associated with the signals is irrotational and
that the effects of a mean flow and of gravity can be neglected. The fluid velocity
v is then given by

v= (11)

with V denoting the three-dimensional gradient operator. Within the realm of a
linearized theory the velocity potential cI satisfies the three-dimensional continuity
equation

I C024CD 02.1) 1 (O24) 1 49 &A
2 - ~~+ +-- frI(12)Cf2 02 =x2 r2 042 r ar ar/

with cf denoting the speed of sound in the fluid. If pi represents the perturbed
intra-arterial pressure, pio the internal pressure in the absence of a signal and
pf the fluid density, the linearized Euler equation can be written in the form

Pi=Pfat +pio. (13)

The velocity potential b and the radial displacement component w are inter-
connected through the kinematic boundary condition

aw la(Dr (14)

As solutions to the continuity equation (12) we have

c8k = D8kI 8 (r) exp [i(kx - ct + sf)] (15)

where D8k is an amplitude defined by initial conditions, s is the circumferential
wave number, w the circular frequency, k the axial wave number, I the modified
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Bessel function of the first kind of order s, and

k(i2a2 221/2 (16)

The apparent mass mf can be expressed in terms of the wall displacements that
characterize the waves to be studied. To this end we utilize the relationship between
the apparent mass and the pressure perturbation which in the case of inviscid irro-
tational flow can be written as

2

-mf ;t2= (pi - pio)r=a* (17)

Substituting from the linearized Euler equation (13) we obtain

aOw dlOch
-Mi &2 = Pf at ) . (18)

We now assume as solutions to the differential equations (6) expressions that
represent small sinusoidal waves propagating in the direction of the cylinder axis:

u = A8kexp [i(kx - wt + sf)]

v = B8k exp [i(kx - cot + sf3)]

w = CAk exp [i(kx - wt + sf +4 )]. (19)

Combining equations 14, 15, 17, and 18, we find for the apparent mass

m = pf a I(t) (20)

The substitution of equation 19 into 6 leads to a set of three linear homogeneous
equations for the coefficients A8k, B8k, and C8k . Requiring that nontrivial solutions
exist for A8k, B8k, and C8k, we arrive at the frequency equation of the system.
To reduce the frequency equation to a convenient form we introduce the following

dimensionless parameters:

C 2-E/[p (l -Ii2)] C2= C2/C 2, i2 = co2a2/Cv2 P=2

C = Cf2/Cp2. (21)

Then

= ( c2 )1/2 (22)
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and the frequency equation can be written as

|2 + ql + Pq2) _ -+P S - (Vq2) + e2 3

-(1+ql+Pq2) P)2 zs

+ q S2 + 22 s
22

(1 + e) -2

C [(qi +vq2) (3

M +(1-V) (1 + 3e2)] (1+q2)s =0

M + (1+ q2)S2 _ eo2
M
E 2Fw
T 1+ e2 [ + S2)
RL /

I _22Z2 + 1 +_ (ql

+ vq2) + q2 S2

+ a I(i)_1-2
- L +PhI(h ) IJW (23)

VISCOELASTIC SHELL EQUATIONS

In the three-dimensional theory of linear viscoelasticity, an isotropic viscoelastic
material is described by means of relationships specifying the material's behavior
in shear and in dilatation; i.e.,

P(rij) = Q('Yii) i,j = 1, 2, 3; i j (24)

and

% P'(ii) = Q'(eii) (25)

where P, Q, P', and Q' are linear differential operators of the form

L(D) = ao + a1D + a2D2 + +anD' (26)

with D = 0/at. The coefficients ai are constants, and the operators P and Q may
be chosen independent of P' and Q'. The viscoelastic equations are analogous to

the elastic relations

Tij = G('yij) i,j = 1, 2, 3; i $j (27)
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and

3aii = Keii (28)

in which G and K are the shear modulus and bulk modulus, respectively. From the
elastic relationships

E K=
E

G 2(1 + ' 3(1 - 2) (29)

and from the formal equivalences

Q/P = C, Q'/P' = (30)

one may, by algebraic manipulations, define operators P and v in terms of the visco-
elastic operators P, Q, P', and Q'. One obtains

p= 9QQ 31
3Q'P + QP' (31)

and

3Q'P - 2QP' (2
2(3Q'P+QP') (32)

Replacing the Young's modulus E, and Poisson's ratio v, in the differential equations
of motion for the fluid-filled elastic vessel (equations 6 and 7) by the operators
t and v as defined by equations 31 and 32, one arrives at the differential equations
of motion corresponding to a linearly viscoelastic vessel wall. The fluid equations
of motion and kinematic boundary conditions are clearly unaffected by the assump-
tions made on the vessel wall material, so that the apparent mass term remains
unchanged.
By substituting the trial solution (equation 19) into the differential equations of

motion we obtain the frequency equation for the viscoelastic case, in which the
wave number k must have a positive imaginary part if attenuation is to be present.
To allow for a convenient description we write k = kR + ik1. The phase velocity
of signals with an angular frequency X is then given by c = co/kR, while the signal
is attenuated by a factor of exp (-k1x) after travelling a distance x.

It should be noted that for the trial solution (equation 19), the frequency equation
can be obtained by formally substituting - iw for D in the operators t and v given
by equations 31 and 32 and by replacing E and v in the elastic frequency equation
(23) by E and P. The viscoelastic parameters corresponding to E and v will be com-
plex, and for the sake of clarity, they will be denoted LE and P, respectively:

E= tas + Q (33)
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= 3Q'P - 2QPf'
2(3Q'"P+ QP'') (4

with

P)-(P)DX-b-i(c ) (Q)D----i P (C) -(P )D-wc-i ( D - (35)

VISCOELASTIC MODELS

In one-dimensional linear viscoelasticity it is convenient to interpret expressions
of the form Pa- = Qe as a mathematical model of a mechanical system consisting
of springs and dashpots. Because of mathematical complexities, this mechanical
system is usually restricted to three simple models: the standard linear solid, the
Maxwell fluid, and the Voigt solid. In the three-dimensional case the problem may
become completely intractable when independent models for both the shear and
dilatational behavior of the material must be selected. A major simplification can
be achieved if the material is assumed to be incompressible. Utilizing the fact
that most biological materials, including blood vessels, are nearly incompressible,
we assume that

p'
_/ = 0. (36)

From this it follows that

E= 3Q/P (37)
and

Y=2. (38)

Thus the viscoelastic properties of the material are now completely determined by
its behavior in shear and a single viscoelastic model suffices to characterize the
stress-strain laws of the material. In the case of the three simple models mentioned
above, E becomes:

Standard linear solid E - E1 E2 1 - inco/E2El + E2 1 - h7w/(El + E2)

-3itwMaxwell fluid E = (1 -ihc,/Eo)
Voigt solid E = 3(Eo -ico). (39)

Irrespective of the viscoelastic behavior, E may be written in the form

E = ER(c) + iEt(c). (40)
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In fact, equations 38 and 40 may be taken as the starting point for an analysis of
waves in a viscoelastic vessel, with the functions ER((w) and EI(co) selected so as to
exhibit certain properties determined from experimental data. Such an approach
has been employed in references 15 and 16. However, these investigations have been
restricted to axisymmetric vibrations using an unrealistic mechanical model for the
vessel, since initial axial stretch and a transmural pressure were neglected. Of
interest is a systematic analysis of the effects of a viscoelastic behavior of the vessel
wall including the influence of initial loading, bending rigidity, and also allowing
for nonsymmetrical waves.
Of the three simple viscoelastic models considered here, it is clear that the stand-

ard linear solid allows for the most complete representation of the viscoelastic
behavior of blood vessels, since it includes the Maxwell fluid and Voigt solid as
special cases. However, three independent parameters must be selected to define
such a solid, while only two are needed for the Maxwell or Voigt model. For a
thorough parametric analysis, the computational effort increases considerably with
each additional parameter. Therefore, attention will be restricted to the Maxwell
and Voigt models.
The decision as to whether the Maxwell or Voigt model is the more appropriate

must be made on the basis of experimental evidence. Results of recent experiments
(11) indicate that in the range from 50 to 200 cycles per sec the damping per wave-
length of type I waves in the thoracic aorta of anesthetized dogs is essentially inde-
pendent of frequency. Assuming, as a first approximation, that the phase velocity c
of type I waves is given by the Moens-Korteweg formula

2 EhC
2pf a

for all frequencies, it follows that in the viscoelastic case, the damping per wave-
length for the Voigt model in shear is given by

Ax = exp-2 [(1 + 3n2)1I2 - l1]} (41)
A0= 1~~ L(I + 3-22)I + If

while the Maxwell model yields

Ax ~ 2 (1 + 1/3j2c12)1/2 -1 2'l(2A = exp L(l + h/3i72 2)'12 + (42)

In these expressions Ao and Ax are the wave amplitudes at x = 0 and x = A, re-
spectively, with X denoting the wavelength. For large W, Ax/Ao approaches exp
(-27r) for the Voigt model and 1.0 for the Maxwell model. From this we conclude
that at high frequencies, the Maxwell model predicts an extremely small attenua-
tion which is in contrast with experimental observations. It should be noted that
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the phase velocity c and Ax,/A0 have also been determined by solving the frequency
equation for the viscoelastic shell using the Maxwell model. The results again show
that the Maxwell model does not lead to damping characteristics and phase veloc-
ities which are in agreement with experimental evidence. On the other hand, as
will be shown, the Voigt model reflects more realistic wave propagation char-
acteristics. We have therefore restricted our parametric study of wave propa-
gation to blood vessels whose shear deformation is governed by a Voigt model.

NORMALIZATION

In the elastic case we introduced as normalizing velocity

cp= [p (1 - 2) (43)

Since, for viscoelastic material E and P are in general both complex functions of
frequency, the above expression for cp would lead to a complex velocity. We avoid
this by introducing in lieu of the above definition a normalizing velocity

Cb= FEo]
Pw

where Eo is real and is equal to the value of the complex Young's modulus E taken
for co = 0. In particular, for the Voigt model we have

Cb = [3E (45)

We additionally introduce the following dimensionless parameters:

,02 = C21Cb2
-2 = d2L2/Cb2

= Cf2/Cb2

Ai = T1O/3Eoh

q2 = aAp/3Eoh

= n/[apw(Eo/po)112]. (46)

It is interesting to note that in the expression for f, the quantity (Eo/p,)12 has the
dimension of a speed. Hence, 1/- may be considered to be a viscoelastic Reynolds
number, in which the tube radius a is the characteristic length and (Eo/pw)12 the
characteristic speed.
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RESULTS OF VISCOELASTIC SHELL ANALYSIS

The frequency equation for the viscoelastic case interrelates eleven dimensionless
parameters v, s, h/a, p, .4i, q2, 6, 8, *, k1a, and -. The first nine parameters are
basically the same as in the elastic case, except that the five parameters qi, 42,q,',
and e* differ by constant factors from q , q2, co, c, and c*. In addition to these first
nine parameters we now have also a measure of the wave attenuation in the form of
k,a, the imaginary part of the complex wave number, and the dimensionless coeffi-
cient of viscosity A. It is convenient and more descriptive to present the effects of
damping in the form of the amplitude ratio Ax/Ao in lieu of k,a. From equation 19
it follows immediately that Ax/Ao is given by

AIAo = exp [-2T k,,. (47)

53 A/o0~~~~~~~~72-

w
d

2 / 6 s o

1 TYPE1M/ - p.1

TYE ~ '7 o h/
. ~~--.. ,- N;6

z

vi TYPE I 5

0 I 2
oi, DIMENSIONLESS FREQUENCY

FIGURE 2 Dispersion curves of axisymmetric type I, II, and III waves for various values of
the dimensionless viscosity coefficient of the vessel wall. Transmural pressure and axial
stretch are both equal to zero.

For each circumferential wave number s, we find infinitely many waves with
individual speeds of propagation. Within the parameter ranges pertaining to physio-
logical problems all but the three slowest waves of each infinite set of waves for a
given s are a direct consequence of the compressibility of the fluid. The results given
as graphs in Figs. 2-28 are based on Cf = 1500 m/sec and are in agreement within
the drawing accuracy with the results for an incompressible fluid (cf = oo). We
shall identify the three slowest waves as waves of type I, II, and III. In waves of
type I the radial displacement component is dominant at high frequencies, while
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FIGURE 3 Amplitude ratio curves of axisymmetric type I, II, and III waves for various
values of the dimensionless viscosity coefficient of the vessel wall. Transmural pressure and
axial stretch are both equal to zero.
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in waves of type II, the circumferential, and in waves of type III, the axial displace-
ment components dominate at high frequencies. All of the faster waves exhibit
cut-off frequencies (frequencies at which the phase velocity is infinite) and are trans-
mitted only at frequencies above 1000 cycles/sec for physiologically meaningful
parameter values. In this investigation we shall disregard these waves and consider
only waves of type I, II, and III.
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a limiting value which is independent of A and which is identical with the limiting
value obtained in the elastic case.
For 7 <K 1 and (h/a) << 1 we can determine the phase velocities of type I waves

approximately from

e2 1 [h/2Pa + v/(1 - 2p h
(1-p2) [(1 + 3-i2c.'2)1/2 + 1]

(48)

From this it follows immediately that at very low frequencies, the effect of visco-

S a O
A

p a 1.0
h/a -.j
A

1.0

A V.0.5 qjzo

o I 2
Aw, DIMENSIONLESS FREQUENCY

FIGURE 7 Mode shapes of axisymmetric
type I, II, and III waves for various axial
stretches, zero transmural pressure, and
dimensionless wall viscosity coefficient
4j= 0.5.
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3*5

0 1 2
co, DIMENSIONLESS FREQUENCY

FIGURE 8 Dispersion curves of axisym-
metric type I, II, and III waves for var-
ious transmural pressures, zero axial
stretch, and dimensionless wall viscosity
coefficient X = 0.5.
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elastic parameters of blood vessels on the basis of phase velocity measurements of
pressure waves.
The frequency equation yields an exact expression for the phase velocities of

type II waves, which can be written in the form
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62 = (1+ 3e2) (1 + 3fj262)
(1 + P) [(1 + 3X72&2)1/2 + if

(49)

For type III waves, no closed form expression can be given for the phase velocities.
However, with the restriction .7& << 1 we find approximately for the speeds of axi-
symmetric type III waves

(50)
1 2 [(I 3 1

( h ]
p1-2) [(1 + 396,2)1/2 + 11
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FIruRE 11 Dispersion curves of axisymmetric type I, II, and III waves for various wall
thickness to radius ratios at zero transmurl pressure, zero axial stretch, and dimensionless
wall,viscosity coefficient X = 0.5.
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FIGuRE 12 Amplitude ratio curves of
axisymmetric type I, II, and III waves
for various wall thickness to radius
ratios at zero transmural pressure, zero
axial stretch, and dimensionless wall
viscosity coefficient X = 0.5.
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low the elastic cut-off frequencies, 6 >
3.0 for type II and III waves.

As can be seen from Fig. 2, type II and III waves become highly dispersive as v

is increased from 0.0 to 1.0, although equations 49 and 50 indicate that the disper-
sion will be only of second order for small &.

Fig. 3 depicts the damping per wavelength of axisymmetric waves as a function
of the frequency parameter X for 0.0 < A _ 1.0. In the case of type I waves, the
curves indicate that for c3 _ 0.4, the damping ratio Ax/Ao is essentially independent
of frequency, for all values of <_ 1.0. This property lends support to the appro-

priateness of the Voigt solid in shear as a model for the viscoelastic behavior of the
vessel wall, since recent wave propagation experiments in the thoracic and abdomi-
nal aorta of anesthetized dogs have exhibited similar damping characteristics (11).
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In this connection it should be emphasized that the experimental data referred to
here includes the contribution of blood viscosity and radiation of energy into the
vascular bed to the attenuation of waves in addition to the dissipation in the wall
due to its viscoelasticity. A comparison of our theoretical results with experimental
data from reference 11 suggests that f is less than 0.5 over the frequency range of
50 to 200 cycles per sec. This contrasts with A1 ~ 5 implied by reference 15 for low
frequency waves in the abdominal aorta of dogs.
At very low frequencies type II and type III waves are not as heavily damped as

those of type I but are more heavily damped when c > 0.4. For waves of type II,
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FIGURE 15 Amplitude ratio curves of
nonaxisymmetric (s = 1) type I, II, and
HI waves for various values of the
dimensionless viscosity coefficient of the
vessel wall. Transmural pressure and
axial stretch are both equal to zero.
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FIGuRE 16 Mode shapes of nonaxisym-
metric (s = 1) type I, II, and III waves
for various values of the dimensionless
viscosity coefficient of the vessel wall.
Transmural pressure and axial stretch
are both equal to zero.

J. A. MAXWELL AND M. ANLIKER Viscoelastic Behavior ofBlood Vessels 939



3

Zs
0
-j
hLi

hi2

!aJ
-I
z
o 1
z

2170
IL

0

1.0

q o

- h/a z. I

TYPEm\

I'~~~~~~~~~~~.

\\s TYPE!!_a-

0

1 2 3
A

W., DIMENSIONLESS FREQUENCY

4

FIGuRE 17 Dispersion curves of nonaxisymmetric (s = 2) type I, II, and III waves for
various values of the dimensionless viscosity coefficient of the vessel wall. Transmural pres-
sure and axial stretch are both equal to zero. Below the elastic cut-off frequencies, 6 > 3.0
for type II and III waves.

10-2 S A2 O

m VwA.5 q2 a °

w p5- 1.0 h/ao.I

E- a-

Ww

a 9i-
CL

H
7

A
u.

I

.2
--==I= -4

0 1 2 3 4
s, DIMENSIONLESS FREQUENCY

FIouRE 18 Amplitude ratio curves of nonaxisymmetric (s = 2) type I, II, and III waves for
various values of the dimensionless viscosity coefficient of the vessel wall. Transmural
pressure and axial stretch are both equal to zero.

the amplitude ratio Ax/Ao can be given in closed form as

Ax= exp{-r2 [(I + 312C22)1I2 + 1 (51)

No such closed form expression for A./Ao can be given for type I and III waves.
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However, when fic << 1.0, the damping ratio for all three types can be approximated
by

AO f exp (-V131rj6) 1-%/3716
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FIGURE 19 Mode shapes of nonaxisymmetric (s = 2) type I, II, and III waves for various
values of the dimensionless viscosity coefficient of the vessel wall. Transmural pressure and
axial stretch are both equal to zero, with h/a = 0.1, A = 1.0, and P = 0.5.
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e = 0.5. Below the elastic cut-off frequencies, c > 3.0 for type II waves.
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FiGuRE 22 Mode shapes of nonaxisymmetric (s = 2) type I, II, and III waves for various

axial stretches, zero transmural pressure, and dimensionlesswall viscosity coefficient 4 = 0.5,
with h/a = 0.1, p = 1.0, andD = 0.5.

From equation 52 we conclude that, for small fW-, the damping ratio decreases
linearly with or 6.

The mode shapes for axisymmetric waves are nearly independent of for < 1.0,

as is evident from Fig. 4. Only the radial components of type III waves show any
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noticeable change with 'O. Changes in the type I mode shapes are so small as to fall
within the plotting accuracy of the curves.

Fig. 5 depicts the phase velocities of axisymmetric type I, II, and III waves for
X = 0.5 and for four values of the axial stretch parameter q4. While dispersion of
type I waves due to axial stretch is only significant at higher frequencies, we find
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FIGURE 23 Dispersion curves of nonaxisymmetric (s = 2) type I, II, and III waves for
various transmural pressures, zero axial stretch, and dimensionless wall viscosity coeffi-
cient e = 0.5. Below the elastic cut-off frequencies, c > 3.0 for type II and III waves.
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FIGURE 24 Amplitude ratio curves of nonaxisymmetric (s = 2) type I, II, and III waves

for various transmural pressures, zero axial stretch, and dimensionless wall viscosity
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that stretching affects the speed of waves of type II and III primarily at lower fre-
quencies. From Fig. 6, it is seen that axial stretch has a marked effect on the mag-
nitude of the damping of type I waves for X = 0.5. When qi = 0.2, the attenuation
per wavelength at high frequencies is less than half of that for qi = 0. This serves
to emphasize that viscoelastic parameters extracted from data pertaining to high
frequency pressure waves may be seriously in error if vessel stretch is not consid-
ered. The effect of axial stretch on the mode shapes of axisymmetric waves is
negligible, as can be seen from Fig. 7.
The results of the effects of a transmural pressure on the dispersion, mode shapes,

and attenuation of axisymmetric waves are illustrated in Figs. 8-10. We note that
the effects on the wave propagation characteristics of a transmural pressure and an
axial stretch are quite similar in nature. This is to be expected, since an axial stretch
and a transmural pressure Ap both have in general a stiffening effect on the vessel.
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FIGUREn 25 Mode shapes of nonaxisymmetric (s = 2) type I, II, and III waves for various
transmural pressures, zero axial stretch, and dimensionless wall viscosity coefficient fi = 0.5,
with h/a = 0.1,p~3 = 1.0, andp = 0.5.

The thickness ratio h/a significantly affects the phase velocities of type I waves,
as in the elastic case, but leaves the speed of type II and type III waves nearly
unchanged, as can be seen from Fig. 11. According to Fig. 12, the damping ratio
Av/A0 is remarkably insensitive to variations in h/a for all three types of waves.
Similarly, we find no significant changes in the mode shapes for different values of
h/a as shown in Fig. 13.

Discussion of Nonaxisymmetric Waves

In the case of vessels with an elastic wall material, it was shown earlier that cut-off
frequencies exist for nonaxisymmetric waves of types I, II, and III, with the sole
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exception of type I waves with s = 1 (10). If the vessel wall is composed of an in-
compressible viscoelastic material, whose shear deformation is governed by the
Voigt model, we no longer find cut-off frequencies in the classical sense. Nonaxi-
symmetric waves are now, theoretically, being propagated at all frequencies. How-
ever, as will be seen, the amplitude ratio A),I/Ao of waves propagating near and below
the corresponding elastic cut-off frequency is so small that the experimental verifi-
cation of their existence would be a question of sensitivity of the transducers uti-
lized. For practical purposes one might therefore consider introducing a cut-off
frequency on the basis of a minimal observable wave amplitude.

Discussion of Waves with s = 1

For s = 1, the phase velocities of type I waves exhibit only mild dispersion when
4 varies between 0 and 1.0, as can be seen from Fig. 14. On the other hand, the
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FiGuRE 26 Dispersion curves of nonaxisymmetric (s = 2) type I, II, and III waves for
various wall thickness to radius ratios at zero transmural pressure, zero axial stretch, and
dimensionless wall viscosity coefficient A = 0.5. Below the elastic cut-off frequencies, c > 3.0
for type II and III waves.

speed of waves of type II and III are strongly dependent on 7 and 6. Except for
i = 0, cut-off frequencies no longer exist for type II and type III waves, although
this is not readily apparent from Fig. 14. Considering, however, the variation of
the mode shapes with frequency, as illustrated in Fig. 16, we note that waves are
indeed being propagated below the elastic cut-off frequency for all values of v
covered in our parametric study. We also see that the mode shape of type I waves
is practically unaltered by increasing f from 0 to 1.0, while the type II and type III
mode shapes exhibit great sensitivity to changes in 77.

According to Fig. 15, type I waves exhibit attenuation properties similar to
those of axisymmetric type I waves, i.e. the attenuation per wavelength is again
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essentially independent of frequency for c3 >> 0.4. In contrast to this, even compara-
tively small values of A lead to a strong attenuation per wavelength as compared
with the axisymmetric case.

Discussion of Waves with s = 2

From the results given in Fig. 17, we again note that the speed of propagation of
type I waves is only mildly affected by changes in X between 0 and 1.0. The phase
velocities of type II and III waves on the other hand are strongly dependent on the
viscoelasticity of the vessel wall. Propagation of all three types of waves below
the elastic cut-off frequencies is again possible but damping per wavelength below
cut-off is so high that they can be ignored, as is evident from Fig. 18.
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FIGURE 27 Amplitude ratio curves of nonaxisymmetric (s = 2) type I, II, and III waves
for various wall thickness to radius ratios at zero transmural pressure, zero axial stretch,
and dimensionless wall viscosity coefficient X = 0.5.

From Fig. 19 it follows that type II and III mode shapes exhibit strong depend-
ence on the parameter t1 for all & < 4.0, while the mode shape for 0 . 71 . 1.0 is
indistinguishable from that of the elastic case (X7 = 0).

Figs. 20-22 illustrate the sensitivity of both e and Ax/A0 to axial stretch when
v= 0.5. Near the elastic cut-off frequency, type I phase velocities may double in
magnitude as qi is increased from 0 to 0.2. Likewise, the amplitude ratio may grow
by more than a factor of two with the same change in stretch. The sensitivity of the
phase velocities and damping characteristics of type II and III waves to changes
in axial stretch may be equally pronounced, but for practical purposes unimportant
in view of the heavy damping. From Fig. 22, we see that mode shapes show no
significant dependence on qi except at low frequencies.
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The effects of a transmural pressure on phase velocities, damping characteristics
and mode shapes of s = 2 waves are summarized in Figs. 23-25 for - = 0.5. The
dispersive nature of these waves is essentially similar to that of the elastic case,
except for the existence of waves below the elastic cut-off frequency. The amplitude
ratio Ax/Ao of type I waves increases markedly with rising transmural pressure,
while the absolute changes in the amplitude ratio of type II and III waves may be
termed insignificant.
The results plotted in Figs. 26-28 illustrate the influence of changes in the thick-

ness ratio h/a on the propagation characteristics of s = 2 waves for A = 0.5. Varia-
tions in the thickness ratio have a strong influence on the phase velocities of waves of
type I. Except near the elastic cut-off frequencies, the phase velocities of type I
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FIGURE 28 Mode shapes of nonaxisymmetric (s = 2) type I, II, and III waves for various
wall thickness to radius ratios at zero transmural pressure, zero axial stretch, and dimension-
less wall viscosity coefficient X = 0.5, with h/a = 0.1, A = 1.0, and t' = 0.5.

waves vary approximately as (h/a)112. On the other hand, Figs. 27 and 28 demon-
strate that the damping characteristics and mode shapes of such waves are only
moderately affected by variations in h/a. Waves of type II and III show only un-
important changes in their characteristics with respect to changes in h/a except
below the elastic cut-off frequencies. It becomes clear, however, from Fig. 27, that
these changes are of no practical significance because of the severe damping.

CONCLUSIONS

From our dispersion curves we conclude that a realistic model for the dynamic
behavior of blood vessels should include the effects of the transmural pressure and
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the axial stretch. The propagation of pressure pulses similar to those generated by
the heart appears to involve primarily axisymmetric waves of type I since waves of
type II are not connected with intraluminal pressure fluctuations and waves of
type III exhibit only very small pressure perturbations. Qualitative agreement is
obtained with recent experiments on dissipation of high frequency waves in blood
vessels by assuming that the vessel wall material is incompressible but behaves as a
Voigt solid in shear. The phase velocities of type I axisymmetric waves are only
mildly affected by such viscoelastic behavior, so that it will be difficult to obtain
accurate estimates of the viscoelastic parameters of the vessel wall on the basis of
type I phase velocity measurements only. The dissipation of waves, however, exhib-
its a strong dependence on the viscoelastic properties of the vessel wall. Moreover,
the dissipation decreases substantially with increasing axial stretch or transmural
pressure, especially at high frequencies. Consequently, the reliable determination
of the viscoelasticity of the vessel wall from experiments involving high frequency
wave propagation must take into consideration the effects of axial stretch and
transmural pressure. Considering the striking dispersive properties of nonaxisym-
metric waves, their experimental verification would offer deeper insight into the
viscoelastic behavior of arteries and veins. The effects of the compressibility of the
blood are insignificant for waves with frequencies below 1000 cycles per sec.
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with the sponsorship of the U. S. Army Research Office under Contract No. DA-31-124-ARO-D-223,
the National Science Foundation under Grant No. GK-47 and the NASA under Grant No.
NGR-05-020-223.
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NOMENCLATURE

a Equilibrium radius of the middle surface of the vessel wall.
AX Wave amplitude at a distance of 1 wavelength from origin.
Ao Wave amplitude at origin.
A8kl
B8-k Mode amplitudes for circumferential wave number s, axial wave number ka.
C,k J
c w/kR = axial phase velocity.
Cb (3Eo/p,)"12 = normalizing phase velocity (viscoelastic shell).
Cf Speed of sound in blood.
C21 [E/pw(1 - v2) ]1/2 = normalizing phase velocity (elastic shell).
c c/cp = dimensionless phase velocity (elastic shell).
C C/cb = dimensionless phase velocity (viscoelastic shell).
C* cf/Cp = dimensionless speed of sound in blood (elastic shell).
c* cf/cb = dimensionless speed of sound in blood (viscoelastic shell).
D a/lt = differential operator.
D8k Constant related to initial conditions of fluid.
e2 h2/(12a2) = dimensionless parameter.
E Young's modulus of vessel wall.
Eo Zero frequency modulus, viscoelastic shell.
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E Complex Young's modulus.
G Elastic shear modulus.
h Thickness of vessel wall.
i ( 1)1/2
8(t) Modified Bessel function of the first kind, argument t.
ka (kR + ikI)a = complex axial wave number.
kR Re(ka/a)
kir Im(ka/a)
K Elastic bulk modulus.
Li, Differential operators.
mf Radial apparent mass of blood contained in the vessel.
pe External pressure applied to vessel.
Pi Perturbed internal pressure applied to vessel.
pio Unperturbed internal pressure.
P, P' Viscoelastic operators.
q1 To(l -v2)/Eh = dimensionless axial stress resultant.
q2 aAp(l -2)/Eh = dimensionless radial stress resultant.
Al Tio/(3Eoh) = dimensionless axial stress resultant (viscoelastic shell).
q, oap/(3Eoh) = dimensionless radial stress resultant (viscoelastic shell).
Q, Q' Viscoelastic operators.
r Coordinate in radial direction.
s Circumferential wave number.
t Time.
T1o Initial axial tension of vessel.
u, v, w Displacements of vessel middle surface in axial, circumferential, and radial directions

respectively.
v Fluid velocity.
x Coordinate in axial direction.
a x/a = dimensionless axial coordinate.
13 Coordinate in circumferential direction.
AP pi. - p. = transmural pressure.

Vessel wall coefficient of viscosity.
X7 7[apw(EO/pw)ll] = dimensionless vessel wall coefficient of viscosity.
Af, Fluid inertia parameter.
W (1 - v2)a2(p,,h)/Eh = wall inertia parameter.

vi Poisson's ratio.
p Complex Poisson's ratio (viscoelastic shell).
P Pf/Pw = dimensionless density ratio.
Pf Blood density.
Pw Vessel wall density.
c1 Fluid velocity potential.

k2a2-a2)1/2 = dimensionless parameter.

w Angular frequency.
w wa/cr = dimensionless angular frequency (elastic shell).
c3 wa/cb = dimensionless angular frequency (viscoelastic shell).
V Gradient operator.
V2 Laplacian operator.
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