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ABSTRACT Quantitative methods for the study of the statistical properties of
spontaneously occurring spike trains from single neurons have recently been
presented. Such measurements suggest a number of descriptive mathematical
models. One of these, based on a random walk towards an absorbing barrier,
can describe a wide range of neuronal activity in terms of two parameters. These
parameters are readily associated with known physiological mechanisms.

INTRODUCTION

A prominent characteristic of the electrical activity in the nervous system is the
prevalence of spontaneous activity, both at the level of the spatially summed
potentials observed with a gross electrode and at the level of the action potentials
of a single neuron. In a recent paper Rodieck, Kiang, and Gerstein (1962), using
examples recorded in the cochlear nucleus of anesthetized cats, set forth some
quantitative methods that may be used to study the statistical properties of the
train of action potentials associated with spontaneous activity of a single neuron.
It was shown in that paper that three types of measurements are particularly useful
in order to establish a statistical description of the spike train:?

(a) The interval histogram—a histogram of the distribution of time intervals
between successive spikes. This measurement estimates the probability density of
intervals,

(b) The joint interval histogram—a histogram of the joint distribution of two
successive interspike intervals. This measurement estimates the joint probability
density of successive intervals.

(c¢) The scaled interval histogram—a histogram of the intervals between every
2mh spike when m is a positive integer. (For m = 0 this description is identical
with the interval histogram.) This measurement estimates the probability density

1 We shall use spikes and action potentials interchangeably.

41



of particular intervals that are themselves the sum of 2, 4, 8, . . . successive in-
terspike intervals.

In the present paper we shall use some of the data and measurements of Rodieck
et al. (1962) as a basis for several mathematical models of the neuron. We shall
show that the parameters in these models can be given significance in physiological
terms, and that these models can generate many of the observed characteristics of
spike trains from single neurons.

SOME BASIC OBSERVATIONS
The Poisson Model

Whenever one deals with a sequence of events that seem randomly spaced in time,
it is usual to assume as a first approximation that the probability for the event to
occur during a time increment dt is equal to R dt, independently of the past his-
tory of the process. Here, R is a constant that defines the average time rate of oc-
currence of the events. If the events are action potentials, these conditions cannot
be met fully because the interspike interval has a lower bound, D, resulting from
the refractory time of the neuron. If there are no other constraints, the interspike
intervals will be distributed with a probability density

I(r) = Rexp[—R(r — D)] for 7> D 1)
=0 for r < D,

where 7 is the duration of the interspike interval.

In this type of model successive interspike intervals are independent random
variables, so that the joint probability density for interval r, followed immediately
by interval =, can be written

I(ry, 73) = R exp [—R(7y — D + 7, — D)]
= R exp [—R(ry + 72 — 2D)] for 7, > D, 7,> D )

It follows that the lines of equal probability density in the joint distribution of =
and =, will be straight lines that are parallel to the second bisectrix r; + . = 0.

Consider also the probability density I;.(r) for the interval between a spike and
the k™ spike that follows it. (This represents a slight generalization of the measure-
ment defined by the scaled interval histogram, in which k was restricted to be of the
form 2™, when m is a positive integer.) In the present case of an exponential distribu-
tion, each such interval is the sum of k independent exponential random variables.
The resulting probability density is called the gamma distribution of order k:

I(r) = R**" exp (—RD[T(®)]™", 3)
where T represents the gamma function. As k increases, this distribution rapidly

becomes peaked, symmetric, and tends towards the Gaussian.
Thus, in order to test empirically the conjecture that a spike train may be de-
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scribed as a Poisson process, one must examine the basic distribution of interspike
intervals I(7), the joint distribution of successive intervals I(r;, r2), and, finally, the
distribution of scaled intervals I;(r). It is clear that there are indeed cases in which
all three theoretical predictions of the Poisson process are verified. For example, con-
sider the data given by Rodieck ez al. (1962) for Unit 259-2 which show an ex-
ponential distribution of intervals.2 We show in Fig. 1a that for this unit the lines of
constant probability density in the joint interval histogram are indeed parallel to
71 + 72 = 0. In Fig. 2a we see that the scaled interval histograms for this unit tend
rapidly toward a narrow and symmetric shape.

The simple Poisson type of model has been used previously in neurophysiology
(Kuffler, Fitzhugh, and Barlow, 1957; Grossman and Viernstein, 1961). Unfor-
tunately, it is a purely descriptive model that does not contribute much to our
understanding of the detailed mechanisms that may be involved in the firing of a
neuron. It is also clear that many units produce spike trains for which the three
fundamental predictions based on a Poisson model are grossly incorrect. In this
paper we shall study two such examples, one rather briefly, the other in detail.

The Gaussian Model

Consider a train of action potentials which exhibits appreciable periodicity so that
there are only relatively small fluctuations in the durations of interspike intervals.
Here, the probability density of intervals may “look” very much like that of a sample
from a Gaussian population. If this is indeed the case, and if successive intervals =,
and r. are independent, then the joint density of successive intervals would be the
product

I(r1, 72) = (2x0")™" exp {—(20") ([, — E(r)]* + [ — E(r)]")}. (C)]
Here, E(r,) is the expectation value, or mean duration, of the first interval of the
pair and o2 is the variance of either interval. According to equation (4), the con-
tours of equal density are circles with a common center at the coordinate point
E(71), E(72).

The sum of k successive interspike intervals will be a sum of k independent
Gaussian variables. According to the well known properties of the Gaussian distribu-
tion, this sum will itself be a Gaussian variable with a mean value kE(+) and a
variance equal to ko2. (Here, E(r) and ¢ refer to the probability density of the basic
interspike intervals.) :

We may find cases that are in reasonable agreement with these theoretical predic-
tions. As an example, consider the data of Rodieck ez al. (1962) for Unit R-4-10
which show an interval histogram that looks like a Gaussian distribution.® In Fig.
1b of the present paper we demonstrate that lines of constant probability density
in the joint interval histogram are approximately circular. The scaled interval

2 See Rodieck, Kiang, and Gerstein (1962), Fig. Sa.
8 See Rodieck, Kiang, and Gerstein (1962), Figs. 4b and 5b.
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histograms of Fig. 2b show that the mean value and variance of the sum of in-
tervals indeed behave as predicted. (Note that the time scale of each successive order
of scaled interval is adjusted by a factor of 2, and that this keeps the center (mean)
of the successive scaled interval distributions at the same location on the abscissa.)

Long Interspike Intervals

The exponential and the Gaussian distributions share an important property: The
asymptotic decrease of the probability density function is quite rapid for large
values of r. In other words, long interspike intervals are extremely rare. However,
there are experimental situations in which the density of intervals behaves very
differently. In qualitative terms, there may be, in comparison with the number of
intermediate length intervals, an excessive number of both fairly short and very
long interspike intervals. An example of such data is given by Rodieck et al.
(1962) for Unit 240-1: their Fig. 5d clearly shows an upward curvature of the
semilogarithmic plot of the interval histogram. It is interesting to note that similar
behavior has been observed by one of the authors (B. B. M.) in several fields of
study that are quite remote from neurophysiology (Mandelbrot, 1960, 1963 a and b;
Berger and Mandelbrot, 1963).

Another important characteristic of the data from Unit 240-1 is shown in Fig.
2c: with the indicated changes in time scale, the shape of each of the first few
successive orders of scaled interval histogram remains approximately the same.
This means that a sum of successive interspike intervals has the same probability
density—to within a scale factor—as the basic interspike intervals. If we make the
simplifying assumption that the lengths of successive intervals are independent
(this is not quite true for the short intervals in the data), successive orders of
scaled interval histogram are related by Io(+) = I(r) * I(). Then the observed
invariance of shape under the scaling transformation means that the density of
interspike intervals must obey

I(n)*1(r) = (1/2)1(r/2). (©)

Here, the symbol * denotes the operation of convolution. This extremely restric-
tive condition may be stated as follows: When the probability density is convolved
with itself, the result must have the same functional form, with only a particular
change of the time scale. In the conventional terminology of probability theory,
the “type” of the interspike interval is invariant under addition. v

These properties, as we shall show, suggest a series of models that can describe
the spike activity of a single neuron.

THE SIMPLE RANDOM WALK MODEL
Development of the Model
Distribution functions whose densities obey a general relation that is similar to
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equation (5) are known as stable distribution functions. The stability property
refers to the invariance of the functional form of the distribution function under
convolution; in general, there may be a linear change of scale in the variable.
These functions have been extensively studied (Lévy, 1940; Gnedenko and
Kolmogorov, 1954); we shall postpone more detailed examination of their proper-
ties until the section on Stable Distributions. For the present, suffice it to say that
only three stable distribution functions are known in closed analytic form: the
Gaussian distribution, the Cauchy distribution, and the so called stable distribu-
tion of order 1/2.

In attempting to match one of these probability densities to our experimental
data, we must keep in mind the following requirements: (a) the interspike in-
terval is always a positive quantity, and (b) the interspike interval histogram de-
creases asymptotically more slowly than an exponential function, and is asymmetric
about its mode (skewed).

The Gaussian distribution has already been considered; the Cauchy distribu-
tion has two long tails, corresponding to = varying to — and +o, and thus could
not readily be associated with the distribution of an inherently positive quantity.
The stable distribution of order 1/2, however, is defined only on the interval
(0, +), and also has one of the longest “tails” to be found in probability theory.
It is associated with certain solutions in games of coin tossing, or with random
walks. In particular, it gives the probability density of first passage times in a one-
dimensional random walk that begins some fixed distance from an absorbing
barrier.

The random walk problem can be restated in the language of neurophysiology
in order to define a model for the spike activity of a single neuron:

1. Let the electrical state of polarization of the somatic and dendritic membrane
of the neuron be specified by a single number. As time passes and the electrical
state of the membrane varies, the state point will move back and forth along a
straight line.

2. Choose a particular point on the line as the resting potential.

3. Choose another point on the line, zo units away, as the threshold. (This cor-
responds to the absorbing barrier in the random walk problem.) If at any time the
state point reaches the threshold, the neuron will produce an action potential.

4. Assume that each incoming elemental EPSP (Excitatory Post Synaptic
Potential) moves the state point one umit toward the threshold, and that each
incoming elemental IPSP (Inhibitory Post Synaptic Potential) moves the state
point one unit away from the threshold.

5. Let the average rate of incoming elemental EPSP and elemental IPSP be
the same; i.e., at any time there is an equal probability that the state point move
either a unit toward or a unit away from the threshold.

6. Immediately after the state point has attained the threshold and caused the
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production of an action potential, it returns to the resting potential, only to begin
again on its random walk.

Some basically different neuron models which also utilize a state point and a
threshold have been previously described. Our random walk model should be
compared, for example, with the additive noise models of Viernstein and Gross-
man (1961) and Verveen (1961). These authors postulate fluctuations of the
membrane state (or alternatively of the threshold) which have a Gaussian distri-
bution of amplitudes. They also assume that there is no correlation between suc-
cessive fluctuations, so that there may be arbitrarily large sudden transitions of
the state point. In contrast, transitions in our model are the result of many small
steps and may be compared with the lag or lead of the number of heads in the
repeated tossing of a coin. Thus the probabilistic characteristics of our model are
a reflection of the rate and order of incoming elemental EPSP and IPSP, and do
not explicitly require the introduction of a “noisy” membrane or noisy threshold.

Even if the membrane state fluctuations in the additive noise models are band
width-limited so as to produce smooth transitions, our random walk model dif-
fers by its use of the reset to resting potential. This fundamental distinction
causes the two types of model to have quite different densities for reaching
threshold. There is, of course, neurophysiological evidence that at least for some
neurons reset does take place after the occurrence of an action potential (Eccles,
1957, particularly chapter 2).

It should also be pointed out that the precise rules that govern the motion of
the state point in the random walk do not seriously affect the calculation of first
passage time. In the model described thus far we have considered a “membrane”
with infinite time constant and identical excitatory or inhibitory steps occurring at
regular increments of time. Recently work has been done (Fetz and Gerstein,
1963) on models which utilize an exponential time distribution of excitatory
and/or inhibitory steps together with finite time constants for the membrane.
Even with time constants shorter than typical interspike times, such models
can exhibit most of the properties discussed for the random walk model of the
present paper. We may conclude that the microscopic rules of a random walk
model cannot be uniquely determined from physiological data on spike trains.
More detailed intracellular potential measurements than presently available would
be needed in order to set such details in the model.

Interval Densities

In order to make theoretical predictions that can be compared with data on the
probability density of interspike intervals, we must, in terms of our random walk
model, calculate the probability density for first attaining the threshold. If we as-
sume that each elemental movement of the state point in the model is small in com-
parison with the distance z, between the resting potential and the threshold, and if
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POSITION

we do not need a description of the detailed motion of the state point, then the

problem may be treated with high accuracy as a diffusion process with an absorbing

barrier. The normal diffusion current at the absorber will correspond to the proba-

bility density of first passage times (interspike intervals) (Chandrasekhar, 1943).
This density has the form

Iz, 7) = (4m) %2077 %"% exp (—20°/47) r>0
=0 T<0

where 7 is the duration of an interspike interval and z, has been defined.

Long intervals are so probable in this model that the variable r has no population
moments of any order. Even its mean value is infinite. In other words, a sample
mean interval calculated on a finite sample of data would be expected to grow with-
out bound as the sample size increases. These characteristics of the model may be
made more intuitively acceptable by considering the random walk: the state point
is free to wander arbitrarily far from the threshold, thus allowing an extremely long
first passage time. We illustrate this behavior in Fig. 3, which shows a computer
simulation of several random walks. With the resting potential 32 steps from the
threshold (or absorber), the state point has frequently not reached the firing thresh-
old even after 2560 steps.*
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FiGURE 3 Typical random walks in one dimension in a computer simulation of the
model.

For the simple random walk model, successive interspike intervals are inde-
pendent. The joint density of successive intervals, when both r, and =, are large

“enough to discard the exponential, is of the form

](Tn Tz) = C T1 —ie 2—3/2 Cz(Tsz) e, (7)

4+ We have, for convenience, introduced a reflecting barrier into the illustration, which cor-
responds to some maximum hyperpolarization. This limits the maximum distance that the
state point may be from the firing threshold. However, as long as this distance is large com-
pared with zo, the density of first passage times remains as we have described above.
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Clearly, the lines of equal probability are hyperbolae. Their curvature contrasts
qualitatively with the straight contour lines of the Poisson (or exponential) model
and with the circular contour lines of the Gaussian model.

One may easily verify that, under addition of successive interspike intervals, the
density of equation (6) shows the shape invariance required of a stable function.
By direct integration, we obtain

I(r)*I(7) = (1/4)1(r/4). ®

More generally, for the density of equation (6), the sum of k successive interspike
intervals, weighted by k—2, will have the same probability density as the fundamental
interspike intervals. '

It is not surprising that the simple model that we defined above does not quantita-
tively fit the data, and that it is necessary to make the model more complex. A num-
ber of discrepancies exist between the predictions of the simple model and the data.
Perhaps most striking is the fact that the experimentally observed scaling invariance
(Fig. 2c) implies a weighting factor k—! in contrast with the k—2 weighting factor
of the simple random walk model.® This difference is also made evident by compar-
ing the experimental convolution relation (equation (5)) with the prediction of the
simple random walk model in equation (8). Thus, although the model predicts
invariance of shape under the scaling transformation, it does so with the wrong
change of time scale.

A second discrepancy between data and model is, experimentally, that as & be-
comes large, the scaling invariance no longer applies (see the last few scaled interval
histograms at the bottom of Fig. 2c). In other words, the asymptotic decrease of
the experimental interval density is much faster than the +—3/2 decrease predicted by
the simple random walk model.

A third discrepancy is that the observed joint density of successive interspike in-
tervals I(r;, 72) does not clearly exhibit the hyperbolic contour pattern that we
derived in equation (7). (See Fig. 1c.)

We shall now demonstrate that a relatively small modification of the simple ran-
dom walk model will allow a far better fit of the data.

THE RANDOM WALK WITH DRIFT
Calculation of Interval Density

In the section on The Simple Random Walk Model it was assumed that the average
rates of incoming elemental EPSP and elemental IPSP are identical: there was no
“bias toward” either input. But it is far more reasonable in a physiological model to
assume that these two rates are different, and that there is some excess of either

s If I(r) were a Gaussian density with zero mean, the required weighting factor would be kV*,
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EPSP or IPSP input. In this case, the probability for the state point to move one unit
toward the threshold will be different from the probability for it to move away from
the threshold.

In terms of a diffusion process, the difference between these probabilities can be
considered a “drift velocity,” either toward or away from the threshold. Taking the
origin of our coordinate system at the threshold, we must solve

do _ do _ 0w
a = ‘&

subject to the boundary conditions
w=20z—2) at t=0; w=0 at z=20 all ¢ > 0.

Here, c represents the drift velocity, and we have taken the diffusion coefficient to
be unity. The quantity  represents the spatial density of the diffusing particles: each
such particle represents the state point of our neuron model during the time between
some two action potentials. The normal diffusion current at the absorber corresponds
to the probability density of first passage times in the model. Thus we find

4r
=0 T <0.

I(Zo, C, T) = (47)—1/2201'-3/2 exp {_(Zo_'l'ﬂ_)_z_} T 2 0 ( )
9

We have again used + to indicate the duration of a first passage time, 2, to indicate
the distance between resting potential and threshold, and ¢ to express the difference
between the rate of elemental EPSP and elemental IPSP input to the neuron. Clearly,
for ¢ = 0 this result reduces to equation (6).

The probability density given in equation (9) is, unfortunately, such that convolu-
tion with itself does produce change in the functional form. However, it is easy to
show that for a certain range of parameters there is approximate shape invariance
under the convolution operation with a 2X expansion of the time scale. This is
illustrated in Fig. 4 by scaled interval histograms in a computer simulation of the
random walk model with draft.

When drift is included in the random walk model, successive intervals remain
independent. The joint density of successive intervals I(r, r2) is thus given by a
product of two terms like equation (9). For reasonable choice of parameters, a
numerical evaluation quickly shows that the contours of equal density are less
curved than the hyperbolas of equation (7). The contour lines return to near the
origin through regions close to the r; and r, axes. The over-all contours are there-
fore roughly right “triangles™ with an inward curved hypotenuse. This curvature be-

éBecause of the linear term in the exponential of equation (9) for very large values of = and
7a (far beyond values which are experimentally observed), the contour lines become straight
lines parallel to 71 + 7a = 0.
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comes unnoticeable for the small contour triangles near the origin which correspond
to very high probability values.

Comparison of Theory with Data
Let us write the probability density of equation (9) as

I(a, b, 7) = Kr~* exp (—-f — br). (10)

In this form we have a two-parameter curve to compare with the data; the third
parameter is fixed by the normalization condition. Inspection of equations (9) and
(10) shows that the parameter a is associated with the square of the resting potential-
threshold distance, and that the parameter b is associated with the difference be-
~ tween the rate of elemental EPSP and IPSP which is incident on the neuron mem-
brane.

The fit of equation (10) to the interval histograms of data from three different
units is shown in Figs. 5 to 7. Unit 240-1 was located in the cochlear nucleus of a
cat under moderate dial-urethane anesthesia; Unit 6-2 was located in the auditory
cortex of a completely unanesthetized cat with a chronic implanted electrode. De-
spite this great disparity of experimental conditions and anatomical location, the
interval histograms of the data from both units are well fitted by similar choice of
parameter values. The drift parameter in both these causes corresponds to an ap-
proximate 4 per cent excess rate of EPSP over IPSP.

1000, T I [ I

UNIT 240 -1 -

1001+

R |

I(7)

a=25
b=0.0165

50 100 150 2:)0 FiGure 5 Fit of equation 10 to interval his-
T (MSEC) togram of data for Unit 240-1.
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Reasonably good agreement between model and experiment is also observed for
the joint density of successive interspike intervals from these two units. The contour
pattern of the data from Unit 240-1 (Fig. 1¢) differs from the theoretical predic-
tion (page 52) mainly in that the vertex angle of the contour triangles is less than
the predicted 90°. The source of this discrepancy is that in the model successive in-
terspike intervals are completely independent, while in the data there is some cor-
relation between successive intervals when they are short.

In Fig. 7 we show that the Gaussian-like data of Unit R-4-10 can also be fitted by
equation (10), but require a very different set of values of a and b: In comparison
with the values used in Figs. 5 and 6, we have here increased the @ parameter by a
factor of 4, and the b parameter by a factor of 23. Physically, this change means
that the model for this particular neuron has a higher threshold than in Figs. 5 and 6
and a much larger excess rate of EPSP over IPSP. It is intuitively obvious that under
such conditions of high drift velocity the state point of our model will reach the
threshold frequently and in an almost periodic way.” In order to choose between
this fit and the fit by the Gaussian density, we shall have to determine whether, for
a large number of units, the parameters of the model exhibit a continuous range of
values or tend to cluster in some significant way. Again for this case there is good
agreement between model and experiment for the contour lines in the joint density
of successive interspike intervals.

A TIME-VARIANT MODEL

In most physiological experiments data are taken not only during spontaneous ac-
tivity, but in the presence of transient stimuli that are often periodically presented. In
recordings from single units one frequently observes correlation between the pattern
of action potentials and the instants at which the stimulus is presented (Gerstein
and Kiang, 1960). Unless the unit is firing very rapidly in comparison with the rate
of stimulus presentation, an interval histogram of the activity should show some
evidence of the interval between stimuli. This situation is illustrated in Fig. 8, which
shows interval histograms for the activity of a unit from the cochlear nucleus of
an anesthetized cat during presentation of clicks at various rates. The mode of the
interval histogram of spontaneous activity lies at approximately 10 msec. When
clicks are presented at 10/sec., the neuron fires “spontaneously” several times in the
course of the 100 msec. between stimuli; thus no evidence of 100 msec. periodicity

7 Since the distance between the points that represent the resting potential and the threshold is
experimentally found to be quite similar for most cells, we should point out that an alternate
physical interpretation of the parameters of Fig. 7 is possible. In the foregoing development we
have assumed that the variance of EPSP-IPSP rate fluctuations has been taken at some fixed
value, and accordingly have set the diffusion constant at unity. If this limitation is removed, we
may interpret the change in parameter values in Fig. 7 as follows: variance of the EPSP-IPSP
rate fluctuations is smaller, there is a large excess of EPSP rate, and the threshold remains at
some “normal” value.
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is visible in this histogram. However, at 50 clicks per second, the neuron frequently
does not get to fire between stimuli. The 20 msec. periodicity of the stimulus ap-
pears as a sharp peak. In fact, the neuron on occasion does not fire for 40 msec.,
so that a second peak is seen which corresponds to firing on alternate stimuli. The
same situation occurs at 100 clicks per second; the many peaks correspond to
“skipping” of various numbers of stimuli. It should also be noted that the con-
tinuous distribution of intervals which is visible between the peaks decreases as the
rate of stimulation increases; an increasing fraction of the firing pattern is time-
locked to the presentation of stimuli.

It is interesting to examine the extent to which our random walk model can
duplicate such behavior. For this purpose one or more of the parameters in the
model might be made to vary with time. In physical terms we might picture the cor-
responding events at either a variation of the threshold or a variation of the relative
amount of incoming EPSP and IPSP. To investigate the latter possibility, we must
make the drift parameter ¢ at time-variant quantity. Unfortunately, the diffusion
equation with time-variant coefficients is not readily soluble; we have, therefore,
examined this problem with the aid of digital computers (TX-0 or TX-2) by
means of Monte Carlo methods.

Some recent intracellular measurements in the inferior colliculus (Nelson and
Erulkar, 1960; and Erulkar, 1962) have suggested that immediately after the
presentation of a discrete auditory stimulus, the membrane potential of many
neurons goes through a short period of depolarization, followed by a longer period
of hyperpolarization. These measurements can be interpreted in terms of a short
excess of incoming EPSP followed by a longer lasting excess of incoming IPSP. To
incorporate such data into the model, we let the drift parameter ¢ assume a similar
time pattern, as shown in the right-hand side of Fig. 9. One such pattern follows
each “stimulus”; at sufficiently high rates of stimulus the pattern will begin to over-
lay so that there may cease to be a time during which the drift parameter is at the
value that corresponds to that of the “spontaneous” condition.

The left-hand half of Fig. 9 shows interval histograms from our random walk
model with periodic time variation of the drift parameter. The particular values
chosen are not critical; a fairly wide choice of time pattern will produce almost
equally good agreement with the physiological data of Fig. 8. As might be expected,
it is areas in the drift pattern which are the significant variable (that is, strength of
drift X duration).

We have not specifically investigated other possible ways of making our model
time-variant. The drift variations that we discussed above seem to be physiologically
quite reasonable,

DEFECTS OF THE RANDOM WALK MODEL
Although the model that we have described does seem to fit a wide variety of
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neurophysiological observations, there are a number of obvious defects in its formu-
lation and also in its predictions. By examining these limitations, we shall be able to
point out several possible ways in which this type of model may be extended.

(@) We have attempted to describe the electrical state of the entire neuron mem-
brane by a single number that locates the state point. This is a gross oversimplifica-
tion that does not take into account the complex geometry of the neuron membrane
and the complicated distribution of synaptic knobs (Rall, 1962).

(b) We have assumed a particular set of rules for the random walk in our
model: the state point takes some standard size step in response to each incoming
elemental EPSP or IPSP, toward or away from the threshold, respectively. As
pointed out in the section on The Simple Random Walk Model, a certain narrow
range of alternate random walk rules leads essentially to the same results that we
have obtained. However, none of these mechanisms takes into account the experi-
mental evidence that the contribution of a single elemental IPSP to the electrical
state of the neuron membrane depends very strongly on the particular degree of
membrane polarization (Coombs, Eccles, and Fatt, 1955; Eccles, 1957).

(c¢) Each time that the state point in our model attains the threshold, we assume
that it returns to the resting potential and the random walk begins again. Thus suc-
cessive interspike intervals in the model are assumed to be independent. Unfor-
tunately, this is not always the case for a real neuron. For example, some correlation
between the durations of successive intervals, particularly when the intervals are
short, has been shown by Rodieck et al. (1962). (See also Kuffler et al. (1957).)

(d) No set of parameters in the basic model that we have described will produce
an exponential interval histogram.

MORE COMPLEX RANDOM WALK MODELS

The difficulties that we have just described could, in principle, be met by various
modifications of the basic random walk model. We shall examine the effects of
several different types of structural changes.

A first modification of the basic random walk model is suggested by the known
geometric complexity of synapses and of the somatodendritic membrane. Instead of
trying to describe the electrical state of these structures by a single number, let
us assume that several numbers are needed. Thus we might hope to allow the state
to vary over the surface of the neuron.

The random walk will now take place in the same number of dimensions as the
number of quantities chosen to describe the location of the state point. We might
postulate that such a multidimensional walk be along some set of orthogonal direc-
tions, so that the state point can move from point to point in some multidimen-
sional lattice. The simple absorber that we have associated with a threshold now
must be taken to be some surface that bounds the region of the lattice in which
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the state point is allowed to move. As before, whenever the state point reaches the
absorber, the model produces an action potential, and the state point is reset to its
resting location,

In this guise, it is clear that the particular choice of absorbing surface exerts a
profound effect on the behavior of the model. For example, consider the absorb-
ing surface to be some array of the orthogonal coordinate planes. Then, in effect,
the model will behave as if several competing but independent one-dimensional
random walks are proceeding simultaneously; the one-dimensional walk that first
reaches its absorber plane would produce the action potential and reset the state
point. In physiological terms this type of model might correspond to a neuron that
has two (or more) functionally independent trigger zones or dendritic trees, each
of which can, when properly depolarized, initiate the spike discharge.

A concrete example of this type of model is the following: consider a two-
dimensional random walk along Cartesian coordinates which is restricted to a
single quadrant by choosing the absorbing boundary on the x axis and y axis.
If we assume that the resting position of the state point is at xo = y, and that there
is no drift, then the density of first passage times takes the form:

I(7) = 7 %x07™%* exp (—xo°/47)®(xo/27?) (1)
where

e du.

() = \/—

The corresponding result obtained by simulating this two-dimensional random
walk on a computer is shown in Fig. 10. Qualitatively, at least, this form of the
model produces an interval distribution that is similar to that produced by the
simple one-dimensional model: the tail of the interval histogram falls off more
slowly than would an exponential. Thus, little is gained by increasing the complexity
of the model in this way.

A quite different situation is obtained if we choose the absorbing boundary so
that it is a more complex function of the coordinates. In such a case the several
simultaneous one-dimensional random walks along the orthogonal coordinates
will interact. The position of the state point along one coordinate will modify the
effective boundary conditions of the random walks along the other coordinates.
In physiological terms, this situation might represent a neuron with several in-
teracting trigger zones, or perhaps with several interacting dendritic trees.

We have investigated two random walk models that exhibit this type of interac-
tion: (a) a two-dimensional random walk inside a circular absorbing boundary,
and (b) a three-dimensional random walk inside a spherical absorbing boundary.
Each of these problems can, of course, be analytically solved by standard methods.
However, the resulting solutions are in the form of series, and are extremely un-
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wieldy for our purposes. Thus, for example the three-dimensional walk spherical
boundary yields a probability density of first passage times

1= L] 55 ent Do e {2t Da= T}

4“'7'3 A=—0

where the resting position of the state point is at radius b and the absorbing
boundary at radius a. We assume there is no drift, and set the diffusion constant
equal to 1. Clearly, the form of equation (12) is not conducive to a study of the
tail of the density, nor of how it behaves in the convolution process of equation
(5).

Again we have turned to Monte Carlo methods and have obtained the required
probability density of intervals from the TX-2 digital computer. Under these cir-
cumstances it was also possible to study the effects of drift, which was arbitrarily
chosen along one of the Cartesian axes.

Results from these particular two- and three-dimensional models are shown in
Figs. 11 and 12. The tails of these probability densities fall off exponentially (or
perhaps even somewhat more rapidly). As in all other cases that we examined, a
drift parameter can be used to adjust the general slope of the density’s tail. The
behavior of both probability densities under the convolution of the scaling
process is approximately stable, that is, qualitatively similar to that shown in
Fig. 4 for the one-dimensional random walk with drift.

Interesting results can be obtained from a fundamentally different type of two-
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dimensional model that is specified by the following rules: We allow the state
point to perform two independent random walks. However, the model will give
rise to a firing only after both random walks have reached threshold value; both
coordinate numbers of the state point then return to their resting values. (One
returns from threshold, the other from some random value after having attained
the threshold.) Since the two walks are independent, the probability that the
interspike interval is longer than  will be equal to the product of the probabilities
that the two random walks reach the threshold values after a time longer than .
For large =
Pr(min-(v', 7'") > 1) ~ [+7°] = 7.

This probability distribution function exhibits the precise invariance property—
with a weighting factor k—!—that is required by the experimental data of Unit
240-1. On the other hand, this model is less convincing from a physiological
viewpoint and depends critically upon formulation in two dimensions.

In the course of this investigation we tried a number of other modifications of
the basic random walk model. In particular, we have examined the one-dimen-
sional case in which the size of the step toward threshold is a constant, while
the size of the step away from threshold is a function of the location of the state
point. This model results in a density of interspike intervals with an exponential
tail, but which differs qualitatively from a Poisson-like distribution. We have also
examined a one-dimensional model in which the drift contains a term propor-
tional to the distance of the state point from some point z; on the z axis. (Math-
ematically, this model is reminiscent of the Brownian motion of an elastically
bound particle.) Again, this more complicated model yields a density of inter-
spike intervals with an exponential tail.

We have not tried a model with explicit correlation between successive random
walks which corresponds to the experimentally observed correlation between
successive interspike intervals. This could be done, for example, by letting the
threshold value take some physiologically reasonable time course after the produc-
tion of each spike. We should point out that the concept of absolutely refractory
time is built into all the random walk models that we have described, since the state
point cannot reach threshold in less than z, units of time.

STABLE DISTRIBUTIONS

Properties

In this section we shall examine briefly the general properties and peculiarities of

stable distributions. (See Lévy, 1940; and Gnedenko and Kolmogorov, 1954.)
We limit ourselves to the k-fold summation of identically distributed variables (as

in scaled interval histograms, for example). Distributions that are invariant to
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within scale under this type of transformation are called stable and are defined
through a relation of the form

JC)*(x) = f(4x + B)
where 4 and B are constants.

This process may be iterated to give the demred k-fold summation; in this case
A and B can be functions of k only.

We pointed out in the section on The Simple Random Walk Model that for the
Gaussian distribution 4(k) = k—1/2 and for the stable distribution of order 1/2,
A (k) = k—2. Also, it is known that the Cauchy law yields 4 (k) = k—1.

In general, stable density functions have thus far only been specified in terms of
a Fourier characteristic function that involves four parameters. Three of the parame-
ters are measures of “location,” “scale,” and “skewness” and “peakedness” that
replace the usual measures based upon moments. The fourth parameter, usually
called «, is limited to 0 < « < 2. The value « = 2 corresponds to the Gaussian dis-
tribution; « = 1, to the Cauchy distribution, and « = 1/2, to the stable distribution
of order 1/2.

The form of the characteristic function precludes inversion into densities of
closed analytic form for any values of « but the three examples given. Numerical
methods may, of course, be used to obtain the stable distributions for any other
values of a.

An interesting theorem may be proved about the moments of a stable distribution
function (Gnedenko and Kolmogoroff, 1954, p. 182). A stable distribution with
characteristic exponent « (0<a<2) has finite absolute moments only of order
8(0<8<e). (Note that the first inequality circumvents the Gaussian case.) Thus,
while the Gaussian distribution has first, second, (and all higher) moments, the
Cauchy distribution and the stable distributions of order 1/2 do not even have a
first moment.

These intuitively unpleasant ideas are illustrated in Fig. 13, in which for a random
walk process we have plotted sample means as a function of sample length. The
non-convergent quality of these measurements is apparent.®

A Phenomenological Model

During another investigation, several of the stable densities of non-analytic form
were computed numerically (Mandelbrot and Zarnfaller, 1961). In order to avoid

8 Direct simulation of the random walk model must be carried out with an upper limit for the
duration of the walk, because of computer time limitations. Under these conditions, even with-
out drift (¢ = 0), the sample mean and sample variance of the first passage times do converge
fairly rapidly. In order to avoid this practical difficulty the values used to produce Fig. 13 were
obtained in the following way: Uniformly distributed random numbers between zero and one
were chosen, and the corresponding values 7¢ were read from the known probability distribu-
tion function.
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a heavy investment in mathematical notation, we shall only mention here that one
.of these stable densities, a skew form of the Cauchy law, has essentially the same
invariance property as that found for the density of interspike intervals of Unit 240-1.
‘The invariance property holds with the desired constants only for small m, just as in
the data of Unit 240-1; asymptotically the density decreases as r—2 (just as the
Cauchy law itself).

In spite of close agreement with certain mathematical properties of the data, this
-phenomenological model for the spike activity of the neuron is intrinsically unsatis-
factory. We know of no mechanism that would generate this stable probability
density; hence this “model” can provide, at best, a mathematical shorthand for the
data.

CONCLUSION

In this paper we have presented a series of random walk models for the spike activity
-of a single neuron. More generally, in making use of stable distributions, we have
introduced a type of statistics into electrophysiology which offers a new interpreta-
tion of the striking “irregularity” of electrical activity in the nervous system. Usually
such “irregular” phenomena have been explained in terms of some well behaved
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process whose properties happen to vary in time; such an explanation requires
many more parameters for a description in terms of the usual statistical measures.
In contrast, the irregularity is a fundamental property of a variable that is de-
scribed by a stable distribution; there is no need to invoke properties that vary
in time. We have pointed out that all stable variables (except the Gaussian)
lack a second moment and many lack even the first moment. We have shown in
computing sample mean or sample variances for a stable variable, that the major
portion of the calculated quantity can be contributed by a very few data points.
Thus, in contradiction to our intuitive feelings, increasing the length of available
data for such processes does not reduce the irregularity and does not make the
sample mean or sample variance converge.

The general properties of stable distribution functions would seem to make
these functions useful statistical tools in neurophysiology. However, it is clear
that our measurements and data are not enough to suggest unique models. A
more detailed study of the applicability of the stable distributions must await
more critical and restrictive types of measurements on neurophysiological data.
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