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ABSTRACT The necessary and sufficient conditions for a particular compartment
in an n-compartment system, under certain initial conditions, to be described by
two exponential terms have been given by Mann and Gurpide (1969). These con-
ditions are here derived in matrix-vector form, by an essentially algebraic process,
under more general initial conditions. The existence of a certain constant is required
by the Mann-Gurpide conditions. It is shown that that constant must be one of the
real roots of a given matrix. Under certain restrictions, that constant is the unique
largest real root of that matrix. Certain obvious sufficient conditions for the Mann-
Gurpide conditions to hold are shown to be necessary in the case of symmetrizable
systems.

INTRODUCTION

The conditions under which one or more compartments in an n-compartment system
can be described by fewer than n exponentials are of some interest. A general study
is complicated by the roles of structural features and conditional features which de-
termine the phenomenon of lumping. For example when the matrix of the system is
diagonable, a repeated root leads to lumping under all initial conditions (Hearon,
1963). On the other hand certain properties of connectivity or structure of the system
lead to lumping under particular, but not arbitrary, initial conditions. Finally, if the
initial vector of the system lies in a properly chosen subspace, lumping occurs re-
gardless of structure or connectivity (Hearon, 1963).
For these reasons special examples of lumping, especially when the conditions are

both necessary and sufficient, are of interest for the insight which they may afford
into the general problem. In a recent paper Mann and Gurpide (1969) gave neces-
sary and sufficient conditions for a particular compartment in an n-compartment
system, under certain initial conditions, to be described by two exponentials. It is
one purpose of this paper to derive the Mann-Gurpide conditions more directly
under more general initial conditions. The conditions are obtained directly in a form
which facilitates the further deductions and the discussion of special cases which are
also given here.

PRELIMINARIES AND NOTATION

We consider a first-order differential system with matrix of real, constant coefficients. Most
of the results which follow require no further assumptions, others require restrictions on the
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matrix appropriate to a compartmental matrix. Let the system be

f= Kf, (1)

where f is an n-dimensional column vector, j = df/dt, and K = [kis] is an n-square constant
matrix. For any column vector v we denote the transpose of v by v*. Partition f into fi and
the vector x, where x* = [f2 , f3X, f. ], and partition K as follows:

K.a r*

where a = kl , the row vector r* = [k12, k13, ** , kln,] c* = [k2I, k31, *.* ,knl,] and A is
the submatrix obtained from K by deleting the first row and column. We further define the
scalar y = r*x. Then equation 1 reads

f1= afi+ y (2)

x = fic + Ax (3)

and further, it follows from equation 3 that

-= (r*c)f1 + r*Ax. (4)

Finally we consider the initial conditions

fi(O) =fi0

x(O) = kc, (5)

where fi° and k are arbitrary constants. The conditions of equations 5 with k = 0 are the
initial conditions of Mann and Gurpide.
We say a function is two exponential (2-exp) if it is a linear combination of either exp

(X1t) and exp (X2t), XI # X2, or of exp (Xt) and t exp (Xt). We begin with a lemma first proved
by Mann and Gurpide (1969).

Lemma 1

fi is 2-exp if and only if there exist constants a and (3 such that

Jtl= af1+ y

O=fi+ay. (6)
Proof. We observe that the first equation of equations 6 is just equation 2 and is

always satisfied. It is obvious that if equation 6 holds, then fi is 2-exp. Conversely, assume fi
to be 2-exp, say exp(X1t) and exp (X2t), X1 # X2. To produce a and P such that equations 6
hold, we have only to require that they be such that X1 and X2 are the roots of the matrix of
equations 6. We have at once a + a = XI + X2 and aa - (3 = X1X2, which determine a and
3. Now suppose that fi consists of exp (Xt) and t exp (Xt). We now require a and (3 such
that X is a double root of the matrix of equations 6. Thus a + a = 2X and aa - (3 = X2.
This completes the proof.
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In the event that k = 0, the above case of the repeated root is of scant interest for real
compartmental systems. For in this case we cannot have fi be 2-exp and y be nonnegative.
To see this, supposefi = (Pl + p2t) exp (Xt). Then from the initial conditions we have pi = fi°
and from the initial value of)j we have P2 = (a - i° = (a -X)pi . Substitution of the
assumed form offi into the first equation of equations 6 gives y = (X - a)p2t exp (Xt), which
results from the fact thatp2 + (X - a)pl = 0. Now 2X = a + a and X2 = act - deter-
mine , as , = -(X - a)2 . 0. A necessary condition for y 2 0 is that 3 2 0 (Hearon,
1963, and references therein). Thus we must have ,B = 0. But then X = a which results in
y(t) = 0, identically, and f' = fi° exp (Xt), which is not 2-exp.
We next give an alternative derivation of the Mann-Gurpide conditions.

THEOREM I

fi is 2-exp, under all initial conditions of the form of equations 5, if and only if there
exists an a such that r*(A -al)Ajc = 0 for every integerj > 0.

Necessity. Assume that fi is 2-exp. Then by lemma 1, there exist a and ,B
such that equations 6 are satisfied. But equation 4 is always satisfied and equating
equations 4 and 6 we have that

3fi + a(r*x) = (r*c)fi + r*Ax (7)

which holds identically in t for all initial conditions of the form of equations 5. In
particular equation 7 holds at t = 0 and we obtain

(, - r*c)fio = r*(A - I)ck. (8)
Sincef10 and k are independently variable and equation 8 must hold for all possible
sets of values fi0 and k, we must have # = r*c and r*(A - I)c = 0. Given that
-= r*c it follows from equation 7 that r*(A - cvx = u*x = 0, identically in t,

where u* = r*(A - a). We now show by induction that for every integer k > 0 we
have u*Akx = 0, identically in t, and u*Akc = 0. To this end we assume that u*ABx =
0 for a given integer s and show that it follows that u*Asc = 0 and u*As+lx = 0.
Since we have just shown that u*A8x = 0 for s = 0, i.e. we have just proved that
u*x = 0, it follows that u*Akx = 0 and u*Akc = 0 for every integer k> 0. So assume
u*Asx = 0. Then u*A8x = 0 and from equation 3,

(u*Aec)fi + u*A"+lx = 0,

identically in t and for all conditions of the form of equations 5. But sincef10 and k
are independently variable, we must have u*A c = 0 and u*A8+lx = 0.

Sufficiency. Subject to equations 5, the solution of equation 3 is
t

x = eAtkc + | eAcf (t - 0) dO
°o tp t co op

=k E APc- + E APc -fi(t-O) dO, (9)
P0 pi p=0 pi
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from which it follows that

co p t co op
u*x = k (u*APc) + E (u Apc) ;-fi(t - 0) do.

P0o p! o-po p.

If u*Akc = 0 for k = 0, 1, 2, *.* , then we have u*x = 0, identically in t. But this
means that r*Ax - ar*x = ay and equation 4 reduces to the second equation of
equations 6 with ,B - r*c. It now follows from lemma 1 thatf, is 2-exp.
We observe that the above argument can be shortened by noting that any func-

tion ofA is a polynomial inA (Gantmacher, 1959 a). If u*Akc = 0 fork = 0, 1, 2, * - *,
then it follows at once that u* exp (At)c = u* f0 exp (AO)cf,(t - 0) do = 0 and hence
u*x = 0. We further note that if m is the degree of the minimum polynomial of A,
then any power of A can be written as a polynomial in A of degree at most m - 1.
Thus the condition of theorem 1 can be replaced by u*Akc = 0 for k = 0, 1, 2, ,
mr-1.

THEOREM II

Let r*(A -aI)Akc = 0 for some a and k = 0, 1, 2, .Then if r*c A 0, a is a root
of A.

Proof. Suppose that a is not a root of A. Then (A -aI)- exists and can
be written as a polynomial in A - a! which is obviously a polynomial in A. If
r*(A -a)Akc = 0 for k = 0, 1, 2, .* *, if follows that r*(A -o)p(A)c = 0 for
any polynomial p(A). If we choose p(A) = (A -a)-', we then have r*c = 0. Thus
if a is not a root of A, then r*c = 0 and the theorem is proved.
With some restrictions on A, the results in theorem II can be sharpened consider-

ably. However, we require a lemma preparatory to proving the next theorem.

Lemma 21

Let A be a real, square irreducible matrix with nonnegative off-diagonal elements.
Then there is a number b such that A + bI has a positive root s,b such that Al > |sxki,
where yk is any other root of A. Moreover, / = a, + b where ac exceeds the real
part of very other root of A.

Proof. Choose a b > 0 such that A + bI has nonnegative entries; (Any
b _ max IaiaI will do). Then A + bI is a nonnegative irreducible matrix. Let the roots
ofA be Xj = a, + i,6j, where i = .-\/ . The roots of A + bI are then ,aj = xi + b.
By a classical theorem (Gantmacher, 1959 b) A + bI has a real positive root ;Li such
that sl _> slkl, where yk is any other root of A + bI. Thus s1 = X1 + b is real and
hence X1 is real, i.e., X1 = a1 . It can be shown straightforwardly that oil > ak , where

1 In the language of nonnegative matrices (Gantmacher, 1959 b), the lemma states that if A meets the
conditions of the lemma, then there exists a b such that A + bI is primitive.
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ak is the real part of any root of A other than X1 (Hearon, 1963). Suppose that for
the value of b which we have chosen, equality holds in ui >.A,u4J for some k, say
k = 2. Then (cal + b)2 = (a2 + b)2 + 1322. But since a, > a2, it follows at once that
for any E> 0, (a, + b + e)2> (a2 + b + E)2 + 0322. Thus A + (b + e)I which has
roots /ALj = ,uj + e has a strictly dominant root A i > II./kI.

THEOREM III

Let r*(A - JAkc = Oforsomeaandk = 0, 1, 2, .If r*c #0 , r > OandA is
irreducible, then a is the maximum real root of A and exceeds the real part of every
other root of A.

Proof. Let C be a matrix with a strictly dominant root, i.e., a root which
strictly exceeds in modulus every other root. Then, given an arbitrary vector qo , there
are scale factors yi such that if qi, q2, *** are defined by Cqo = ylql, Cql =

'Y2q2, ***, then the sequence Cqi, i = 1, 2, *** converges to an eigenvector of C
associated with the dominant root (Wilkinson, 1965). By lemma 2 B = A + bI has
a strictly dominant root for some b. Therefore the sequence w1 = Bc, w2 = B2C/^y1,
W3 = B3c/lyl'Y2, * - * converges to an eigenvector z of B associated with the dominant
root. Since Bk is a polynomial in A, we have r*(A - aI)Bkc = 0 for k = 0, 1, 2, * * -

and the sequence r*(A - aI)Wk , where k = 1, 2, * - *, converges to r*(A - )z = 0.
But z satisfies Bz = (a, + b)z = (A + bl)z = Az + bz and thus Az = ai2, where, as
in lemma 2, cai + b is the dominant root ofB and ci > ak is the maximum real root
of A. From r*(A - aI)z = 0 and Az = alz we have r*z(al- a) = 0. But by a well-
known theorem, the elements of z are nonzero and all of the same sign (Gantmacher,
1959 b). Hence r*z # 0 and a = al , which completes the proof of the theorem.

It is worth noting that while the validity of theorem III obviously requires that
Bc $ 0, this can fail if and only if c is an eigenvector of A and -b is a root of A.
But we can always choose b such that this is not the case, even when c is an eigen-
vector of A. We must also rule out the trivial situation A - al = 0, which in fact
can occur in a mammillary system which meets the Mann-Gurpide conditions.
We say that a matrix G is symmetrizable if there exists a positive definite matrix

H such that GH is hermitian, i.e. M = GH = M*, where M* is the conjugate trans-
pose of M. We then say that G is symmetrizable by H.

THEOREM IV

Let K be symmetrizable by a diagonal matrix. Then if r*(A - IAkc = 0, for
k= 0, 1,2, ...,wehaveAc = acandA*r= ar.

Proof. If K is symmetrizable by H, then it is known (e.g. Hearon 1963,
1967) that there exists a positive definite T such that T-'KT is hermitian. According
to the partitioning we have used for the matrix K of equation 1, we partition T as
T = diag(t1l, V) where V is a real, (n - 1)-square, diagonal matrix. It is known
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(Hearon 1953, 1961) that t11 can be chosen arbitrarily and we take til = 1. This being
the case it is readily verified (see Hearon, 1961) that if T-KT is hermitian, we must
have V-'A V = S = S* and Vr = V-lc = v, where the last equality defines v. If
r*(A - aJ)Akc = 0 is written as (r*V) V-1(A-al) V(V-IAkV)(V-1c) = 0, we clearly
have r*V(S -a)SkV-lc = 0 and hence v*(S - aI)p(S)v = 0 for any polynomial
p(S). We choose p(S) = S - aI = S*- a (observe that a is real and S hermitian
by construction) and obtain v*(S - aI)(S* - J)v = 0. But this is the squared
length of the vector (S* - a)v and hence (S - aI)v = (S* - aIv = 0. From Sv =
av, the definition of S, and v = V-'c, we obtain at once Ac = ac. Similarly, from
S*v = av, the definition of S, and v = Vr, we obtain A*r = ar. The proof is com-
plete.

DISCUSSION

Lemma 1 and theorem I entail essentially no restrictions on the matrix K. While the
initial conditions of equations 5, which include those of Mann and Gurpide as a
particular case, are rather special, they appear to be the most general under which
theorem I will go through. It is a fact that equations 5 can be achieved under the
washout conditions (Hearon, 1968) in a mammillary system, but this is rather trivial
(see remarks following theorem III); and also under the washout conditions, with in-
put into the first compartment only, in any system such that c is an eigenvector of A
and A is nonsingular. For, from equation 3, the asymptotic vector x( oo) is given by2
x(oo) = -f1(oo)A-'c and if, for some X $ 0, Ac = Xc, then we have x( o) =
-f(oo)c/X which is a scalar multiple of c. The conditions of theorem I can be
written ar*Akc = r*Ak+lc and in this form, with due allowance for notation, we have
equations 5 of Mann and Gurpide. They can also be put in the form r*Akc =
ar*A k lc = a2r*A k-2c = . = akr*c
The condition r*c $ 0 in theorem II is actually no restriction at all. For, if r*c = 0,

then I8 = 0 in the second equation of equations 6 and since the initial condition on y is
y(O) = r*x(O) = kr*c = 0, it follows that y(t) 0_ andf1 is a single exponential. Thus in
any case of interest we are entitled to the conclusion of theorem II, which tells us that
if an a exists such that the conditions of theorem 1 are met, then a must be sought
among the real roots of A. With the additional restrictions that the elements of r be
nonnegative (a condition realized in any compartmental case) and that A be irre-
ducible, theorem III tells that a is precisely the maximum real root of A.

It is obvious that if either Ac = ac or r*A = ar*, the conditions of theorem I are
met. Theorem IV thus means that in the symmetrizable case, the conditions of theo-
rem I are met if and only if Ac = ac and r*A = ar*. A large class of compartmental
systems are symmetrizable. (Hearon, 1963) and certain linear systems of great
physical interest are symmetrizable (Kramer, 1959; Shuler, 1959).

' It can be shown (Hearon 1963; 1968) that for any actual compartmental case, -A-1 is a nonnegative
matrix and in such a case c is of course a nonnegative vector, and hence so is x(oo).
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As noted above, it is sufficient for the conditions of theorem I to hold, that either
c be an eigenvector ofA or that r* be a row eigenvector of A. In fact if either of these
situations obtains, it is clear without knowledge of theorem I thatf, is 2-exp. For, if
r*A = ar*, then equation 4 reduces at once to the second equation of equations 6
with f3 = r*c*. If Ac = ac, then exp (At)c = exp (at)c and equation 9 then reads

t

x = exp (at)kc + f exp [a(t - O)]cf1(O)dO.

From this it follows that x = fic + ax and hence that j = (r*c)fi + ay, which is the
second equation of equations 6 with ,B = r*c. We now show, by counter example,
that neither Ac = ac nor r*A = ar* is necessary forf1 to be 2-exp.
We consider K to be a compartmental matrix: the off-diagonal entries are non-

negative, the column sums are nonpositive, and the real part of each root is nonposi-
tive. Then every principal submatrix ofK will enjoy these properties. Let K be chosen
such that A is in the form

(A1 0
VB1 C}

where A1 and C are square and B1 # 0, and B1 > 0. Accordingly the vectors c and r
are partitioned as c* = (7Y1*, 72*) and r* = (P1*, P2*), where y1, Y2, Pi and p2 are
column vectors of appropriate dimensions. It is always possible3 to choose a as a
real root of A1 and 71 such that (A1- aI)7 = 0 and to choose C such that C-1 and
(C -aI)-l exist and - (C - aI)-l is nonnegative. Then we are clearly at liberty to
choose the nonnegative vector 72 to be 72 = - (C - 4a-1 (B1yI - q) where q is a
nonzero vector. Finally we choose P2 = 0 and P1 such that pi*(Ai - aI) 0 0, which
is possible since surely not every nonnegative vector is in the nullspace of A* - aL.
We then have

(A - a)c = (0) 0 (10)

as a direct result of (A1- aI)7y = 0 and B1y1 + (C - aI)72 = q. Further,

r*(A - al) = [pi*(Ai - aI), 0] 0 (11)

as a direct result of pi*(Ai -al) 0O and P2 = 0. Thus c is not an eigenvector of A
corresponding to the root a and r* is not a row eigenvector corresponding to the

8 Choose A1 to be irreducible. Then by lemma 2, there is a b such that Al + bl has a real root a, + b
where a1 is the maximum real root of Al . Further (Gantmacher 1959 b), there is a positive eigenvector
z such that (A1 + bl)z = (al + b)z and clearly Alz = aiz. Thus we choose a = a1 and -y = z. C
can be chosen nonsingular and such that the real parts of the roots of C are less than a. Then the
real parts of the roots of C - al are negative and (Hearon 1963; 1968) the matrix - (C -l)-
is nonnegative.
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root a. However, as we now show, it is true for every integer k . 0 that we have
r*(A - aI)Akc = 0. Straightforward multiplication will show that for every integer
k > 0, we have

Ak = B Ck (12)
where the character of Bk enters the ensuing argument in no way.4 From equations
12 and 10 it follows that

A (A - tI)c = (A - cI)kc = (sCq) F . ( 13)

But from equation 13 and r* = (pi*, 0) we plainly have r*(A - JAkc = 0.
Receivedfor publication I July 1969 and in revisedform 8 August 1969.
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