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ABSTRACT A simple neuronal model is assumed in which, after a refractory
period, excitatory and inhibitory exponentially decaying inputs of constant size
occur at random intervals and sum until a threshold is reached. The distribution
of time intervals between successive neuronal firings (interresponse time histo-
gram), the firing rate as a function of input frequency, the variability in the
time course of depolarization from trial to trial, and the strength-duration curve
are derived for this model. The predictions are compared with data from the
literature and good qualitative agreement is found. All parameters are experi-
mentally measurable and a direct test of the theory is possible with present
techniques. The assumptions of the model are relaxed and the effects of such
experimentally found phenomena as relative refractory and supernormal periods,
adaptation, potentiation, and rhythmic slow potentials are discussed. Implica-
tions for gross behavior studies are considered briefly.

A. INTRODUCTION

During the past fifteen years considerable progress has been made in understanding
the basis of the initiation and transmission of neuronal impulses in quantitative terms.
The theories (Hodgkin and Huxley, 1952; Katz, 1950; Eccles, 1957) have been
determinate; that is, a given applied voltage pattern or pattern of presynaptic
neuronal firings is assumed to determine the subsequent behavior of the neuron
exactly. Yet, one of the most striking observations in complex neuronal systems is
the variability in firing intervals when external stimuli are held constant. Indeed,
variable spontaneous activity often persists without any apparent external stimulus.
It is generally assumed that this variability results from the fact that neurons possess
large numbers of synapses and several types of inputs, so that excitatory impulses
occur effectively at random. It has been shown experimentally at cholinergic (Del
Castillo and Katz, 1954) and non-cholinergic neuromuscular junctions (Dudel and
Kuffler, 1961) and at some cholinergic (Blackman et al., 1963) and central
nervous system synapses (Katz and Miledi, 1963) that, in the absence of neural
inputs, excitatory quanta of transmitter are released at random and that the resulting
depolarization decays roughly exponentially. Similarly, the random, quantal nature
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of the photons falling on the retina has been found to account satisfactorily for the
variability in vision at low light intensities (see Bouman, 1961, for a review of the
evidence). Finally, excitatory and inhibitory presynaptic neuronal firings! have been
shown to produce individual depolarizations which sum and decay roughly ex-
ponentially (Eccles, 1957). Whether the many inputs of the central neuron can be
adequately described by assuming quantal effects at random intervals has not been
clearly demonstrated. Where there are strong rhythmic slow potentials, for example,
the assumption of random quantal excitation and inhibition is probably not valid.

The purpose of this paper is to consider what is known about the basis of neuronal
activity and use this knowledge to derive certain quantitative, experimentally testable
predictions about neuronal behavior under natural conditions. Initially, a simplified
determinate model is assumed, together with the assumption that excitatory impulses
of unit size do occur at random intervals. Several important properties of this model
are derived. Similar calculations are then made for a more general model involving
inhibitory as well as excitatory pulses. In the last section, the assumption of random-
ness will be relaxed and still more refined neuronal models will be considered. The
reason for proceeding by stages is analytic. Even with the simpler model, the general
form of such quantities as the interresponse time distribution is exceedingly com-
plex. Special cases that yield exact quantitative predictions are therefore treated
first, followed by a discussion of more general cases.

All parameters used are experimentally measurable quantities, and the predictions
are thus directly testable. Despite the many interresponse time distributions in the
recent literature, there are none known to the present author in which all the neces-
sary parameters have been measured independently of the distribution and as a
result, an exact experimental check cannot yet be made. The distributions con-
sidered are, however, compatible with the theoretical predictions. The complexity
of the model necessary to fit any particular distribution must await better experi-
mental data and will no doubt vary from case to case. The analysis should be of
more general interest and where other specific assumptions are needed, methods
similar to those used here can be applied.

One value of a deductive approach, such as outlined here, is that all constants are
measurable quantities. The complexity of an adequate model for a neuron in vivo is
thus open to direct verification in a particular situation. Conversely, an inductive
method with sufficient free parameters is not open to experimental verification or
rejection, since almost any curve can be fitted by variation of the parameters.

1 In this paper “firing” refers to an all-or-none neuronal action potential. The terms excitatory
(or inhibitory) impulses, and quantal excitation (or inhibition) refer to single intracellular re-
sponses to external stimuli which sum and decay with time until an action potential occurs.
These terms are used in preference to the more common terms, excitatory postsynaptic potential
(EPSP) and inhibitory postsynaptic potential (IPSP) which may indicate the summed response
from many presynaptic neuronal firings and which do not generally refer to processes occurring
in first order neurons or muscle end plates.
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B. THEORY AND PREDICTIONS

The following model is assumed.

1. Excitatory impulses occur randomly with a frequency p./sec.

2. After each neuronal firing there is a refractory period of duration, 7,
during which the impulses have no effect and the membrane depolarization,? V3, is
reset to zero. '

3. Attimes ¢ > ¢,, each impulse produces unit depolarization.

4. If the depolarization reaches a threshold of r units, the neuron fires.

5. For subthreshold levels, the depolarization decays exponentially between
impulses with time constant 7.

There are several phenomena which are not taken into account by this model;
such as the relative refractory period, the supernormal period, post-tetanic potentia-
tion, pre- and postsynaptic inhibition, as well as the refinements of cable theory
(Hodgkin and Rushton, 1946), and Hodgkin-Huxley theory. Each assumption will
be considered later in the light of these phenomena and the effects of these refine-
ments on the present calculations will be discussed.

(a) The Distribution of Neuronal Firing Intervals. A general expression
for the expected interresponse time distribution for the model is not known, though
a partial differential equation for the distribution will be derived later. The difficulty
in calculating the distribution lies in assumption 5, that the depolarization decays
exponentially between excitatory impulses. If the decay is negligible, the distribution
can be derived exactly. The situation of negligible decay, where in our notation
per > r will be treated as a first approximation. The limiting cases for the inter-
response time distribution can then be derived immediately. If » < 1 each impulse
causes a neuronal firing. The assumption of randomness implies that excitatory
impulses and hence neuronal firings are exponentially distributed. For r > 1 the
distribution approaches a normal distribution according to the central limit theorem
of mathematics. For all r, the exact form is the well known gamma distribution?
given in our notation by equation (1).%

2 Assumption 2 determines the zero point of V. Assumption 3 determines the unit of measur-
ing V.

8 The gamma distribution can be seen to be the product of two simpler factors as follows. If
there are p, impulses/sec., the probability that there will be an impulse in a short time, 4, is
simply p. dt. The probability of exactly » — 1 impulses in a time interval £ — ¢, (¢ > #,) is
given by the Poisson distribution with parameters p., ¢ — %, and r — 1, namely f(¢) = [p.(t —
2,)1"~* exp [—pe(t — 1)1/ (r — 1)!. The probability that the r** impulse will occur between
times ¢ and ¢ 4 dt, namely f(¢) dt, is the product of these two and is seen to agree with equation
(1) above. For further properties of the distribution, consult a probability text such as Fisz
(1963).

¢ Strictly speaking the quantity 7 — integral part of » 4 1 should be used in equation (1), if
non-integral thresholds are allowed. If, for example, » = 2.8 units, at least ¥ = 3 impulses are
required to surpass threshold.
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f)=0 1< ¢t
1) =2/t — )" exp[—p(t —t)] Lt>t
r— 1 ‘ (6]

The cumulative gamma distribution F(¢) = f,*f(¢) dt has been tabled extensively
by Pearson (1922).

For ease of visual inspection, interresponse time distributions in this article are plotted
on cumulative probability paper. On this paper the two ends are spread out so that a
cumulative normal curve plots as a straight line. Various gamma distributions are
plotted in Fig. 1 in units of their standard deviations. Each is a smooth gentle curve on
this paper and the amount of curvature is inversely related to the value of r. Plotted in this
way, deviations are readily visible as “bends” or inflections in the graph.

For cases other than negligible decay, the distribution was derived by computer
simulation.

The computation was done as follows. Random numbers over the interval 0 < x < 1
were selected. The negative logarithm was then taken to produce a random exponential
distribution of intervals. For each interval a unit depolarization was added after calculat-
ing the decay since the last impulse. The depolarization level was compared to threshold
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FiGURE 1 Gamma distributions. Distributions for various values of parameter r are
plotted on cumulative probability paper for comparison with simulated distributions. A
cumulative normal (r —> c0) would give a straight line on this paper.
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and the process continued until “firing.” 500 firings were computed in this way for each
value of p, and r used. The mean, variance, and cumulative distribution were then printed
out by the computer. Values of threshold (r) between 2 and 20 and values of impulse
frequency (p,) between 0.3 and 30 were used. The decay constant (7) was set equal
to 1 and the refractory period (¢,) equal to zero in the simulation.

For all values of parameters p, and r, a gamma distribution such as that given in
equation (1) could be used to fit the simulated distributions,® through with p,r ~ r
systematic deviations were noted at early times when r was fairly large. Sample dis-
tributions are given in Fig. 2 together with a good fitting gamma distribution. The
parameters which yielded the best fit, p/, 7, and ¢/, were often quite different from
the neuronal parameters p, and r used, but varied in a systematic way as shown in
Fig. 3. In this figure the standard deviations of some simulated distributions are
plotted as a function of the mean. The slope gives an estimate of (")—/2 since for
gamma distributions with a given 7./, ¥ = [(u: —t,") /a:]%.8

The reason for these results may be clarified by an example. Assume threshold is
2.8 units. If p,r > 2.8, it will take just three excitatory impulses to surpass threshold
and the distribution of times is given by a gamma distribution with parameters
Y =F = 3 and p/ = p,, as previously explained. As p, decreases, decay enters in and
sometimes 4 quanta are required or 5; then, the best fitting gamma curve has 7 > 3.
Eventually as many more quantal numbers enter in, the conditional probability of
firing approaches a constant for all times after an initial period #,” in which few firings
occur, though the average depolarization increases. The distribution is then an ex-
ponential (a gamma distribution with 7 = 1) beginning after ¢,”. One would not
expect ¢,/ to be sharply defined and hence an initial deviation would be predicted
at very early times from responses occurring before ¢,’.

These last conclusions can be derived more analytically. It will be shown later
that in the absence of neuronal firings, the average time course of the depolarization
level for this model denoted by u, is simply

B = ()1 — ") ' (2
The variance in level o,2 is glven by
= (p.7/2)(1 — &™) 3)

If psr < r the average level is always less than threshold and approaches a con-
stant, as does the variability. “Selecting out” those neurons that reach a level r in
each interval will affect these equations, but, particularly where neuronal firings are

8 It is important to note that many classes of curves cannot be fitted by a gamma distribution.
These include all negatively skewed curves, any reasonably flat curve (approaching a rectangular
distribution), sharply peaked distributions (such as the Laplace distribution), or multipeaked
distributions.

6 The subscript ¢ used with u: and o;* indicates that these are the mean and variance in time
to neuronal firing.
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FiGURE 2 Computer simulated interresponse time distributions. The neuronal model
is described in the test. Data are plotted on cumulative probability paper. Ordinate:
cumulative probability of firing. Abscissa: time in units of the standard deviation. The
solid line is a good fitting gamma distribution with the parameters p’, 7, and ¢,’ indi-
cated near each curve. r and p, refer to the neuronal parameters used in the simulation.
A refractory period was not used (£, = 0). O and [] refer to different simulations of
500 firings each.
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FIGURE 3 Standard deviation of simulated distributions as a function of the mean.
Explanation in text. The solid lines in the main figure and in the inset are lines of unit
slope passing through the origin. The inset at the lower right gives values for high
firing rates (short mean times). Each point was calculated from a simulation of at least
500 firings. Time is measured in units of the time constant of depolarizing impulses
(7). Different symbols indicate different values of threshold (r) as given in the upper
left-hand corner.

rare, the selections cannot reintroduce a time dependency. Thus, after a few time
constants, the conditional probability of neuronal firing is constant and the distribu-
tion is exponential. Apparent refractory periods (#,”) obtained by finding the best
fitting gamma distribution may exceed the neuronal refractory period by a couple of
time constants (7). The exact distribution can, of course, be predicted by computer
simulation with the neuronal parameters r, p., and #,.

(b) Neuronal Firing Rate as a Function of Stimulus Intensity. In the
limit of negligible decay where the gamma distribution with parameters p,, r, and %,
provides a suitable fit, the neuronal firing rate as a function of the excitatory impulse
rate (p,) can be simply obtained. The mean, u., and variance, o:?, of the gamma dis-
tribution of equation (1) are known and are simply

B = r/po + to 6‘2 = r/po2 (4)

The inverse of the mean gives the frequency of neuronal firings which will be
denoted by c.

a = 1/, = (0./1)/(1 + t.p./r)  (assumes p,7>>r) (5

This x/1 + x form is known as a simple or rectangular hyperbolic function. It
reduces to a straight line & = p,/r for p./r < 1/t,, that is, for most of the physiologi-
cal range. In order to get « as a function of stimulus intensity, we must assume some
relation between rate of excitatory impulses p, and intensity I. If p, = a + bI where
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a represents the non-specific inputs to the cell and b those depending (in this case
linearly) on intensity, then equation (6) follows:

a = (4 + BI/(1 + ¢,BI) ()
where
A = a/(r + at,) = spontaneous rate when I = 0
B=0b/(r+ at,)
1/t, = maximum firing rate as I —

However, the relationship between p, and I could be a power function, a loga-
rithmic relation, or a hyperbolic function and probably varies with sensory modality.
A closer approximation to the relationship between « and p, can be derived from
equation (2). We have considered two different means, the mean level of depolariza-
tion at a given time (u,) and the mean time to firing (u:). However, if the fractional
variability in the depolarization level is small, the mean time of neuronal firing
should occur at the time (after the refractory period ¢,) when the mean level reaches
r. Thus,

r= (p.7)[1 — exp (—(u: — 1.)/7)] ™
Rearranging and taking logarithms on both sides, we get
pe = —(7)[log (1 — r/p,7)] + 1, (8)

From equations (2), (3), and (7) it is seen that the fractional variability,
ot/ (e — t,), is proportional to r—* and thus decreases as r increases. In Fig. 4 the
simulated means are plotted against the right-hand side of equation (8) (a refrac-
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FIGURE 4 Mean times to firing for simulated distributions. The straight line (on a
semilog plot) is the approximate result given by equation (8), u = —r log (1 — r/p.r)
+ t.. In the simulated distributions £, = 0 and » = 1. Different symbols indicate
different values of threshold (r) as given in the lower left-hand corner. Note that as
threshold increases the validity of the approximation improves.
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tory period was not used in the simulation) and it is seen that the agreement is good
down to p, 7 = 1.5r, even for r = 2. The frequency of firing « is thus given by

a=1/p = + Tog [p.r/(p‘lr oy (assumes p,r > 1.5r) 9)

Again the relationship between p, and I must be known to relate the frequency of
firing to the stimulus intensity.

(¢) Strength-Duration Curves. If a current is used to produce depolariza-
tion, the excitatory quantum may be as small as an ion. r would then be enormous
and p, proportional to the current i. Equation (7) would then hold exactly (if cur-
rent is applied at discrete intervals to a resting neuron, there is no refractory period)
and equation (10) for the time to firing results.

i,Ji=1—exp(—t/7); to=kr/r; t=np —t, (10)

Equation (10) is the strength-duration curve already considered at the turn of the
century by Lapicque (1907). Here it is seen as a special case derived from the more
general equation (2).

(d) Inhibitory Quanta. Up to this point we have considered a purely
excitatory model and one in which the size of the depolarizing impulse was inde-
pendent of the depolarization level. However, for many neurons, inhibition plays a
very important role. Furthermore, the size of the potential change resulting from an
impulse is a function of the potential difference between the equilibrium potential
for the impulse and the membrane potential, V;. For excitatory impulses the equilib-
rium potential is typically five to ten times greater than the threshold depolarization
so the assumption of constant-size impulses is a good one. However, for inhibitory
impulses the equilibrium potential may be higher or lower than the resting potential
and the size of an inhibitory impulse will not be constant. Finally, with an equilib-
rium potential above the resting potential, the excitation level (as measured by the
number of excitatory quanta necessary for neuronal firing) may not be simply
related to the depolarization, since inhibition in these cases results from very large
permeability changes which tend to “clamp” the membrane at the equilibrium
potential for inhibition (Eccles, 1964). -

In the present paper we shall deal mainly with the special case of random in-
hibitory impulses of constant size, though the more general case with equilibrium
potentials will be considered briefly. To include inhibition in the model we shall
have to modify assumptions 1 and 3 specified on p. 175 to read:

(1”) Excitatory and inhibitory impulses occur randomly with a frequency
Pe/sec. and p,/sec. respectively.

(3’) At times ¢ > ¢,, an excitatory impulse produces unit depolarization
while an inhibitory impulse produces « units repolarization.

We first examine the distribution of depolarization as a function of time, neglecting
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neuronal firing (r — «). Let V; equal the depolarization at time ¢ and let F(v, )
equal the probability that ¥; < v at time ¢. From assumption 5 (exponential decay of
depolarization for subthreshold values) we have immediately

dv,/dt = — V./7 (11)

except for random points of discontinuity when impulses occur. Assumption (3’)
above implies that for a short time interval §¢, the probability of an excitatory
impulse occurring is p, 8¢ and the probability of an inhibitory impulse is p; 8¢. The
change of F (v, t) with time is given by

F(, t + 81) — Flv, ) = [1 — (p. + p.)8f][F(v + &v, £) — Fo, 1)]

— p.M[Fv, ) — Fo — 1, 0] + p:6t[Fo + u, t) — Fo, )]  (12)

where from equation (11) v = (v/7) 8.

The first term on the right accounts for the increase in F(v, ¢) from the decay
of the potential during the time 8¢ in some trials from just greater than v to v or less,
providing no impulse occurs. The second term accounts for the decrease in F(v, t)
from quantal excitation of units between » — 1 and v while the third term accounts
for the increase in F(v, t) from quantal inhibition of units between v and v + u.

Dividing equation (12) by 8 and taking the limit as 8 — 0, we obtain”

dF({v, t)/0t = (v/7)0F(v, t)/0v — p[F(v,t) — Flv — 1, 1]
+ p,[F(U + u, t) - F(D9 t)] (13)

This equation can be transformed to obtain the characteristic function of the dis-
tribution, defined by

ce.n=[ " exp (ivs) dF(v, 1) (14)

where i = (—1)%. From the properties of these transforms, it follows that
aC(s, 1)/0t + (s/1)IC(s, 1)/3s = —p.C(s, D1 — "] — piC(s, D[1 — €™

This linear partial differential equation can be rewritten in terms of two ordinary
linear differential equations (Piaggio, 1958, chapter 12) and solved by standard
methods. Making use of the boundary condition C(s, #,) = 1 we obtain the fol-
lowing:

7 It is interesting to note that if we reintroduce a threshold r and assume that once ¥ surpasses r,
it remains at the value r + dr for all subsequent time (in the terminology of Markov chains,
r -+ dr is an absorbing state) then 1—F (r, t) is the cumulative probability of neuronal firing
up to time 7. We then have an equation identical with equation (13) for — o < v < r with
the boundary condition 8F(r, t)/8t = p. [F(r, t) — F(r — 1, t)]. However, this equation cannot
be transformed completely to obtain a solution by use of a transformation analogous to equation
(14).
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tog (s, 1) = 7 [ [—pt = €)/x = pu(1 — &*)/x] ix

se—(t—te) /7
Expanding the right-hand side in powers of x, integrating and evaluating at the
limits, we get equation (15).

log C(s, 1) = g; (i)'t — exp [(—=k/D(t — t)D@.r + pir(—w)") (15

The n** derivative of log C(s, ) with respect to (is) evaluated at s = O gives the
n' cumulant of the original distribution. The first two cumulants are simply the mean
and the variance of the distribution of depolarizations as a function of time. Hence

e = 7(p, — up)[1 — exp (—(t — t,)/7)] (16)
0.” = (7/2)(p. + w'p)[1 — exp (—=2/7)(t — )] (17

For the case p;, = 0, these equations reduce to equations (2) and (3) which
were previously discussed at some length. Three important facts follow from equa-
tions (15) through (17).

1. The mean level, the variance in level and the other moments approach a steady
state in all cases.® Hence the distribution of depolarization levels becomes time-
independent and for weak excitation (where the mean level is always below. the
firing level) or predominant inhibition (up; > p.) the conditional probability of
neuronal firing is constant after several time constants (7). Hence the tail of the
interresponse time distribution will be an exponential.

2. Since the interresponse time distributions have an exponential tail at times
greater than a few time constants, the mean (u:), variance (o:?), and other moments
of this distribution exist and are stable. Gerstein and Mandelbrot (1964) in a recent
article claimed from calculations made using a random walk model that the inter-
response time distribution might have no moments whatever. The discrepancy
between these two predictions results from the fact that the random walk model they
used neglected the decay of excitation or inhibition. It is precisely this decay that
accounts for the stability at long times and the existence of moments which are
particularly sensitive to responses occurring at long times.

3. From equations (16) and (17) it is seen that the variance in depolarization
level increases with a time course twice as fast as that of the mean. (Higher moments
increase still faster.) Hence with predominant inhibition, where the mean level
decreases to a steady state less than zero, the variation about the mean increases
more rapidly and the conditional probability of firing may increase to a fairly sub-

8 Calculations have been made for the case in which inhibitory and excitatory potentials E¢ and
E, are defined and the sizes of the excitatory and inhibitory impulses are assumed proportional
to the difference between the membrane depolarization and the equilibrium potentials. Here a
steady state also exists in which all moments are defined and calculable, though the approach to
this steady state is no longer exponential.
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stantial value before declining to a constant value. The resulting distribution has a
sharp peak, followed initially by a period of faster than exponential decay which
gradually becames more and more exponential at long times.

As our final example, we consider the limit of high firing rates where negligible
decay of depolarization occurs before firing. We shall also assume that the effects of
excitation and inhibition are equal and opposite. Then, the generating function and
moments of the interresponse time distribution can be calculated by standard
methods® (Bailey, 1964). The mean is given by:

Be = P'.‘ "_' :e + (p. f‘ P;)z [(2s/p)" — (9:/P.)°] D # D, (18)
_r—ar+a-—1)

2p. Di = Ds

where a is the initial depolarization and the other symbols are as previously defined.
(A refractory period ¢, could be added if required.) By inversion it is seen that the
frequency of firing « is given by
(2. — p))’
(p. — P.')(' - a) + Po’[(Pe/ P-)' - (Pi/ Pa)a]
If excitation is predominant (p, >> p;), then the firing rate is simply proportional
to the difference p, — p;.

p: # b, (19)

a =

a=(p, — p)/(r — a) (20)

With inhibition predominant (p; > p,) then the firing rate is a power function
of p,.

a = Pa(Pc/Pc)' (21)

C. COMPARISON OF PREDICTIONS WITH
THE LITERATURE

As was stated earlier, a proper experimental check is not yet possible since, in no
case known to the author, have all the appropriate parameters been measured inde-
pendently of the interresponse time distribution. In many, but not all of the prepara-
tions used, these measurements have not been technically possible. Nonetheless, the
general nature of the results can be analysed. This will now be done in reverse order
to that of the derivation of theoretical predictions.

(a) Strength-Duration Curves. Curves of the form of equation (10) have

¢ This particular model is known in other contexts as a birth and death process or a queueing
theory model. The results are derived by setting up a differential equation and then using the
technique of moment-generating functions. Gerstein and Mandelbrot (1964) have carried
out extensive calculations on this approximation in terms of a random walk model. Unfor-
tunately, they neglected to take into account the time distribution of each step. If the
steps were assumed random, one of the defects of their model (that it could not account for an
exponential distribution of interresponse times) would be eliminated.

184 BIOPHYSICAL JOURNAL VOLUME § 1965



been widely found experimentally in the literature (see Kandel and Spencer, 1961,
for references to several recent studies with internal microelectrodes). There are,
however, theoretical difficulties with the interpretation of this curve. From the cable
theory of Hodgkin and Rushton (1946), a constant current applied at one point
will cause the depolarization to increase faster than an exponential at the point of
stimulation. (Several space constants away the depolarization increases more slowly
than an exponential in such a way that the total capacity current flow is exponential. )
From the theory of the active state developed by Hodgkin and Huxley (1952) two
other effects occur:

1. As depolarization increases there is a transient increase in sodium ion per-
meability, the flow of sodium down its concentration gradient further increasing the
rate of depolarization.

2. There is a delayed increase in potassium permeability and the flow of potas-
sium down its concentration gradient will decrease the depolarization.

It is possible that these three effects cancel nearly enough to explain the fact that
curves of the form of equation (10) have been widely found, though the best fitting
parameters may be quite different from the resting membrane constants. Except in
the case of very large neurons, voltage clamp experiments cannot yet be carried out.
In the interest of keeping all the parameters experimentally measurable in ordinary
preparations, this degree of approximation will be retained for the present.

(b) Neuronal Firing as a Function of Stimulus Intensity. In 1931
Matthews proposed a logarithmic relation between applied tension and firing rates
in the muscle spindle. As more evidence has accumulated, even the proponents of
this “log law” as a general neuronal relationship have admitted that considerable
deviations are found both at high and at low intensities (Granit, 1955). Recently
using a crustacean stretch receptor, an analogue of the mammalian spindle, Terzuelo
and Washizu (1962) have shown that over the physiological range, firing rate is
directly proportional to the generator potential and, in fact, to muscle length. It is
only in the relationship between muscle length and tension that the logarithmic rela-
tion enters. Beidler (1961) has found a simple hyperbolic relation [similar to
equation (5)] between intensity of stimulation and neuronal firing rate of chemore-
ceptors of the tongue, but has found a similar relation between stimulus intensity and
generator potential, again indicating a linearity between firing rate and generator
potential. For thalamic neurons of the somesthetic system which show considerable
spontaneous activity, Mountcastle ez al. (1963) recently found that a power law
[similar to equation (21)] gave a better fit than a logarithmic relation, an exponen-
tial, or a simple hyperbolic function such as equation (5). Equations of the type of
equation (6) or ones derived from equation (9) were not tested. Finally, Rushton
(1961) has shown for the Limulus eye that, by using an extra parameter to take
into account spontaneous activity, the logarithmic relation gave a good fit at low
intensities as well as normal intensities.
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It must be remembered that there are two parts to the problem under considera- -
tion. One is the relation between the external stimulus and the rate of depolarizing
impulses (p.) or the generator potential; the other part concerns the neuronal firing
rate as a function of p,. The relationship in the first part may well be modality-
specific. In the two cases mentioned here, there was a linear relation between gen-
erator potential and length in the stretch receptor and a hyperbolic relationship in
the chemoreceptor. Further data must be accumulated before generalizations can be
drawn and in any case, this part of the problem is outside the predictions of the
present paper.

On the second part of the problem, there seems to be general agreement from a
number of experiments (see Granit ef al., 1963, for references). As first shown by
Katz (1950), the firing rate is a linear function of the generator potential over a
considerable range of normal physiological activity. In a number of cases the firing
rate is also a linear function of applied current over much of the physiological range
(Granit et al.,, 1963; Terzuelo and Washizu, 1962; Rushton, 1961). Both these
results follow from our calculations. From equations (2) or (16) depolarization
level is seen to be proportional to p, whether caused by synaptic activity or applied
current. Equations (5), (9), and (19) for frequency of firing all reduce to a linearity
in p, over a considerable middle range. Thus we would predict frequency of firing to
be proportional to depolarizing current or generator potential’® over this range.
The prediction of equation (20) that firing rate will also depend linearly upon the
difference between excitation and inhibition strengths if an excess of excitation is
retained, has also been strikingly confirmed (Granit and Renkin, 1961). Whether
the “end effects” predicted by equations (9) and (19) are normally found, remains
to be verified, but the effects noted by Granit ez al. (1963) are in the right direction.

(c¢) Interresponse Time Distributions. In Figs. 5 and 6 are shown distribu-
tions from various sorts of neurons which have been adapted from the experi-
mental literature and fitted with a gamma distribution where possible. Other dis-
tributions have been analysed with similar results by the author while still others
in the literature (Kuffler, FitzHugh, and Barlow, 1957) were shown to fit a gamma
curve and have not been reproduced here. The cumulative distributions (per cent of
firings before a given time #) have been plotted on cumulative normal paper for
ease of visual inspection as previously explained in connection with the simulated
distributions. An excellent fit is obtained in most cases. Deviations are found at very
early times for some neurons as expected from the discussions on p. 177. The

10 The time course of the generator potential is often not a simple exponential as predicted by
equation (2) but shows a peak shortly after the stimulus is first turned on, and then decays.
However, where the exponential is not found, there is considerable evidence that the rate of
intensity change is an important physiological stimulus in addition to the intensity level (see
Matthews, 1963, for evidence concerning the muscle spindle). This, together with the normal
adaptation found to a steady stimulus may well account for the initial peak.
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apparent refractory period of some muscle spindle cells may, however, be higher
than can be accounted for by that discussion. Certain neurons with large numbers
of neuronal firings could not be adequately fitted by a gamma distribution [in
particular, some of the thalamic neurons during spontaneous activity reported by
Werner and Mountcastle (1963) (Fig. 6d), the slowly adapting touch receptors of
Viernstein and Grossman (1961) (Fig. 6¢), and some spontaneously firing cochlear
neurons (Rodieck et al., 1962; Fig. 5b)]. It is important to note, however, that each
of these curves could not be fitted because it displayed a sharp peak followed by a
long tail, as predicted for neurons with predominant inhibition. With differing levels
of adaptation the distributions found by Viernstein and Grossman (Fig. 6¢) all have
roughly the same period of low slope (0 to 20 msec.), followed by a period of
particularly high slope (20 to 30 msec.) as we would expect from this interpreta-
tion.!* Furthermore, Mountcastle ef al. (1963) found a power law relating stimulus
strength and output frequencies over the physiological range as predicted for the
case of predominant inhibition, though extreme caution must be used in interpreting
this result since the transformations of stimulus strength taking place at more periph-
eral levels are far from fully understood. Most of the other quantitative findings of
Werner and Mountcastle agree with predictions easily calculable for the case of
pure excitation. (Preliminary calculations on the more difficult case including in-
hibition suggest that the results are also compatible with this case.) They found,
for example, that for various degrees of stimulus intensity, the standard deviation
of the distribution was a linear function of the mean. For a gamma distribution, we
have yu; = r/p, + 1, and o:> = r/pg2. Solving for p, and substituting, we obtain

o, = I‘tr_} + to"_§ (22)

independent of the excitatory impulse frequency p.. The samples of driven activity
examined (Fig. 5f is an example) give negligible values of the refractory period
( < 1 msec.) which correlates with Werner and Mountcastle’s finding that the
intercept of the plot of o: vs u: was not significantly different from zero. The best
fitting values of the apparent threshold 7 agree well with the range found for the
slope (0.47 to 0.84).

For spontaneous activity the ratio o:/u: was just under 1 (average 0.93) and
increased as the mean increased, as we would predict if p, were low and 7 ap-
proaches 1. Since 7’ is again reasonably constant, we would again predict a linear
relation between o; and ., but this time with a substantial apparent refractory period
(see Fig. 3 or the discussion on p. 179.) and hence a sizeable intercept. This agrees
well with Werner and Mountcastle’s results except that the regression coefficient for

11 An alternative explanation resulting from systematic threshold changes is discussed in the next
section.
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FIGURE 5

spontaneous activity is too large (1.2 to 1.8) to be simply accounted for by an
analysis assuming a predominantly excitatory model.12

12 Because of the differences between spontaneous and driven activity, Werner and Mountcastle
concluded that there may be qualitatively different factors influencing the two modes of neuronal
activity. The present analysis explains most of their findings, while assuming that exactly the
same model operates in the two cases.
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FIGUREs 5 and 6 Experimental interresponse time histograms. Distributions were
adapted from the literature and plotted on cumulative probability paper for compari-
son with predicted distributions. Ordinate: cumulative probability of firing. Abscissa:
time in msec. or standard deviation units. Solid lines, where drawn, give gamma distri-
butions with the apparent threshold (#’) and apparent refractory period (#,) indicated.
The references for the figures are as follows: Figs. 5a, 5b, and 6a, Rodieck et al.
(1962); Figs. 5¢ and 6b, Hunt and Kuno (1959); Fig. 5d, Buller et al. (1953); Fig.
Se, Arden and Liu (1960); Figs. 5f and 6d, Mountcastle et al. (1963); Fig. 6c,
Viernstein and Grossman (1961).

It should be stressed once again that careful measurements of r, p,, pi, t,, and 7
independently of the distribution should allow quantitative checks without any free
parameters. The present discussion has, however, shown that the existing data agree
quite well with the predictions of this analysis. Generalizations of the model to
further increase its applicability are considered in the next section.

D. MORE GENERAL MODELS

In this section the assumptions of the model given in Section B will be discussed
separately in the light of known physiological phenomena. The effects on the dis-
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tribution of taking these phenomena into account will also be discussed. Finally, a
few of the implications for the over-all behavior of an organism will be considered.
(a) Threshold. The threshold r is not normally independent of time, but
varies continuously with time. This function r (¢) can usually be divided into three
periods, an absolute refractory period, a relatively refractory period, and a super-
normal period before a constant value is reached. The over-all effects on the distri-
bution of including a relatively refractory period and a supernormal period would
be: 1. An initial period of low firing rate (on a cumulative plot this is indicated by a
small slope which will tend to change the direction of curvature at early times).
The effect will be greater at high intensities resulting in extreme cases in a negatively
skewed distribution. Such a distribution has been reported in the muscle spindle at
very high intensity (Hagiwara, 1954). 2. A “supernormal period” of increased rate
of firing (increased slope on cumulative paper). These two effects might produce
an S-shaped curve on cumulative normal paper as illustrated in Fig. 7.18
Adaptation (or inhibition) of the transmitter released per presynaptic impulse,

0.00! ¢
0.0 —H

0.05 H

0.1 LARP

oz H#

03 1 rRRP

0.5. } —
or H

o8 -H

os -H

095 H

099 -H

0.999 -

FIGURE 7 Effects of a time-varying threshold. Schematic representation of the effects
on the interresponse time distribution of an absolute refractory period (A.R.P.), a
relative refractory period (R.R.P.), and a supernormal period (S.P.) which gradually
fades into a period of constant threshold (P.C.T.). Ordinate: cumulative probability
Abscissa: time.

13 This offers another explanation for the sharply peaked distributions discussed in the last
section.
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post-tetanic potentiation, or resistance changes that facilitate (or inhibit) the effec-
tiveness of a given quantity of transmitter in depolarizing the membrane, all change
the average quantal size and hence the effective threshold. Finally, a dendritic
potential or generator potential that is maintained after firing may prevent the
depolarization from returning to zero (the resting potential) and so change the
effective threshold at high intensities. The ultimate effect, when either the depolariza-
tion is maintained above threshold or the Na-carrying system is inactivated, is
complete blockage of firing. Effects of this sort are known with electrical stimulation
(cathode block) and with natural stimulation (see Matthews, 1963, or Fuortes and
Mantegazzini, 1962).

(b) Quantal Size. In different experimental preparations the unit of
depolarization might be one of several disparate quantities, a single ion crossing the
membrane, decomposition of a molecule of rhodopsin, a single packet of ACh or
the transmitter released by a single presynaptic neuronal pulse. The last is most
important if we are considering a general synaptic process, yet here unit size will
not be constant. Computer simulation for the case of pure excitation using a rectang-
ular distribution of quantal sizes has been carried out. As might be expected, the
additional source of variability caused o: to increase faster than u. (or to decrease
more slowly as the case might be). The effects were marked only at the two extremes
of frequency.

Considering our example with r = 2.8 may clarify the nature of the results. With a
variable quantal size, no matter how high the frequency of p., one never reaches the
point where 3 impulses and only 3 are sufficient to fire. Therefore, one must always deal
with apparent parameters #, p’, and ¢,. On the other hand, when p, is low, (p, = < r),
it has been shown that the average depolarization level is below threshold for all values
of time. Firing occurs from the variability around this average. The provision of different
size pulses increases the variability and hence the probability of firing. For example with
r = 3, p, = = 1, the mean time to firing was decreased from 20.2 to 13.3 with the in-
troduction of variable quantal size.

(¢) Impulse Frequency. There are several effects that cause variation in
P.. Slow adaptation or inhibition of presynaptic firing rates over an extended period
will simply cause systematic changes in p.. If such changes are rapid, occurring over
a single interval, a function p, (7)) must be used in which T is the time from the
onset of stimulation. In this case, a curve more skewed than an exponential can
result.

Commonly rhythmic potentials are measured in the nervous system and the inputs
to cells in the vicinity are no doubt non-random. Some sense organs such as the ear
are also subject to rhythmic stimuli such as pure tones. In extreme cases one would
expect multipeaked distributions, the frequency of peaks determined by the input
frequency. Multipeaked distributions have been found experimentally (Levick,
1963; Rodieck, Kiang, and Gerstein, 1962). A cyclic form for the function p, (T)
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can be used in these cases to simulate the expected distribution. McGill (1963) has
recently considered the distribution for a neuronal model with a particular type of
periodicity in some detail. Analysis of the distribution with any input, if the distribu-
tion is known for one, may be carried out by using the transfer function concept
common in electrical engineering (Chapman and Smith, 1963).

All of these effects may have to be taken into account to quantitatively under-
stand different neurons, while none of these refinements may be required to explain
the distribution of others. When required, all the effects are experimentally measur-
able and can be used to simulate a distribution for comparison with that experi-
mentally found. Cases may also arise when all of these refinements are not sufficient
to explain the experimental results. However, far from negating the value of this
analysis, such a case proves the merit of a deductive approach for it will then be
clear that unknown and previously unsuspected factors must be present which play
an important part in neuronal behavior.

(d) Gross Response Times. So far we have only considered the time
distributions of single neurons. Yet the simple model discussed here has important
implications for aspects of discrimination, learning, and performance where the
over-all timing of an organism is involved. Consider a chain of #» neurons. If each
neuron has frequency of depolarizing impulses p,/sec., thresholds r; and p.r > r;
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FiGURE 8 Gross response time distributions. Human reaction times to a visual dis-
crimination with two or four alternatives. Each distribution consists of about 200
responses. The two distributions are from different highly practised subjects.
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and p, > p;, then the over-all time distribution is a gamma distribution with p, and
R = Z7j ., r;. There will also be a constant time ¢, to account for neuronal conduc-
tion time. If frequencies are not the same, the variance will in large part depend on
the stage of lowest p, and highest r;. Others will simply add to #, since for a gamma
distribution ¢*> = r/p.? and the present model depends even more critically on p,.
Many neurons in parallel feeding into a common output stage is analogous to many
presynaptic neurons in connection with a single postsynaptic neuron and all the
previous discussion holds.

These considerations suggest that the three parameter gamma model should be
capable of fitting many gross reaction time distributions and it has been found suffi-
cient to fit most of the experimental distributions investigated. Others show the sharp
peak and exponential tail characteristic of predominant inhibition (Bush and Mos-
teller, 1955; Kennedy and Travis, 1948; Stein, unpublished experiments, 1962—see
for example Fig. 8). This may explain the apparent similarity in complexity between
these curves and neuronal interresponse time curves (McGill, 1963). However, with
gross response times it should not be possible in general to relate » and p’ to the
r; and p, values of individual neurons.
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work, particularly Professor W. A. Rosenblith, Center for Communication Sciences, Massa-
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