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ABSTRACT A recently developed method of determining the number and size
of particles suspended in a conducting solution is to pump the suspension
through a small orifice having an immersed electrode on each side to supply
electrical current. The current changes due to the passage of particles of
resistivity different from that of the solution. Theoretical expressions are devel-
oped which relate the current change caused by such particles to their volume
and shape. It is found that most biological cells may be treated as dielectric
particles whose capacitive effects are negligible. Electrolytic tank measurements
on models confirm the theoretical development, and electric field plots of
model orifices are used to predict the observed pulse shapes. An equivalent
circuit of the orifice-electrode system is analyzed and shows that the current
pulse may be made conductivity-independent when observed with a zero input
impedance amplifier.

INTRODUCTION

An increasingly popular device (Coulter Electronics, Inc., Hialeah, Florida) counts
and sizes suspended particles by using an electric current in a conducting solution
confined by a small orifice. The small orifice imbedded in a dielectric sheet connects
two volumes of conducting fluid in order both to confine the electrical current flow
between the two volumes and to restrict the passage of suspended particles to single
events in time. Adding to the usefulness of the resultant device is the fact that the
magnitude of the disturbance in the electric current caused by any particle of
different resistivity from the conducting solution also bears some relationship to the
particle volume and shape. It is the purpose here to develop the theory of the
current change in the orifice produced by such particles, to present experimental
verification of such considerations, and, finally, in a companion paper, to present
experimental results on biologic systems with instrumentation that allows the rapid
and accurate measurement of number and size distribution of particles independent
of the conductivity of the medium. While mammalian cells have received the
greatest emphasis, the over-all aspects of this study are general enough to be
applied to any cell or particle whose simple electrical characteristics are known.
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THEORY

For many years investigators (1-4) have been concerned both theoretically and
experimentally with the electrical properties of cells in suspension. We shall apply
the results of such investigations directly to the problem of predicting the current
change in the orifice caused by the cell.

Consider a homogeneous spherical cell of radius a and resistivity {, placed in
a uniform electric field maintained by electrodes of potential difference ¥ on opposite
ends of a cylinder of length L >> a and area 4 >> a® containing an electrolyte of
resistivity ;. With a cell in the cylinder, the electric field lines form patterns for
various cell conductivities as shown in Fig. 1.

(a) Ry R, (b) R,»R,

FiGure 1 Electric field line patterns around spheres of different resistivities.

It can be shown that under these circumstances the apparent resistivity of the fluid
in the cylinder becomes

1 =8t+ &0+ 8
1+ 88 + v(1 = B)G (¢}

where 8 = 4wa’/3LA and 1 is a shape factor for the cells. ¥ = 2 for spheres and 1
for right circular cylinders parallel to E.

Now, it has been shown that a better electrical model of the cell involves the assump-
tion that the cell membrane is a leaky dielectric of capacitance, C,., per unit area
paralleled by a material of resistivity ¢, and that the cytoplasm is a reactance-free
electrolyte of resistivity ¢;. Under these circumstances the resistivity of the cell {,
becomes complex and may be represented by

& = $2+ Zan/a 2

=4

where
1/Z, = 1/¢n + iwC..
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For direct current

fﬁ = §2+ g-n/a (3)
and for high frequencies

fz = {3

A survey of the electrical properties of cells allows a generalization as to orders
of magnitude. The internal resistivity ¢, lies in the range of 30 to 3,000 ohm-cm with
300 ohm-cm typical for mammalian cells. The membrane resistivity ¢,, of interphase
cells has a range of 1,000 to 10,000 ohm-cm® while the membrane capacitance, C.,
of most cells lies in the range 1 to 2 uf/cm”. The resistivity of typical media ranges
from 20 ohm-cm for sea water, through 100 ohm-cm for mammalian cells, to about
10* ohm-cm for fresh water. Considering a typical mammalian cell to have a radius
of 1072 c¢m, ¢ & 300 ohm-cm and ¢, &~ 10° ohm-cm?, we see for the DC case that {,./a
is on the order of 10° ohm-cm, as is {;. Hence, for the practical case, we see that
£2 & ¢tw/a and, since {3 > &, equation (1) reduces to

£ == ar = ro(1E2) @

forgK 1.
If we now consider an orifice to be of area A and effective length L, we see that the
change in orifice resistance caused by the presence of a cell is

AR = HLB(1 + 7)/ 4v. ©)

One of the questions of importance is the influence of the cell membrane capaci-
tance, C,.. In order to assess orders of magnitude, assume the cell to be a right circular
cylinder of radius a and length a parallel to E. Since the field lines inside the cell
are parallel to its length, we see that the cell may be approximated by a capacitance
of 7a’C,/2 in series with a resistance of {,/ar, assuming no membrane leakage.
This produces an effective time constant of a¢.C.,/2 for the cell alone.

If we now consider such a cell immersed in a fluid of conductivity ¢, to be suddenly
placed in a region where a longitudinal gradient of the electric field exists, it follows
that the above time constant must be modified by the resistivity of the surrounding
electrolyte. To a first approximation, we may assume that fluid connecting the ends
of the cell is equivalent to another restriction about equal to that of the cell itself
before field divergence renders it negligible. Then, T &~ aC.(¢, + ¢:)/2. For typical
mammalian cells we find T &~ 4 X 1077 seconds. Cole (1) has shown that a more
general expression for cells of any shape is

_[1t8 ]
T [‘y(l — ﬁ) & + $2 |Cna

which produces time constants on the same order of magnitude. Since for the aper-
tures and fluid flows used, pulse lengths of 15 usec. with 5 usec. rise times due to the
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field gradients were observed, it can be concluded that the effect of membrane capaci-
tance for the cells under these circumstances may be neglected. This will be supported
by experimental data later. It must be emphasized, however, that this may not be true
for all cells and/or particles and care must be exercised when counting a variety
of cells.

ORIFICE CHARACTERISTICS

As mentioned, the orifice serves a dual purpose; to confine the electric current and
to restrict the passage of particles to single events in time. While 8 must be less than
unity, the orifice cannot be too large relative to the size of the particle since the re-
sultant signal due to the passage of one particle may approach the electrical noise
in the system. On the other hand, the orifice cannot be too small in diameter
since this both restricts fluid flow requiring higher pressure differentials for a given
flow rate and leads to plugging by debris in the liquids. Similarly, the orifice cannot
be too thin in the direction of flow since there would be no appreciable distance
along the direction of flow in the orifice where the electric field is a constant—a
necessary requirement for flat-topped electrical pulses whose height should bear a
known relationship to the volume.

The presence of the orifice will modify the equations developed previously—partic-
ularly regarding dependence of output voltage change on volume and shape of cells
since the cells are no longer small with respect to the boundaries. Consider a spherical
non-conducting cell of radius r,, on the axis of a tube of radius r,, containing con-
ducting fluid of resistivity {,, as shown in Fig. 2. If we neglect the slope of the electric
field at the surface of the sphere, we see that the resistance of each disk dx in thick-
ness and #(r,® — r°) in area is

dR = ¢, dx/x(r,"> — 1)

which leads to
Y
- 2 2.
1 -r‘rzz_’l + x
LT O AT E LT O R LT A LTEE LT 1

FIGURE 2 A spherical non-conduct-
ing cell of radius r» on the axis of a

RUULH G I DT DU LRI DL LR LT LR D LT tube of radius ra.
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This is the method of lower limits as used by Smyth (5) and represents the

smallest value of resistance to be expected. Evaluating the above integral and

taking the difference between the sphere in and out of the tube, we have
TAR _ g[tan-’[x(l - k)7 ]

o r (1 — k)7 O]

where K = r,/r.. Expanding the term in brackets and defining § as the volume of
the sphere, then

N_ar_x(l + 0.3K* + 0.13K* + )
AR == 1r2r24 \/1 — K2 (7)
From which, for K < 1,

AR= 18/ 4 (8)

where L, 4, and B are as defined previously. Except for the factor (y 4+ 1) /y = 3/2,
this is identical with equation (5). Since equation (6) is a lower bound, we would
expect some difference. The question remaining is the validity of the dependence
on K. Fig. 3 is a plot of equation (6) multiplied by 3/2 compared with experimental

o 02 04 06 08
VOLUME

FIGURE 3 The change in resistance in arbitrary units versus the volume of spheres

(normalized so that at 1.0 the diameter of the sphere equals the diameter of the

orifice). The solid line is the theoretical equation (6), and the points are model
measurements.
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points from model measurements to be explained later. The agreement is quite
reasonable. Also, as will be shown later, long thin rods drawn parallel to their long
axis will not involve approximations for the electric field at the boundaries and data
(Fig. 5) comparing such rods with spheres of the same volume shows that expres-
sion (6) for spheres must be multiplied by 3/2 to agree on an absolute basis. Thus,
we shall assume that the proper expression for spheres is equation (6) or (7)
multiplied by 3/2. Data on absolute calibrations will be presented in a companion
paper.

The above equations and assumptions are expected to hold for spheroids but will
break down for short rods and disks since current flow lines will not follow flat
surfaces when they are normal to the flow of current (i.e., “end” effects will pre-
dominate for short disks and rods). Consider first a rod (or disk) of length ¢ and
radius r; coaxial with an orifice of radius r,. By the method used previously, one

can show that

Lt K’ &8 1

AR = ara (1 — K°) = w’rz‘.(l - K’) ©)
where 8 is the volume of the rod. While this expression is correct for very long rods
( t > ry), it does not hold for ¢ ~ r, because of the end face effect. Experimentally,
one finds that a very thin disk moved parallel to its axis produces a signal approxi-
mately three times that of an equivalent volume sphere. This means that it is
producing a signal 9/2 larger than the above equation predicts. If we ascribe this to
an effective insulating cylindrical volume in front of each face equal in area to the
area of the face and proportional in depth to the radius of the face, we may modify
equation (9) to be

1
AR = Tfr‘;[ml’ + cm‘r,a]-['lTI—(g:I- (10)
For the same disk traveling through the aperture in a direction parallel to its
two faces, it can be shown that

AR = 3‘16/1'2&‘. (ll)

Again, however, the sharp edges modify this and experimentally we find the disk
under these circumstances to produce the same resistance change as a sphere of the
same volume. This means that equation (11) must be multiplied by 3/2 to agree
with the experiment. Generally, the geometric shapes encountered and the ensuing
mathematical complexity of any theory are so limiting that the only recourse is to
model experiments for any given set of conditions.

In order to ascertain the field gradients as well as to evaluate both the expected
pulse size and shape with the size and shape of the particles, an electrolytic tank
model of the orifice was constructed with a scale factor of about 500. Since the electric
field is symmetric about the center line of the orifice, only one-half of the orifice
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was used, allowing easy access from the top surface for the potential probe. Typical
equipotential plots for two different orifices are shown in Fig. 4 where the edge
gradients may be seen to be rather small.

By passing a constant direct current through the model orifice and recording the
potential change induced by a wax model moving through the orifice, it became
possible to demonstrate the dependence of voltage change on the volume of the
model, the influence of the shape of the model, and, finally, the expected pulse height
with position (i.e., pulse shape, provided the velocity is constant). Since the fluid
motion induced artifacts in the output signal and no surface probes were needed, the
whole cylindrical orifice was immersed between the two volumes of electrolyte and
the wax models slowly pulled through.
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FIGUuRe 4 Typical equipotential plots for two different model orifices.

Fig. 3 shows the agreement between the resistance change for various spheres
and equation (6). Fig. 5 shows the resistance change for two right circular cylinders
of constant volume whose aspect ratios change over a range of 30:1 producing
an orifice resistance change of only 3:1. The single points shown are for spheres of
the same volume as the two cylinders. The ratio of the change for very small
diameter rods to that for an equivalent sphere is 0.63 in both cases while the ratio
of equation (9) to the modified equation (7) is 0.67 for K < 1. If we define the
aspect ratio to be a = 2r,/t and substitute this in equation (10) we find

18 —n
AR = - - (1 + ) (g_s)m . (12)
l'g ﬂ'
For the experiment shown in Fig. 5
2/8
(%‘E) Lr’,
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FIGURE 5 The change in resistance in arbitrary units versus aspect ratios of cylinders
of constant volume pulled through along their axis of circular symmetry.

so that we may neglect the last term and obtain

AR = 15;;:4(1 + ‘-“21) (13)
This shows a linear relation between resistance change and « as observed experi-
mentally; evaluation of the data produces ¢ = 1.1 in both cases. To further prove
this point, 2.5 cm diameter disks were pulled through a 5 cm orifice along their
axis of circular symmetry and the relative voltage change was observed as a function
of thickness. The data is plotted in Fig. 6 where the straight line predicted by
equation (10) is observed. Evaluation of this data produces ¢ = 1.16. Fig. 7 shows
the relative resistance change for a disk moved through an orifice both on edge and
along its axis of circular symmetry. For the latter case, the units are §/(1 — K°)
while in the former case, the units are §. Both cases produce straight lines as pre-
dicted by equation (11) multiplied by 3/2 and equation (12) for a constant aspect
ratio of 4. The measured slope ratio is 2.0 as compared with a calculated value of
2.1. These data for disks are of value when considering the dynamics of counting
red blood cells. However, evidence indicates that the 3/2 factor is not necessary for
human erythrocytes because of their rounded edges.
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FiGURE 6 The change in resistance in arbitrary units versus the thickness of disks
pulled through the model orifice along their axis of circular symmetry.
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FIGURE 7 The change in resistance in arbitrary units versus (a) the volume/1-K*
for disks pulled through along their axis of circular symmetry and (&) the volume
for disks pulled through the model orifice on edge.
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ELECTRODES, COUNTING SOLUTIONS, AND INPUT CIRCUITS

The electrodes in a typical counter are platinum with a geometry as indicated in
Fig. 8. The counting solution is generally normal saline solution; however, in many
cases, the tissue culture medium itself is used. When one suddenly applies a constant
current to the electrode system, there is a rapid potential rise followed by a relatively
slow increase in potential that approaches a constant after several minutes of opera-
tion. The height of the final plateau is also a function of the electrode current. Re-
moval of the electrode current shows the presence of residual potential that dimin-
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ishes with an open circuit time constant of about 6 minutes. Constant fluid flow was
maintained through the orifice during these measurements to avoid heating the
fluid in the orifice itself. Such heating is not inconsequential since current densities
on the order of 1 amp/cm® are used.

Fig. 9 is a graph of the voltage across an orifice-electrode system for a constant
current as a function of frequency. The first fall off is due to electrode polarization
and the presence of a large electrode capacitance while the high frequency fall off is
due to the capacity shunting the orifice as shown by the geometry of Fig. 8. Because
of its small size, the orifice generally has the limiting resistance. Analysis of the
impedance data for a 95 x diameter by 70 p long orifice filled with liquid, then blocked
by an insulator, and finally blocked by a conductor produces the equivalent circuit
shown in Fig. 10 (a) where R, = 12,000 ohms, R; = 3,000 ohms, R, = 2,000 ohms,
C, = 130 pf, Co = 83 upf, and E, =~ 2.0 volts for a solution of 70 ohm-cm resistivity.
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FIGURE 9 Voltage versus frequency for the orifice-electrode system of Fig. 8. The

calculated pc voltage value shown is for the equivalent electrical circuit of Fig. 10
(a) with E, removed.

R; is the resistance of the liquid columns connecting the orifice to both electrodes and
R, is the polarization resistance at the electrodes. For the pulses produced by a cell
traversing our present orifice (rise times of about 5 usec. and plateaus up to 15 usec.
long), we see that we may neglect all capacitances and batteries and be concerned
only with the circuit shown in Fig. 10 (b) which additionally shows the input circuit
of an amplifier (Ci. + R:i.) and a source of orifice current (constant current from
an infinite impedance source). If the amplifier has a large input impedance, then

I i

- R,

j ! FIGURE 10 Equivalent electrical cir-
F R, cuit of orifice-electrode system. (a)
R, = S R,, resistance of orifice; R;, resistance
E3 Ra  of liquid; R,, resistance of electrodes;
ES | AR = C,, capacitance of electrodes; C., ca-
R G pacitance of orifice; I is a constant
3 [———T et current; and E,, the electrode battery.
= = (b) Cia + Ruia is the input circuit of
(a) (b) the amplifier.
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the change in voltage appearing across the input is AV = I, AR and since the fluid
conductivity is involved in AR, the signal is conductivity dependent.

Consider now the case where C,, is very large and R.. very low followed by a
current amplifier (i.e., a “zero” input impedance amplifier). C.. obviously blocks
the steady-state orifice voltage but allows any change in current to pass into the
amplifier. Similarly, C,. will maintain the voltage constant during the passage of
any particle in spite of the slower “constant” current source. From Ohm’s law, for
constant voltage,

dl = —VdR/R® = —IdR/R

so that AI/I = AR/R

where R is the total resistance (orifice plus fluid columns) in the circuit and I is
the current just prior to the pulse. Since both R and AR involve the fluid conductivity,
it follows that Al is independent of conductivity. For example, for very small spheres
(KL 1)

Al = 313/2Gx’r.* (14)

where R = G¢,.

For larger spheres one must use equation (6). Using a zero input impedance
amplifier and the electrolytic model discussed previously, a fractional current
change of 0.0020 was observed for a wax sphere of 0.75 cm diameter moved
through an orifice 5 cm in diameter by 7 cm long. As would be expected, this ratio
was found to be independent of I and the solution conductivity over extremely large
ranges. Equation (14) produced Al/I = 0.0024 for G = L/A which means that
assuming the orifice to be the controlling resistance yields an error of 20 per cent in
AlI/I in this case. The experimental value of G (measured at 1000 cps) produced the
expected value of AI within 5 per cent.

To demonstrate that cell membrane capacities are negligible, mouse lymphoblast
cells (L-5178Y), latex particles (Bioproducts Department, The Dow Chemical
Company, Midland, Michigan) and pollen spores were pumped through two aper-
tures of different lengths (95 p diameter by 70 n long; 80 n diameter by 500 p long)
and the resultant wave shapes observed with a 0.1 usec. rise time amplifier. While
a number of odd shapes of the correct peak voltage were observed with the shorter
aperture (due probably to non-axial paths), the majority had flat tops and rise and
fall times directly attributable to the axial electric field distribution shown previously.
The pulses for the longer aperture also were as expected for an axial dielectric
particle with rise and fall times due to the edge gradients. Fig. 11 compares observed
wave shapes with those predicted mathematically from the field distribution and those
observed from the electrolytic tank model. The close check of all three approaches
demonstrates reasonably well that cell membrane capacities may be neglected under
these circumstances.
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FIGURE 11 Observed pulse height versus time for latex particles and mouse lympho-
blast cells pumped through a 95 u by 70 u orifice. Latex particles and mouse lympho-
blast cells show the same pulse shape to about 5 per cent (solid line). Drawings are
from oscilloscope films. The points are the theoretical values calculated from the field
distribution and based on optically measured diameters of mouse lymphoblast cells.
The electrolytic tank pulse fits the latex pulse too closely to be differentiable on this

figure.
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