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ABSTRACT A recurrent model of the repetitive firing of neurons responding to
stimuli of long duration is given. The model assumes a deterministic threshold
potential and a membrane potential which is composed of both deterministic and
random components. The model accurately reproduces interval statistics ob-
tained from different neurons discharging repetitively over a wide range of
discharge rates. It is shown that the model has three important parameters; the
time course of threshold recovery following a discharge, the variance of the
random component, and the level of excitatory drive. The model is extended,
by the use of hyperpolarizing afterpotentials, to include negative correlation
between successive interspike intervals.

INTRODUCTION

Even under controlled experimental conditions, the discharge characteristics of
single neurons exhibit some degree of irregularity. Experiments sometimes have
involved the presentation of identical, near-threshold stimuli to a nerve fiber
(e.g. Verveen, 1961); the fiber, apparently on a random basis, discharges in
response to some stimuli, but not to others. Other experiments have dealt with the
intervals between successive discharges in a long train of impulses evoked either
by natural or artificial stimuli (e.g. Buller, Nicholls, and Strom, 1953; Hagiwara,
1954; Kuffler, Fitzhugh, and Barlow, 1957; Viernstein and Grossman, 1961); the
interspike intervals are never constant. Observations of this nature have led to the
development of stochastic models of the discharge of the neuron (Landahl, 1941;
Hagiwara, 1954; McGill, 1963; Perkel, Moore, and Segundo, 1963; Fetz and
Gerstein, 1963; Gerstein and Mandelbrot, 1964 ). In this paper, we will examine a
stochastic model of the type originally suggested by Landahl (1941) and Hagiwara
(1954), demonstrate its ability to account for the interspike interval distributions
generated during repetitive activity, and illustrate its behavior as its parameters are
systematically varied.

53



The model to be explored is presented schematically in Fig. 1. Two waveforms
are represented in the figure; the threshold and the membrane potentials. The
membrane potential is composed of two independent components, a deterministic
voltage Dy, and an additive random voltage N(z) with a Gaussian amplitude distri-
bution. Whenever the membrane potential exceeds the threshold voltage, the cell
discharges. After the occurrence of an impulse, the threshold is infinite for a short
time and then gradually returns to its resting value. It is assumed that the random
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FiGUurRe 1 Diagram illustrating the characteristics of the recurrent event model used

in this paper. The threshold function ©(#) is given by equation 4 with  — 5 msec.

noise N(z) following a discharge is uncorrelated with the random noise that preceded
the occurrence of that discharge.

Studies of such models have employed several techniques. Ten Hoopen and
Verveen (1963) and Fetz and Gerstein (1963) used electronic equipment to gen-
erate actual voltages corresponding to the threshold and membrane potentials. Other
workers (Landahl, 1941; Hagiwara, 1954; Viernstein and Grossman, 1961; Siebert
and Gray, 1963; Ten Hoopen, Den Hertog, and Reuver, 1963; Goldberg, Adrian,
and Smith, 1964) attempted to compute the necessary interval distributions by
means of mathematical equations. Unfortunately, the equations presented do not
lead to correct expressions for the interval distributions generated using any well
known Gaussian random process.!

*The models of Landahl (1941), Hagiwara (1954), Viernstein and Grossman (1961), and
Goldberg, Adrian, and Smith (1964) are characterized by the property that, if there were no
refractory period, the interval distributions would be exponential. However, it cannot be assumed

that Gaussian noise generally produces such distributions, because a nonexponential distribution
has been obtained using RC-filtered Gaussian noise (Rice, 1958, equation 113).
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In the model described in the present paper, the necessary waveforms have been
simulated on a digital computer, a procedure previously employed by Weiss (1964).

DERIVATION OF THE MODEL

In the model, a discharge occurs whenever the membrane potential E(z) exceeds
the threshold potential ©(z). The potentials cannot be represented as continuous
waveforms by a digital computer. Each of the potentials was therefore represented
by a sequence of numbers. The two sequences were compared term by term. When-
ever the number representing the membrane potential equalled or exceeded the num-
ber representing the threshold potential, a discharge was considered to have occurred,
and the process was begun again at ¢ = 0.

The numbers representing the threshold potential ©(7) were obtained by evaluating
the threshold function at the desired instants of time. Because of the presence of a
random component, the generation of numbers representing the membrane potential
E(t) was more complicated. The random component N(z) was chosen to have a
Gaussian amplitude distribution with a mean of zero. The first step was the genera-
tion of approximately normally distributed pseudorandom numbers X, X3, . . ., X,.
Each X; was calculated by adding together 16 uniformly distributed pseudorandom
numbers. In order to arrive at a sequence of numbers representing the random
component N(z), the X;’s must be appropriately combined; the actual combination
depending upon the spectrum of N(z). We chose as the spectrum

h/x
S(f) = 72, 1
0 = #4" (1)
the output spectrum of an RC low-pass filter whose input is white noise. The
autocorrelation function corresponding to this spectrum is ®(z) = exp (—2xf.|t]).
Levin (1960) has shown that the set of numbers
N(iA?) = [1 — exp (—4xf,A0)]"? X,

+ [exp (—2rfiA)]IN[(i — 1)Ad], i=1,-,n, (2)
has the same stochastic properties as does the set of numbers obtained from sam-
pling, at equal intervals of time A¢, a Gaussian noise with the spectrum of equation 1.
It is easily verified that the numbers generated by equation 2 have an approximately
Gaussian amplitude distribution, a mean of zero, and an autocorrelation function

®(iAf) = exp (—2rhiAf), i=0,1,--+,n. 3)

Addition of the numbers N(0), N(A?), . . . , N(nAt) to the deterministic component
of the membrane potential gives a sequence of numbers representing the membrane
potential E(t).

Representing the continuous waveforms by sequences of numbers introduces

C. DANIEL GEISLER AND JAY M. GOLDBERG Repetitive Activity of Neurons 55



06 08 OL 09 0S Ob O 02 o o
T T

T TENoI1g
(23SW) 3WIL

021 Oll 00l 06 08 OL 09 O0OS Ot O 02

e,

Jesw 7 G=T

205WZ PE = m\_
208WO0Z 2,

BIOPHYSICAL JOURNAL VOLUME 6 1966

L) 1 T 1

2eswg'g2 =T

J9s8W2 6 nm\q

RsWG) =) Joz2o

-0£'0

S3ON3YHNIOD0 40 NOILY¥OJOY¥d

56



errors into our results. The magnitude of these errors is related to the magnitude of
the sampling interval Az. In most of our calculations, the value of Az was chosen
to have a value of 0.05/f,, although smaller values were used occasionally. The
effects of varying the value of A¢, and hence of varying the magnitude of the com-
putational errors, will be described below (see Results).

Approximately 1000 intervals were generated to form each of the theoretical
interval distributions and interval statistics presented in the paper. All calculations
were performed on the Control Data Corporation 1604 computer of the University
of Wisconsin Computing Center.

RESULTS

Applications of the Model. Interspike interval distributions generated by
the model closely resemble the interspike interval distributions derived from neurons
of the superior olivary complex of the cat responding to acoustic stimuli of long
duration. Fig. 2 shows experimental data from three different neurons plotted as
normalized interspike interval histograms. Histograms generated by the model are
also displayed and a close match is observed between the empirical and theoretical
data. The ability of the model to simulate the behavior of individual superior olivary
neurons is further illustrated in Fig. 3, which presents the relations between the
mean interval and standard deviation of intervals for each of the three neurons
of Fig. 2 and the corresponding relations generated by the model. The fit between
the theoretical and empirical relations is excellent over a wide range of discharge
rates.

The following parameters were used to generate the theoretical data of Figs. 2
and 3. In all of the calculations, N(t), the random component of the membrane
potential, had a standard deviation of 1 mv and half-power frequency of 500
cycle/sec. The threshold function ©(7) (See Fig. 1) consisted of an absolute refractory
period R of 0.7 msec followed by a relative refractory period described by the
function (Fuortes and Mantegazzini, 1962)

FIGURE 2 A comparison of distributions derived from neurons of the superior olivary
complex with theoretical distributions. Each graph includes interspike interval distribu-
tions (points), with various values of mean interval I, derived from a single neuron,
together with corresponding distributions (smooth curves) generated by the model
using a single value of threshold time constant r. In these graphs, the abscissa repre-
sents the value of the interval in msec; the ordinate, the proportion of intervals with
values that fall within the limits of a 1 msec time bin. a: Theoretical distributions,
+ = 1 msec; neural distributions, unit 62-157-4. b: Theoretical distributions, » = 15
msec; neural distributions, unit 62-394-1. c: Theoretical distributions, + — 200 msec;
neural distributions, unit 62-239-2. Each theoretical distribution is a smooth curve
fitted by eye to an interspike interval histogram generated by the model; oy = 1 mv,
fi = 500 cycle/sec, At = 0.1 msec. Neural data are from the study by Goldberg,
Adrian, and Smith (1964).
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FIGURE 3 Mean interval and standard deviation of intervals obtained from the
model and from superior olivary neurons. Each set of solid symbols depicts data
derived from one individual neuron, and the corresponding set of open symbols
depicts theoretical data for one value of 7. Each smooth curve was fitted by eye to one
set of theoretical data; o» — 1 mv, fi = 500 cycle/sec, Az = 0.1 msec. Physiological
data were obtained by dividing trains of impulses into groups of 20 consecutive
intervals, determining the mean and standard deviation for each group, and then
averaging the means and standard deviations for all groups possessing similar means.
For further details, see Goldberg, Adrian, and Smith (1964).

6(r) = —60 + exp [—(t — R)/7]/{1 — exp [—(¢+ — R)/7]} mv,
t > R = 0.7 msec. @

Such a function starts at infinity at # = 0.7 msec and approaches —60 mv as ¢
approaches infinity. The threshold time constant = was held fixed while modelling
the activity of any one neuron. Once this time constant was set, only Dr, the
deterministic component of the membrane potential, had to be varied to simulate
the behavior of a single neuron under different conditions of excitatory drive. A
different time constant + was needed to simulate the activity of each of the three
different neurons.

The activity of other types of neurons can be approximated by the model. Buller,
Nicholls, and Strom (1953) and Hagiwara (1954) studied the relation between
the mean interval and standard deviation of intervals in frog muscle spindle axons
under conditions of steady stretch. Fig. 4 shows some of the data points obtained
by the former workers as well as data generated by the model with = = 81 msec.
The fit between the theoretical and experimental points, while not as good as that
seen for superior olivary neurons, is satisfactory; the theoretical data also provide
a reasonably close fit to the data of Hagiwara (1954). Fig. 4 also demonstrates that
the data obtained by Biscoe and Taylor (1963) from chemoreceptor fibers of the
carotid body of the cat are successfully matched by the model when the value of r is
set to 8.5 msec. Buller, Nicholls, and Strém (1953) and Biscoe and Taylor (1963)
observed that, for long mean intervals, the slope of the relation between the mean
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FIGURE 4 Mean interval and standard deviation of intervals derived from the model,
from amphibian stretch receptors, and from chemoreceptors of the cat carotid body.
Data from stretch receptors (VW) are from Table 1 of Buller, Nicholls, and Strém
(1953); corresponding theoretical data (V), r = 81 msec. Data from carotid body
chemoreceptors (®) are median values taken from Fig. 2 (perfused) of Biscoe and
Taylor (1963); theoretical data (o), r = 8.5 msec. Each smooth curve was fitted by
eye to one set of theoretical data; ox = 1 mv, fo = 500 cycle/sec, At = 0.1 msec.

interval and standard deviation of intervals approached a slope of unity. Similar
behavior is exhibited by the data generated by the model (see Discussion).

Katz (1950) has found that, in the amphibian muscle spindle, there is a linear
relation between the local depolarization produced by steady stretch and the fre-
quency of impulses for rates up to 300 impulses/sec. Linear relations between the
magnitude of the generator potential and the frequency of discharge have also been
observed over wide ranges of excitation in other sensory neurons (MacNichol,
1956; Fuortes, 1958; Lippold, Nicholls, and Redfearn, 1960; Loewenstein, 1960;
Wolbarsht, 1960; Terzuolo and Washizu, 1962). Fig. 5 presents the theoretical
relations between the average frequency of discharge and the mean membrane
potential Dy for several values of . Note that the relation obtained with the time
constant appropriate for the muscle spindle (r = 81 msec) is almost linear. The
other curves in Fig. 5 are also approximately linear throughout a large part of their
range. Therefore, the relations between depolarization and discharge rate obtained
with the model are similar to the empirical relations observed in a number of
neurons. It should be noted that curves similar to those of Fig. 5 can be generated
by an essentially deterministic model (Harmon, 1961).

The Effect of Varying the Parameters of the Random Component. The
parameters of the random component N(t) are the half-power frequency f;, the
standard deviation oy, and the sampling interval At. In the above calculations all
of these parameters were held constant. The effects of varying these parameters will
be described in this section.

Half-power frequency: The effects of variation of the half-power fre-
quency f; of the low-pass noise are readily visualized; the probability of discharge
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FIGURE 5 Average rate of discharge vs. average membrane potential. Each point
summarizes data generated by the model with the indicated value of =; fi = 500 cycle/
sec, ox = 1 mv, At = 0.1 msec. Smooth curves were fitted by eye.

within a fixed time period decreases as f; decreases. It should be possible, however,
to compensate partly for a decrease in f, by an increase in the mean excitatory input.
That changes in f; do not alter the basic properties of the model is illustrated in
Fig. 6, where the relations between the mean interval and the standard deviation of
intervals for various values of the time constant + and of f; are presented. With
the time constant held fixed, a decrease in the half-power frequency has the effect
of slightly shifting the relation to the left. However, the variations among the curves
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FIGURE 6 Mean interval vs. standard deviation of intervals. Each point summarizes
data generated by the model using the indicated value of threshold time constant =
and of half-power frequency fi; ox = 1 mv, 0.0031/f; < At < 0.05/f..
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for any one value of + are small, and the curves could be brought into even better
agreement by small changes in the value of .

Standard deviation: The standard deviation oy of the random component
is a crucial parameter of the model. The relations between the mean interval and
the standard deviation of intervals presented in Fig. 7 were obtained by holding the
time constant = at a value of 15 msec and systematically varying the value of ox5. An
increase in oy results in a displacement of the relation to the left. This effect is
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FIGURE 7 Mean interval vs. standard deviation of intervals. Each point was obtained

from data generated by the model with the indicated value of noise standard deviation
ox; T = 15 msec, f, = 31.25 cycle/sec, 0.1 < At < 1.6 msec.

similar to that obtained when the value of r is decreased. A comparison of Figs. 6
and 7 reveals that a hundredfold variation of oy, r being fixed, is roughly equivalent
to a seventyfold variation of r, oy being held constant.

In the model, it is assumed that the variance of the random noise N(¢) is time-
invariant and also that it is independent of the average membrane potential. If the
noise were due to thermal activity, for example, such assumptions would not be
unreasonable. If, on the other hand, an important component of the fluctuation of
membrane potential were due to the discrete nature of synaptic potentials, the
assumptions would be oversimplifications. Stein (1965) has shown that, in situa-
tions where N(?) is wholly determined by randomly occurring synaptic potentials of
the same exponential waveform, both the mean value and variance of the membrane
potential are functions of time and of the rate of occurrence of the synaptic
potentials. Only if the rate of occurrence of the synaptic potentials becomes large,
and if the time constant characterizing the synaptic potentials becomes small com-
pared with the other time constants of the system does the random process described
by Stein (1965) approach the process utilized in our calculations; namely, a time-
invariant Gaussian process whose spectrum is given by equation 1.

Sampling interval: Most of our data were generated with the value of

C. DANIEL GEISLER AND JAY M. GOLDBERG Repetitive Activity of Neurons 61



the sampling interval At set to 0.05/f,. Smaller values of Af, some as low as
0.0031/f,, were sometimes used to achieve better resolution. That errors result
from representing the membrane potential as a sequence of numbers is indicated by
the fact that data obtained when At = 0.05/f, differed from data obtained when
At was set to 0.0031/f,, all other parameters of the model being held constant.
However, the differences observed when the value of At was decreased were almost
completely compensated for by a decrease in Dy, the mean value of the membrane
potential. Stated in other terms, variations in At affected the relation between the
average rate of discharge and Dy, but did not alter the shapes of the interval dis-
tributions obtained with the model or the relations between the mean interval and
standard deviation of intervals.

It can be shown that our method of determining a threshold crossing is equivalent
to passing the membrane potential E(¢) through a sample and zero order hold
circuit and determining when the resulting staircase approximation of E(¢) crosses
the threshold potential ©(¢). Ragazinni and Franklin (1958) have shown that the
staircase approximation approaches the unsampled waveform E(¢) as At approaches
zero. A small amount of data was obtained from the model with At set to 0.00031 /f,.
The fact that these data differed little from data generated with Atz = 0.0031/f, sug-
gests that the staircase approximations corresponding to these smaller values of At
are closely convergent to the unsampled waveform E(¢).

Extension of the Model to Account for the Correlation between Neighboring
Intervals. In the model presented above, the generation of impulses is a recurrent
event, which implies that the interspike intervals occurring during repetitive dis-
charge are statistically independent of one another. For some neurons, the intervals
are indeed statistically independent, at least in a linear sense (Buller, Nicholls, and
Strém, 1953; Hagiwara, 1954; Rodieck, Kiang, and Gerstein, 1962; Goldberg,
Adrian, and Smith, 1964). Other neurons, however, exhibit a negative correlation
between the values of adjacent intervals in a record (Hagiwara, 1949; Kuffler,
Fitzhugh, and Barlow, 1957; Viernstein and Grossman, 1961; Goldberg, Adrian,
and Smith, 1964). One explanation of this negative correlation is that it is due to
the summation of hyperpolarizing afterpotentials which follow each discharge
(Goldberg, Adrian, and Smith, 1964), a mechanism suggested in another context
by Eccles (1953). That this mechanism will result in negative correlation of the
sort observed empirically can be demonstrated by means of an extension of our
basic model.

The extended model is illustrated in Fig. 8. The threshold function is that of
equation 4. The membrane potential E(¢) is the sum of two components, N(z), a
random waveform generated by the same process as that used in the recurrent
model, and D(¢), a function which describes the reestablishment of the transmem-
brane depolarization following each impulse. The time course of D(¢) is determined
by a hyperpolarizing afterpotential P(¢) such that
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FiGUrRe 8 Diagram illustrating the characteristics of the extended model. The
threshold function ©(#) is given by equation 4 with + — 1 msec. The decay of the
hyperpolarization is exponential with a time constant of approximately 4.3 msec.

D(t) = Dy + P(2)
= Dp + (D; — Dg) exp [—(t — R)/¢], t > R = 0.7 msec, (5)

where Dy is the value of the membrane potential at the beginning of the after-
potential, Dy the value of the membrane potential in the fully recovered state, and
¢ the time constant of decay of the afterpotential. Dy is dependent only upon the
level of excitatory input. D; is not constant, but varies depending upon past history.
On the basis of data from spinal motoneurons of the cat (Coombs, Eccles, and
Fatt, 1955), Dy is set to one half the difference between —90 mv and the value of
D(t) at the instant that the preceding discharge occurred. For example, if a dis-
charge occurs when D(t) is —64 mv (the value of Dy in Fig. 8), D; for the suc-
ceeding afterpotential is set to —77 mv. If a discharge occurs when D(z) is —70
mv (see the second impulse of Fig. 8), Dy is set to —80 mv. A short interval will
cause D; to have a relatively large magnitude, and, consequently, the next interval
will tend to be a long one. Negative correlation between the values of adjacent
intervals will result since there will be a tendency for short intervals to be followed
by long ones and vice versa.

Data generated by the extended model are presented in Fig. 9. The relations
between the mean interval and the standard deviation of intervals for three values
of oy are shown in Fig 9a. For each of the curves, the time constants of the threshold
and the afterpotential were fixed at 0 and 9 msec, respectively. As has been seen
in Fig. 7, increasing the value of oy shifts the relations to the left. Note that the
interval statistics behave very much like those generated by the recurrent model,
even though the intervals are now no longer independent of one another. In fact,
the data of Unit 62-394-1 (see Fig. 3) fall close to the relation shown in Fig. 9a
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FiGURE 9 Data derived from the extended model, with threshold time constant =
held fixed at zero msec and the afterpotential time constant ¢ held fixed at 9 msec.
a: mean interval vs. standard deviation of intervals. Each point is based on data ob-
tained from approximately 1000 consecutive intervals generated with the indicated
value of noise standard deviation ox; f1 = 31.25 cycle/sec, 0.1 < Ar < 1.6 msec. b:
correlation analysis. Each point in b is based on the same sample of intervals that
was used in the generation of the data point in a having the same mean interval. The
smooth curve was fitted by eye.

for oy = 3 mv and could be very well approximated if o5 were set slightly below
3 mv.

The serial correlation coefficients r;, were computed by pairing the ith and the
(i + k)th intervals. Fig. 9b shows the relations between the mean interval and
r, for the data summarized in Fig. 9a. The relations for the different values of oy
are indistinguishable. The correlation coefficients decrease in magnitude as mean
interval increases and become negligible for mean intervals greater than approxi-
mately 30 msec. The lack of correlation when the mean interval is greater than 30
msec is to be expected, because, for intervals of this value, the afterpotential has
decayed to less than 5% of its initial value. Hence, the effect of the past interval
is largely erased. The increase of correlation with decreasing mean interval is
caused by the fact that more and more intervals occur with significant memory
contained in the afterpotential. None of the coefficients r,, k = 2 to 5, differed
significantly from zero. There is remarkably good agreement between the data
presented in Fig. 95 and that obtained from certain neurons of the superior olivary
complex (Goldberg, Adrian, and Smith, 1964) and cochlear nucleus (Goldberg
and Greenwood, 1966).

DISCUSSION

Simulation of the Interval Distributions of a Single Neuron. In either the
recurrent or extended models, the timing of discharges during repetitive activity is
jointly determined by the asymptotic excitatory drive [i.e. ©(®) — Dp], the time
course of recovery from preceding activity, and a random component responsible
for the fluctuations of interspike intervals. One of the basic assumptions of the
model is that the time constants describing the recovery processes of any given
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neuron are constant under all conditions of excitatory drive. We will, therefore,
in discussing the variations in the interval distributions derived from the model of
an individual neuron, confine our attention to the effects of variations of the
asymptotic excitatory drive and of the parameters of the random component.

An attractive feature of the models is the relatively simple manner by which the
variations in the interval distributions derived from an individual neuron can be
simulated. Variations in the asymptotic excitatory drive of the model, all other
parameters being held constant, have accounted for the variations in the interval
statistics of auditory neurons as the frequency and intensity of tonal stimuli are
varied (Figs. 2, 3, and 9b) and for the variations in the interval statistics of the
amphibian stretch receptor and the chemoreceptor of the cat carotid body (Fig. 4).
If, indeed, the interval distributions derived from a single neuron responding in a
sustained manner to steady stimulation are determined by the asymptotic excitatory
drive, then other statistical parameters describing the discharge of the neuron should
be a function of the asymptotic excitatory drive and, hence, of the mean rate of
discharge. This proposition is supported by a number of observations. For amphibian
stretch receptors (Buller, Nicholls, and Strom, 1953; Hagiwara, 1954), for the
chemoreceptors of the carotid body (Biscoe and Taylor, 1963), and for neurons
of the ventrobasal complex (Werner and Mountcastle, 1963), the superior olivary
complex (Goldberg, Adrian, and Smith, 1964), and the cochlear nucleus (Gold-
berg and Greenwood, 1966), the standard deviation of intervals is systematically
related to the mean interval. Moreover, for those auditory neurons whose discharge
is characterized by negative correlation between adjacent intervals in a record, there
is a systematic relation between the mean interval and the degree of correlation
(Goldberg, Adrian, and Smith, 1964; Goldberg and Greenwood, 1966). A severe
test of the proposition may be made by comparing the characteristics of sustained
discharge of a given neuron in response to different stimuli which result in the same
mean discharge rate. It was found, when such studies were carried out in the superior
olivary complex (Goldberg, Adrian, and Smith, 1964) and in the cochlear nucleus
(Goldberg and Greenwood, 1966), that both the standard deviation of intervals
and the correlation between neighboring intervals were essentially similar for all
tonal stimuli which led to the same mean discharge rate, even when it could be
reasonably inferred that the various stimuli that were employed activated different
combinations of excitatory and inhibitory pathways.

The effects of variations of the parameters of the random component on the
behavior of the models is illustrated in Figs. 6, 7, and 9. The half-power frequency
of the spectrum of the random process does not play a major role in determining
the relations between interval statistics. In contrast, the variance of the random
component, while not affecting the correlation between neighboring intervals, has
an important influence on the relation between the mean interval and standard devia-
tion of intervals. The theoretical effects of increasing the variance of the random
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component parallel the results of a study in which a comparison was made of the
interval distributions derived from neurons of the cochlear nucleus responding to
pure tones and to narrow bands of noise (Goldberg and Greenwood, 1966).
Because one of the most conspicuous features of a narrow band noise is the varia-
tions in the envelope of the signal, the random fluctuations in excitatory drive should
be greater when bands of noise, rather than tones, are employed as stimuli. Con-
sistent with theoretical expectations, the use of bands of noise in place of tones af-
fected the relation between the mean interval and the standard deviation of in-
tervals, without influencing the relation between the mean interval and the degree
of negative correlation between neighboring intervals.

Simulation of the Interval Statistics Derived from Different Neurons. The
interval distributions generated by the recurrent model are determined by the
values of the half-power frequency f, of the random component, and the ratio
[6(¢) — Dgl/oy, where ©(t) is the threshold function, Dy the mean membrane
potential, and oy the standard deviation of the random component. Variations of
f1 do not affect the shapes of the interval distributions to any great extent. In
contrast, the ratio [6(¢) — Dg]/oy is of importance in determining the distributions
generated by the model. More particularly, the ratio 6(¢) /oy determines the shapes
of the interspike interval distributions and the relation between the mean interval
and the standard deviation of intervals, whereas the ratio Dr/oy determines the
mean rate of discharge, once the values of 6(2) /oy and f; are specified. A similar
conclusion was reached by Verveen and Derksen (1965).

The differences in the interspike interval distributions obtained from different
neurons can be accounted for if it is assumed that the ratio 6(¢) /oy is fixed for
each neuron but may vary from one neuron to another. The value of the ratio and,
hence, the shapes of the interval distributions and the relation between the mean
interval and standard deviation of intervals are affected by variations of either ©(z)
(Figs. 2 and 3) or oy (Fig. 7). One cannot, from an inspection of the interval distri-
butions derived from a given neuron, determine the absolute value of ©(¢) unless
oy is specified and vice versa. Goldberg, Adrian, and Smith (1964 ) assumed that oy
was the same for all neurons. Hence, they concluded that the differences in interval
distributions derived from different neurons could be explained most easily by
assuming that neurons differed from one another in the time required to recover
from the effects of a discharge. Our lack of knowledge of possible variations of oy
among neurons makes such a conclusion premature.

Neurons differ from one another not only in the shapes of their interspike interval
distributions but also in the degree of negative correlation displayed between the
values of adjacent intervals in a record. In a study of neurons of the cochlear
nucleus (Goldberg and Greenwood, 1966), for example, it was found that,
despite the fact that two neurons generated similar interval histograms, adjacent
intervals of one of the neurons might display a relatively high degree of negative
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correlation, whereas those of the other neuron might not. These latter differences
may be explained by reference to the properties of the extended model. In this
model, the timing of discharges is influenced by two recovery processes, an after-
potential P(¢) which results in the summation of the effects of successive impulses
and a threshold potential 6(¢z) which does not result in such summation. In the
extended model, the shapes of the interval distributions are determined by the ratio
[6() — P(t)]1/ox and the degree of negative correlation is determined by the rela-
tive values of ¢ and =, the time constants of the afterpotential and the threshold
functions, respectively. If ¢ >> 7, then the timing of discharges will be primarily un-
der the influence of the afterpotential and the neuron will display a relatively high
degree of negative correlation, at least at high rates of discharge. If, on the other
hand, = > ¢, then the extended model approaches the recurrent model in its proper-
ties and there will be no correlation.

The General Characteristics of the Models. All of the interval distribu-
tions generated by the models appear to be unimodal and to approach exponential
distributions for sufficiently large values of time ¢. In order to define the general
characteristics of the distributions, it is convenient to plot them in semilogarithmic
coordinates.2 Almost all of the distributions, when so plotted, define curves whose
slopes, for values of ¢ greater than the mode, continually decrease and asymptotically
approach constant values. Interval distributions with these characteristics have
been obtained from a number of peripheral nerve fibers, including the amphibian
stretch receptor (Buller, Nicholls, and Strém, 1953; Hagiwara, 1954), the limulus
optic nerve (McGill, 1963), the chemoreceptor of the carotid body (Biscoe and
Taylor, 1963), and auditory nerve fibers (Weiss, 1964), as well as from such
central neurons as spinal interneurons (Hunt and Kuno, 1959), retinal ganglion
cells (Kuffler, Fitzhugh, and Barlow, 1957; Levick, Bishop, Williams, and Lampard,
1961), and neurons of the lateral geniculate body (Levick, Bishop, Williams, and
Lampard, 1961), the cochlear nucleus (Grossman and Viernstein, 1961; Rodieck,
Kiang, and Gerstein, 1962; Pfeiffer and Kiang, 1965; Goldberg and Greenwood,
1966), the motor cortex (Martin and Branch, 1958), the midbrain reticular forma-
tion (Amassian, Macy, and Waller, 1961), the ventrobasal complex (Poggio and
Viernstein, 1964 ), and the superior olivary complex (Goldberg, Adrian, and Smith,
1964). Other neurons (Martin and Branch, 1958; Hunt and Kuno, 1959; Levick,
Bishop, Williams, and Lampard, 1961; Viernstein and Grossman, 1961; Rodieck,
Kiang, and Gerstein, 1962; Bishop, Levick, and Williams, 1964; Poggio and
Viernstein, 1964; Smith and Smith, 1965; Pfeiffer and Kiang, 1965) generate dis-
tributions that cannot be accounted for by the models described in this paper.
Many of these latter cases, however, might be represented by our models if some-

*The abscissa represents the value of the interval, and the ordinate represents the logarithm of
the proportion of intervals with stated value.
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what more complicated functions were employed to describe the recovery processes
(Viernstein and Grossman, 1961), if the random waveforms were not restarted
after each discharge (Weiss, 1964), and/or if the excitatory drive on the cell were
randomly gated on and off (Smith and Smith, 1965).

Another property of the models is that approximately exponential distributions
are obtained whenever ©(), the asymptotic value of threshold, is several units of
oy greater than Dy, the asymptotic value of the membrane potential (e.g. Fig. 2a,
I = 21.8 msec). Moreover, the relations between the mean interval I and the
standard deviation of intervals S of distributions obtained under such conditions are
well described by the equation,

s=1-Kk, O]

K being a constant determined by the time constants of the model. In every case,
the value of K can be identified with the time required for the ratio [6(z) — P(#)]/
oy to approach its asymptotic value (e.g. Fig. 3, - = 1 msec). Neurons displaying
these characteristics have been reported by several workers (Buller, Nicholls, and
Strom, 1953; Biscoe and Taylor, 1963; Goldberg, Adrian, and Smith, 1964; Gold-
berg and Greenwood, 1966). It is interesting to note that the exponential distribu-
tions and the relationship described by equation 6 are characteristic of data gen-
erated by a Poisson process with a dead time K.
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