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ABSTRACT Starting with the Navier-Stokes equations, a system of equations is
obtained to describe quasi—one-dimensional behavior of fluid in a compliant tube.
The nonlinear terms which cannot be shown to be small in the original equa-
tions are retained, and the resulting equations are nonlinear. A functional
pressure-area relationship is postulated and the final set of equations are quasi-
linear and hyperbolic, with two independent and two dependent variables. A
method of numerical solution of the set of equations is indicated, and the appli-
cation to cases of interest is discussed.

INTRODUCTION

Laminar flow of an incompressible fluid in compliant tubes has received consider-
able attention, partly because of its relevance to the dynamics of blood flow in
arteries. In principal, the problem is described exactly by the three Navier-Stokes
equations of motion for the fluid, the equation of continuity for the fluid, and
equations of motion for the wall.

A general solution of such a system of nonlinear partial differential equations
has not been achieved. Additionally, the physiological quantities which would arise
in a treatment of blood flow in mammalian arteries are not well known. For both
reasons it is necessary to work in terms of approximate models, which include the
important features of the system under consideration and neglect unimportant
features.

A variety of models based on the Navier-Stokes equations may be found in the
literature. Some of these models have been successful in predicting certain, but not
all, aspects of the flow. A brief summary of some of these results will now be given.

In 1957, an extensive treatment of the problem was published by Womersley (1),
who considered a segment of a uniform, infinitely long, cylindrical tube with a
linearly elastic, isotropic wall. Fluid motion in the circumferential direction of the
tube was neglected, and all nonlinear terms in the two remaining Navier-Stokes
equations were dropped. Womersley obtained analytical traveling-wave solutions
to this formally linearized system. The treatment was successful in predicting the
flow produced by a known pressure gradient.
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However, Womersley pointed out that this linear theory when applied to pulsatile
flow in a nontapering cylindrical vessel predicted a diminution in the pressure pulse
amplitude of 5 to 10% for each 10 cm of travel, in typical cases. In contrast to
this theoretical result, the observed increase of the pressure pulse between the
proximal and peripheral parts is one of the most striking features (2) of the arterial
system. Womersley suggested that the explanation of the discrepancy between his
theory of an infinitely long tube and actual systems might lie in the reflections which
would occur from discontinuities such as the bifurcation of the aorta. McDonald
makes the assumption that the regularly repeated heartbeat creates a steady state
oscillation, i.e., that reflections from one wave are superimposed on later waves.!

However, the experiments of Peterson (3) and Starr (4) with single pulses
showed no discrete reflections that could modify the shape of a later pulse.

Evans (5) considered the problem of flow of a viscous liquid in a tapering tube
by retaining only one Navier-Stokes equation and dropping the nonlinear terms
from it. For this one-dimensional linear approximation Evans gets analytical solu-
tions in the form of a traveling wave with amplitude varying with distance. Both
the pressure and velocity waves are attenuated with distance in the case of enlarging
taper, and the opposite occurs with a constricting taper. The physiological observa-
tion is that the pressure pulse peak height increases and the velocity pulse decreases
with distance.

Tapering tubes have been treated by Streeter, Keitzer, and Bohr (6) using a
different approach. In their one-dimensional treatment the radial velocity was
neglected and an empirical friction term was used in an equation of motion for
the “plug” of fluid contained in a segment of the tube. This equation, together with
the continuity equation and an assumed pressure-area relationship for the tube, form
a quasilinear hyperbolic system of partial differential equations which were solved
numerically by the method of characteristics (7).

With this method it is possible to impose a variety of boundary conditions to
model tubes of finite length. Reflected waves produced at boundaries, or by changes
in the tube characteristics, are automatically included in the solution.

This method was successfully used by Wiggert and Keitzer (8), who, by adjust-
ing the frictional term, were able to predict numerically some measurements on
saline solution in tapered plastic tubes.

The approach of the present paper begins with two Navier-Stokes equations for
the fluid motion. Those nonlinear terms which cannot be shown to be negligible are
retained. A reasonable form is assumed for the radial dependence of the axial
velocity. The Navier-Stokes equations are integrated over the radial coordinate
reducing the number of independent variables to two (time and axial distance) and
the dependent variables to three (pressure, averaged velocity, and cross-sectional

1 Pages 203 and 232 of reference 2.
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area). A pressure-area relation is used to eliminate one of the dependent variables.

The final equation of motion for the fluid contains two parameters which depend
on the assumed velocity profile. All other quantities appearing as coefficients in the
equations were in principal known from physiological considerations. The relation-
ship between this approach and those of Womersley (1), Evans (5), and Streeter
et al. (6) is indicated during the development. The equations are solved numerically
by the method of characteristics, so that any reflected waves occurring are auto-
matically included in the numerical solutions.

Finally, the application of the theory to a cylindrical tube, driven sinusoidally at
the proximal end and almost closed at the distal end, is outlined. This is intended
as a model of a catheter with a pressure-transducer at the distal end. Numerical
results for this case will be compared to experimental results in the following paper

(11).

DERIVATION OF THE EQUATION OF MOTION
OF THE FLUID

If, in a cylindrical coordinate system, motion in the circumferential direction is
neglected, the Navier-Stokes equations of motion for an incompressible Newtonian
fluid become

o, v, o, 18_1’_(2’0_- 1 v, a_,)

c.’h‘-I_v'ébr-l_l"'c’iz-I-paz_Vc‘)rz-’-ré)r_l_t")z2 (1)
and

o, , o, dv lip_(a_’e: 1ov, _ o a_)
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where r is the radial and z the axial direction. The constants p and v are the density
and kinematic viscosity of the fluid; the rest of the notation is standard (9).

In considering these equations, Womersley (1) remarked that for the case of
interest v, is much less than v,, and used this to justify neglect of all nonlinear terms:

or 9v:a—z > Uy or s Us Gz

dv, dv, ov, dv,
U, .

The terms

d’, %,

o ™ o
were also neglected. Evans (5) additionally ignored equation 2. Although v,/v, <K 1,
it does not follow that v, (8v,/9z) etc. are small. By neglecting these terms,
Womersley obtained an excellent prediction of flow from a known pressure gradient.
His model, however, predicted attenuation of the pressure wave along the tube,
contrary to physiological observations.
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It is convenient first to make the equations nondimensional. If U, and V, are typi-
cal velocities in the axial (z) and radial (r) directions, then a parameter may be
defined by ¢ = V,/U,. The following treatment is valid when ¢ is small.

For laminar flow in flexible tubes, the maximum value of v, is the radial velocity
of the wall, which will be small unless the tube is very flexible. Thus ¢ is small for
blood flow in mammalian arteries, as Womersley pointed out.

Such flow may be termed quasi—one-dimensional. The velocities U, and V, define
a characteristic length A in the z direction over which deviations from the axis
become equal to R, (the tube radius): A = R,U,/V, or R,/A = ¢. Nondimensional
quantities, designated by primes, may be defined as follows:

r= Ry’ z=2\

v,= U, v,= Vv, t=-—+¢ and p= pUsp’.

In terms of primed quantities, equations 1 and 2 reduce to

v’ v’ ., . dp' v, | 14 !
ov, , 00 00 _____B<v v_l_zv) 3)

ar T U a7 i a? T e T 37

and

o _ {au, L 30 ,au, [@ 130, ol ,a%:]}
ar TP a7 o 6 dr T Y TR )

where B8 = (A/R,) (v/U,R,). Provided ¢« < 1, the last term in equation 3 is neg-
ligible and equation 4 implies that p’ is not a function of 7.
The equation of continuity in nondimensional form is

4
A 1
%} ’—,a;:, (rvl) = 0. (5)
Now equations 3 and 5 may be rewritten
2o+ Zen+ Lo+ Zen =62  ©
and

6—27(0 ’)+ ,(r N = (7)

Equations 6 and 7 may be integrated over r fromr = Otor = R’.

i fa' ]_ 4 QE: i[/n'uz I]
a:’[ | r'vl dr’ AN o +az' \ r'vl” dr
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and

R’ ’
e [ [ o dr’] = bl S+ [ella = 0. ©

Since the wall is a stream surface,
or’ :I I: ar':l
’ = |2 r &
[Ur]R' I:at, e + | v. o7 -

[roivile: = [r v,]n' YA R+ o ’2]a' —*-

or

If a mean velocity in the z direction is defined by

O
U =—5 2r'v), dr’ (10)
R™ Jo
and a parameter a by
1 F ’ /2 ’
a = R0 | 2r'vl” dr (11)
then equations 8 and 9 may be rewritten
’
, (Rn U’ + , (a R"? U/Z) + R2 %P ap = 28R’ [al’;] (12)
97 or g,
and
, (R?U") + 2R’ g—R— = 0. (13)
In terms of dimensional quantities these equations are
U, U, 34 U, 13p _ 2 [a_]
ar T4 "‘)a:""" pdz R Lor la (14)
and
04 i)
Y +az(UA)—0 (15)

where A is the cross-sectional area of the tube. Note that the integration over r has
introduced new nonlinearities in the dependent variables U and A, but has elimi-
nated the velocity component in the r direction. The mean velocity is the quantity
measured in most experiments.

It is now necessary to know the variation of v, with r (the ‘“velocity profile”) in
order to evaluate « and (dv,/dr)g. This variation cannot be properly determined
without carrying out a full two-dimensional nonlinear treatment of the problem.
In this paper the Polhausen approach will be followed: profiles will be assumed
which satisfy the boundary conditions (dv./r),- = 0 and (v.),-r = O and the
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sensitivity of the results to the assumed profile will be investigated. A particularly
simple assumption is the parabolic form

v, = 2U(1 — F*/R%)

in which case « = 4/3 and (dv,/or)r = —4 U/R.

The right-hand side of equation 14 may then be written as —yU/A, where

vy = 8 =v = 0.251 cm?/sec for water at room temperature.

It should be noted that the fact that y is a constant is a property of the particularly
simple profile assumed.

The relation of the present work to that of Streeter et al. (6) can now be seen.
If the profile v,(r) = constant were assumed, although it would violate the no-slip
condition at the wall, then « = 1 and y = 0. Since such a choice would remove
friction effects, an empirical friction term such as —FU"/2D would have to be added.
The equation 14 would become

aU , ,3U _ 10p  FU" _

ot TV Tooc T 2D =0

which is that used by Streeter et al. In the present work the friction term comes
from the basic Navier-Stokes equations.

CONSIDERATION OF THE SYSTEM OF EQUATIONS

Quasi—one-dimensional flow of a fluid through a distensible tube will normally
be described by a system of three equations: the equation of motion for the fluid,
the continuity equation for the fluid, and the equation of motion of the wall. The
third equation depends on the properties of the wall, which are not well known.
If the approximation is used that the wall is thin and linearly elastic with Poisson’s
Ratio 1/2, the equation of motion for a wall tethered in the z direction is:

2 _ 2
R+ 2 Eh[( ) + R - Ro)%} - 2%] = pohoRo o (16)

where E is Young’s Modulus for the wall of thickness / and density py.
The nondimensional form of equation 16 is:

’R'(p UoRo) i Eho(R, - 1)

{p..,ho Uo"ﬁ +4 Eho[("R') +® -1 R]}

Since the right-hand side of the previous equation is negligible if ¢ < 1, in terms
of dimensional quantities

4 B 4 1A4
P = 3 Eh(R — Ro)/RRo = 3 E( )(2 Ao)
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or
= {(p) (17)

The applicability of this solution is indicated by the results of Patel, Greenfield,
and Fry (10) who show that the variations in the radius of different blood vessels
follow variations in the pressure remarkably closely and without significant phase
lag.

If the special solution (equation 17) to the wall equation is used, equations 14
and 15 may be written:

U _ fp)op  1dp _ _2U
rarilta-ouiBE e 2 (18)
and
f’(P) + f(p) + Uf’(P) (19)

Note that the dependent variable A does not appear in equations 18 and 19, which
are a pair of quasi-linear hyperbolic partial differential equations in the two
dependent variables p and U. These equations may be solved numerically using the
method of characteristics (7).

The characteristic curve in the z —¢ plane (Fig. 1) has the property that along

4

FIGURE 1 The time-distance plane. If the solu-
tions are known at points 4, B, and C (time ?)
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it the partial differential equations 18 and 19 are equivalent to an ordinary differ-
ential equation of the form

d

—+822§_ &1 (20)

For a hyperbolic system there are two such curves passing through every point in
the z —¢ plane. For the point p, at time (¢ + At) the curves are indicated by C+
and C—. Then for the curve C+, equation 20 may be approximated by the finite-
difference equation

(U, — Ug) + g:.(pr — pr) = g1, At (1)
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and for C—:
(Up — Us) + e2.(pr — ps) = &1, At (22)

where the subscripts indicate the (z, ¢) points at which the quantities are evaluated.
Now if U and p are known at time ¢ for the points R, C, and S, the equations 21 and
22 may be solved simultaneously for the quantities Up and pp, which are values at
time (¢ + At). Thus the solutions may be propagated forward in time.

Consider now the proximal boundary. If either p or U is specified as a function
of time, then equation 22 is sufficient to find the other. Similarly equation 21 may
be used if either p or U is specified at the distal boundary. A simple example is a
closed tube, for which U = 0 for all time at the distal end.

More generally an equation specifying a pressure-flow relationship may be given
at either end, and solved simultaneously with equations 21 or 22 to give p and U
separately. Streeter et al. (6) used a “terminal bed condition” at the distal end.
Another example is a pressure transducer placed at the distal end. If for applied
pressure p the volume displacement of the transducer is k;p, then

Udhhl = (kt/A)(ap/at)dhtth (23)

If the fluid and tube are assumed everywhere at rest at time zero, the problem is
properly specified and may be solved numerically. Numerical results will be given
in the following paper (11).

Received for publication 25 May 1966.
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