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ABSTRACT

Ribonuclease P (RNase P) catalyzes the 5 9 maturation of precursor tRNA transcripts and, in bacteria, is composed of
a catalytic RNA and a protein. We investigated the oligomerization state and the shape of the RNA alone and the
holoenzyme of Bacillus subtilis RNase P in the absence of substrate by synchrotron small-angle X-ray scattering and
affinity retention. The B. subtilis RNase P RNA alone is a monomer; however, the scattering profile changes upon the
addition of monovalent ions, possibly suggesting different interdomain angles. To our surprise, the X-ray scattering
data combined with the affinity retention results indicate that the holoenzyme contains two RNase P RNA and two
RNase P protein molecules. We propose a structural model of the holoenzyme with a symmetrical arrangement of the
two RNA subunits, consistent with the X-ray scattering results. This (P RNA) 2(P protein) 2 complex likely binds
substrate differently than the conventional (P RNA) 1(P protein) 1 complex; therefore, the function of the B. subtilis
RNase P holoenzyme may be more diverse than previously thought. These revisions to our knowledge of the RNase P
holoenzyme suggest a more versatile role for proteins in ribonucleoprotein complexes.
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INTRODUCTION

The holoenzyme of a bacterial RNase P is a ribonu-
cleoprotein complex containing an RNA component
(P RNA) of ;330–420 nt and a protein component
(P protein) of ;120 amino acids (Frank & Pace, 1998;
Altman & Kirsebom, 1999)+ The functional role of the
protein component in the RNase P holoenzyme has
been investigated extensively (Guerrier-Takada et al+,
1983, 1984; Gardiner et al+, 1985; McClain et al+, 1987;
Reich et al+, 1988; Peck-Miller & Altman, 1991; Svard
& Kirsebom, 1992; Tallsjo & Kirsebom, 1993; Liu &
Altman, 1994; Crary et al+, 1998; Kurz et al+, 1998;
Loria et al+, 1998; Niranjanakumari et al+, 1998a, 1998b;
Loria & Pan, 1999)+ The Bacillus subtilis RNase P

holoenzyme is remarkably efficient in the catalysis of
precursor tRNA substrates with a kcat/Km near the
diffusion limit (Kurz et al+, 1998; Reich et al+, 1988)+
In the absence of the protein component, kcat/Km de-
creases by 104-fold under physiological conditions
(Kurz et al+, 1998)+ A principal effect of the P protein
function has been postulated to be the enhancement
of substrate binding under physiological conditions
(Crary et al+, 1998; Kurz et al+, 1998; Niranjanaku-
mari et al+, 1998b)+

The physical state of the RNase P holoenzyme has
received less attention+ Previous work by the Altman
group conclusively showed that the Escherichia coli
holoenzyme has an equal molar amount of RNA and
protein (Talbot & Altman, 1994a)+ The affinity of the
P protein binding to P RNA has been estimated to be
;0+5 nM, assuming a simple two-component binding
isotherm (Talbot & Altman, 1994b)+ Functional studies
by the Fierke group showed that the RNA–protein stoi-
chiometry of the B. subtilis holoenzyme is also 1:1
(Niranjanakumari et al+, 1998a)+ Most studies in this
area have focused on the details of P RNA–P protein
interactions using chemical modification (Vioque et al+,
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1988; Talbot & Altman, 1994b; Loria et al+, 1998; Bis-
was et al+, 2000) or spectroscopic methods (Gopalan
et al+, 1997, 1999)+ Compared to the P RNA alone, the
addition of the P protein induces significant protection
against hydroxyl radical attack or chemical modifica-
tion in several regions in the P RNA+

To our knowledge, all of the previous work has as-
sumed that the holoenzyme contains one P RNA and
one P protein and that P RNA in the absence of P pro-
tein is a monomer+ Identification of the oligomerization
state of the holoenzyme will affect interpretations of the
structural and functional aspects of the P protein and
P protein/P RNA binding site+

This work demonstrates that in contrast to the pre-
vious assumption, the B. subtilis RNase P holoen-
zyme contains two P RNA and two P protein subunits
in the absence of substrate+ This conclusion is based
on the results obtained from two independent meth-
ods+ We use small-angle X-ray scattering (SAXS) to
show that P RNA alone is a monomer and that P RNA
dimerizes upon the addition of an equal molar con-
centration of P protein+ SAXS data also suggest that
the (P RNA)2(P protein)2 complex is more symmetri-
cal than the P RNA monomer+ We also use avidin
beads to detect a “heterodimer” consisting of the
P protein plus a nonradioactive, biotinylated P RNA
and a radioactive, nonbiotinylated P RNA+ The forma-
tion of the holoenzyme dimer has likely not been ob-
served previously due to the drastic change in the
shape of the P RNA in the presence and absence of
the P protein that should significantly alter the mobil-
ity of the holoenzyme using size-exclusion or gel-shift
methods+ The formation of the holoenzyme dimer may
significantly affect the binding of substrates+

RESULTS

Small-angle X-ray scattering

The oligomerization state and the shape of the B. sub-
tilis RNase P holoenzyme are determined by synchro-
tron SAXS (Fig+ 1)+ The high flux of the synchrotron
radiation permits the measurement to be carried out at
micromolar P RNA concentrations in a few seconds+
Two SAXS-derived parameters are used to deduce the
oligomerization state of P RNA in the absence and
presence of the P protein, the scattering intensity at
zero angle (I0) and the pair distance distribution (P(r);
Cantor & Schimmel, 1980)+ I0 is directly proportional to
the molecular weight of the complex, whereas P(r) is
the sum of all distance pairs within the complex+ In the
absence of the P protein, the I0 ratio (5+6 6 0+6) of
P RNA and yeast tRNAPhe at the same weight concen-
tration (0+1–1 mg/mL) is proportional to their molecular
weight ratio (5+4)+ Yeast tRNAPhe has been shown con-
clusively to be mono-dispersed under these conditions
(Fang et al+, 2000)+Hence, this result shows that P RNA
in the absence of P protein is a monomer under our
experimental conditions+

Other studies have demonstrated that the P protein
in the absence of the P RNA is also a monomer+ Ana-
lytical ultracentrifugation experiments show that the
P protein alone is a monomer under comparable con-
ditions as the SAXS studies (S+ Niranjanakumari & C+A+
Fierke, unpubl+ data)+ Similarly, the crystal structure of
the P protein is consistent with the P protein being a
monomer (Stams et al+, 1998)+

SAXS results indicate that the B. subtilis holoenzyme
contains two P RNA molecules+ The I0 of the P RNA–

FIGURE 1. Small-angle X-ray scattering of P RNA with and without P protein+ A: Scattering profile of P RNA with (red trace)
and without (black trace) P protein in 20 mM Tris-HCl, pH 8, 10 mM MgCl2, 0+1 M NH4Cl, 0+3 mg/mL RNA (2+4 mM), 37 8C+
The unmodified yeast tRNAPhe is used as a monomer standard (Fang et al+, 2000)+ B: P(r) functions of P RNA and the
holoenzyme+ C: Scattering of P RNA with (black trace) or without (blue trace) 0+1 M NH4Cl+ The P(r) functions are shown
in the insert+
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P protein complex reconstituted at 1:1 RNA–protein,
(1+7 6 0+2) 3 1023, is twofold higher than the I0 of
P RNA in the absence of the P protein, (0+9 6 0+1) 3
1023 (Fig+ 1A)+ The scattering profiles cross over at
high Q, consistent with oligomerization of P RNA in the
holoenzyme+ Because P RNA is ;10 times heavier
than P protein and RNA has an approximately fivefold
higher X-ray scattering signal than protein, the ob-
served I0 is almost entirely derived from the scattering
from P RNA+ The P(r) function of the holoenzyme has
two times more distance pairs compared to those of
the P RNA alone, as expected for the formation of a
complex containing two P RNA molecules (Fig+ 1B)+

On the basis of the previous determination of the 1:1
stoichiometry of the P RNA and P protein in the holo-
enzyme under similar conditions (Talbot & Altman,
1994a; Niranjanakumari et al+, 1998a), we conclude
that the B. subtilis holoenzyme contains two P RNA
and two P protein subunits+ The concentration of P RNA
used in the SAXS experiments ranges from 0+12–0+5
mg/mL or 1–4 mM+ These concentrations lie within the
range of those used in the studies of catalytic activity
and stability of the holoenzyme+

Interestingly, the scattering profile of P RNA without
the P protein shows considerable variation in the ab-
sence and the presence of monovalent ions, 0+1 M
NH4Cl (Fig+ 1C) or 0+1 M KCl+ In contrast, this con-
centration of monovalent ions has no effect on the
scattering profile of the holoenzyme, although the di-
merization decreases at higher concentrations of mono-
valent ions (data not shown)+ The native structure of
P RNA is composed of two independently folding do-
mains that are connected through two phosphodies-
ter bonds (Loria & Pan, 1996; Fang et al+, 1999)+ The
variation in the scattering data of the P RNA mono-
mer at different solution conditions may be explained
by a difference in the relative orientation of the two
domains (see Discussion)+

Affinity retention

A second method, independent of SAXS, further
confirms that the RNase P holoenzyme dimerizes
(Fig+ 2A,C)+ This method directly measures the for-
mation of a heterodimer of P RNA in the presence of
the P protein+ In this heterodimer, one P RNA con-

FIGURE 2. Affinity retention of P32P (A) and radioactively labeled E. coli M1 RNA (B) with Pbiotin and B. subtilis P protein+
The relative amount of P32P or M132P input (top) and the amount of P32P or M132P retained on the avidin bead (bottom) are
shown+ The input is always more than the output and is shown at a lower contrast to better visualize the differences between
each sample+ No P32P or M132P was retained in the absence of the P protein (not shown)+ C: Bottom: the amount of P32P or
M132P retained (y axis) is plotted against the ratio of P32P or M132P input (x axis)+ The plot of P32P is described by Eq+ 3a+ The
plot of M132P can be described by Eq+ 3b, however, with only four variables due to the quality of data, two constants (Ai in
Eq+ 3b) and two exponentials (i in Eq+ 3b)+ The best fit for the M132P data has i1 ; 1 (A1 ; 7,500) and i2 ; 6 (A6 ; 80,000)+
This result suggests that the M132P--Pbiotin complexes contain anywhere between one to six M132P molecules+ Top: The
amount of P32P or M132P retained is normalized to the fractions of P32P and Pbiotin (y 5 (P32P bound) * ([P32P] 1 [Pbiotin])2/
([P32P] * [Pbiotin]))+ For a dimer of P RNA, this plot is a straight line+ For higher order oligomers of M1 RNA, this plot shows
curvature+ D: Competition of dimer formation by nonradioactive RNAs+ P: B. subtilis P RNA; M1: E. coli M1 RNA; S+c+: S.
cerevisiae RNase P RNA; Tet+: Tetrahymena group I ribozyme+ The concentrations of P32P, Pbiotin, and P protein are 0+06,
0+06, and 0+1 mM, respectively, in all experiments+ The %bound (normalized) is obtained after subtracting the background
of P32P retention in the absence of Pbiotin+
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tains a biotin covalently attached to the 39 end (Pbiotin)
and the other P RNA is radioactively labeled (P32P)+
Qualitatively, only when P RNA oligomerizes in the
presence of P protein can P32P be retained on avidin
beads in a P RNA mixture containing both P32P and
Pbiotin (e+g+, compare lanes 1+0 and 0+5 in Fig+ 2A)+
Like the functional assay described previously (Niran-
janakumari et al+, 1998a), the affinity retention method
shows that oligomerization of P RNA is complete only
when the molar ratios of P RNA and P protein are
equal (data not shown)+ In the experiment shown in
Figure 2A, the total concentration of P32P plus Pbiotin

is kept constant at ; 0+1 mM, whereas the fraction of
P32P, hence the amount of radioactivity in each sam-
ple, is varied+ Quantitatively, the amount of P32P re-
tained exhibits a bell-shaped curve as a function of
P32P fraction (Fig+ 2C, bottom) as described by Eq+ 3a
(below)+ Another way to present this result is to plot
the amount of the P32P retained divided by the frac-
tions of P32P and Pbiotin (Fig+ 2C, top)+ The constant y
value indicates that the oligomerization state of the
complex is invariant across all ratios of P32P and Pbiotin+

Specificity of P RNA dimerization

Unexpected results were obtained in the control exper-
iments in which the B. subtilis P32P is substituted with
other radioactively labeled homologs of P RNA+ The
E. coli M1 RNA (Fig+ 2B), the Saccharomyces cerevi-
siae RNase P RNA, or the catalytic domain of the B. sub-
tilis P RNA (nt 240–409 1 1–85) form oligomers in the
presence of the B. subtilis P protein and the B. subtilis
Pbiotin (data not shown)+ These “noncognate” com-
plexes, however, have different oligomerization states
than the “cognate” B. subtilis holoenzyme+ The amount
of M132P retained exhibits a much more complicated
curve as a function of M132P fraction (Fig+ 2C, bottom)+
This curve can be described by Eq+ 3b (below) using
two i parameters corresponding to the lower and upper
limit of the number of M132P molecules in the complex+
The amount of the M1 RNA retained divided by the
fractions of M132P and Pbiotin shows curvature, suggest-
ing the formation of a higher order aggregate (Fig+ 2C,
top)+

To examine the RNA specificity of oligomerization,
we measured the ability of noncognate, nonradioactive
RNAs to compete with the formation of B. subtilis
RNase P holoenzyme dimer (Fig+ 2D)+ P RNA and M1
RNA compete most effectively, followed by the S. ce-
revisiae RNase P RNA, and the Tetrahymena group I
ribozyme competes least efficiently+ The noncognate,
nonradioactive RNAs could decrease the dimerization
either by directly forming a Pbiotin/P protein/noncognate
RNA, a P32P/P protein/noncognate RNA complex, or
indirectly by forming a P protein/noncognate RNA com-
plex, thereby decreasing the P protein concentration
available to bind P RNA+ By assuming the nonradioac-

tive RNA only competes with P protein binding and not
with dimerization, the relative affinity of P protein bind-
ing to P RNA and to another RNA can be estimated
(Eq+ 4, below)+ This estimate shows that the E. coli M1
RNA, the S. cerevisiae RNase P RNA and the Tetra-
hymena group I ribozyme binds ; 2-, 9-, and 32-fold
weaker to the P protein+ These affinity ratios using the
B. subtilis P protein are similar to previous results of
E. coli RNase P protein binding to other RNAs (Vioque
et al+, 1988; Talbot & Altman, 1994b; Gopalan et al+,
1999)+

In summary, these results suggest that dimerization
of P RNA occurs in two steps+ First, the P RNA binds to
P protein to form a one RNA–one protein complex at
subnanomolar affinity (Talbot & Altman, 1994a)+ Sec-
ond, two (P RNA)1(P protein)1 complexes interact
to form a specific (P RNA)2(P protein)2 complex+
Under our conditions (0+1 mM total RNA and 0+1 mM
total B. subtilis P protein), cognate B. subtilis P RNA–
P protein complexes form dimers, whereas non-
cognate RNase P RNA–P protein complexes form
aggregates+

DISCUSSION

Modeling the shape of the P RNA monomer
and the holoenzyme dimer

The shape of the P RNA monomer and the holoen-
zyme is modeled and compared to the Rg and P(r)
function from SAXS to gain further insight on how di-
merization of P RNA may occur+ Our models begin with
the P RNA model proposed by Westhof and coworkers
(Massire et al+, 1998)+ The modeling is carried out in
two stages+ First, the P RNA monomer is modified to
allow a better fit to the SAXS data (Fig+ 3A)+ Next, two
P RNA molecules are brought together and the dimer
model compared to the SAXS data (Fig+ 3B)+

The Rg of the P RNA monomer calculated from the
Westhof model of P RNA is smaller than that observed
in the SAXS measurements (43 versus 47–55 Å)+ Con-
sistent with the smaller Rg, the P(r) function of the
Westhof model also has a narrower distribution of mass
pairs than that derived from the experimental data+ The
P RNA in the Westhof model, however,was constructed
in the context of a bound tRNA substrate that may
affect the conformation of the P RNA,whereas the SAXS
measurements were performed on the P RNA alone+
For example, the B. subtilis P RNA is composed of two
independently folding domains and the binding of tRNA
could potentially reorient the two domains in the P RNA
monomer (Loria & Pan, 1999)+

We modified the Westhof model to determine whether
a change in the domain orientation alone could par-
tially account for the difference in the Rg and P(r)+ In
our modeling, the structures of the catalytic domain
(C-domain, nt 240–409 1 1–80) and the specificity do-
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main (S-domain, nt 86–239) are kept the same as those
in the Westhof model+ However, the domain–domain
connection at the P7 and P5 helices (between nt 239
and 240) is used as a hinge and the J5+1/7 region (nt
81–85) is extended to allow the S-domain to be rotated
away from the C-domain+ These changes at the do-
main junction are consistent with biochemical studies
that suggest little domain–domain interaction in the
B. subtilis P RNA monomer (Massire et al+, 1998; T+
Pan, unpubl+ results) and that the J5+1/7 region shows
a significant conformational change upon tRNA binding
(Odell et al+, 1998)+

Rotation of the interdomain angle from ;308 in the
Westhof model (green) to ;608 (dark blue) and ;908
(red) changes the Rg for the new P RNA models from
43 Å to 47 and 53 Å, respectively+These values are much
closer to the Rg of 47 and 55 Å experimentally deter-
mined in the presence and absence of 0+1 M NH4Cl, re-
spectively+Similarly, the P(r) functions of the models with

altered domain orientations agree better with the ex-
perimental data (Fig+ 3A)+These models suggest that the
domain orientation in the P RNAmonomer is variable and
dependent on the solution conditions, in particular, on the
presence of monovalent salt+ This conclusion provides
a possible explanation for the monovalent ion depen-
dence of the catalytic reaction carried out by the P RNA
alone (Smith et al+, 1992; Beebe et al+, 1996)+

We have also generated a model of the holoenzyme
that is only meant to identify an overall shape consis-
tent with the SAXS data+ In this model, two P RNA
molecules with modified interdomain orientations are
brought together with the C-domain of one P RNA prox-
imal to the S-domain of the other P RNA and vice versa
(Fig+ 3B)+ To allow a better fit to the SAXS data, the
precise angle between the domains in the holoenzyme
is similar (;858), but not identical to that in either P RNA
monomer model+ Changing the angle between the do-
mains should be feasible because P protein binding

FIGURE 3. Models of the P RNA monomer and the two P RNAs in the holoenzyme dimer+ A: P RNA monomer+ The
C-domain in all three models is identical and shown in light blue+ The S-domain of the Westhof model (green) is rotated away
to obtain a better fit to the SAXS data in the presence (dark blue) and absence (red) of 0+1 M NH4Cl+ The experimental P(r)
functions are shown as dashed lines and the calculated P(r) functions are shown as solid lines+ B: The two P RNA subunits
in the holoenzyme (purple and gold)+ The contribution of the P protein to the scattering profile and P(r) is negligible+ The P(r)
(solid line) and Rg (56 Å) of the model agrees well with the experimental P(r) (dashed line) and Rg (57 Å)+
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could easily compensate for any potential energetic
cost of altering the domain orientation+ This holoen-
zyme model has a twofold symmetry regarding the two
P RNA molecules and is significantly more compact
than alternate models without the twofold symmetry
(not shown)+ The model has similar P(r) and Rg (56 Å)
to the experimentally measured P(r) and Rg (57 Å)
(Fig+ 3B)+

Topological specificity of the P RNA dimer

The formation of the P RNA dimer in the holoenzyme is
likely due to the presence of multiple RNA binding sites
in the B. subtilis P protein+ Three binding sites have
been inferred from its crystal structure (Stams et al+,
1998)+ Initially, one or more of these site in the P protein
may bind one P RNA to form a specific (P RNA)1(P pro-
tein)1 complex+ Subsequently, another site in the P pro-
tein in one (P RNA)1(P protein)1 complex binds the
P RNA in another (P RNA)1(P protein)1 complex and
vice versa+ This subsequent, symmetrical binding event
results in a holoenzyme containing two P RNA and two
P protein molecules (Fig+ 4, left)+

Crosslinking and affinity cleavage data suggest that
two potential RNA-binding sites, the highly conserved
“RNR” motif and the metal-binding loop, interact with
P RNAin the (P RNA)1(P protein)1 complex (Stams et al+,
1998; Biswas et al+, 2000; S+ Niranjanakumari & C+ A+
Fierke, unpubl+ results)+Therefore, the best candidate for
the RNA-binding site in the P protein responsible for
P RNA dimerization is the same site involved in binding
of the 59 leader of a pre-tRNA substrate (Niranjana-
kumari et al+, 1998b)+ This binding site in the P pro-
tein binds 4–5 single-stranded nucleotides with little
sequence specificity+ In the absence of substrate, this site

presumably binds a single-stranded region in the P RNA+
This proposed positioning of the P protein/P RNA con-
tact in the dimer suggests that the affinity of substrates
and products should be affected by dimerization+

Different oligomers form when the cognate B. subtilis
P RNA is replaced with the noncognate, E. coli M1
RNA (Fig+ 4, right)+ The initial binding of the P protein to
M1 RNA or to P RNA is probably similar, as suggested
in numerous studies (Guerrier-Takada et al+, 1983;
Reich et al+, 1988; Talbot & Altman 1994a)+ However,
due to the variation in the shape of these RNAs, the
subsequent binding event probably does not occur sym-
metrically for the noncognate E. coli M1 RNA–P pro-
tein complex+ Nonsymmetric interactions between (M1
RNA)1(P protein)1 and (P RNA)1(P protein)1 complexes
would not enable both RNAs to interact with both pro-
teins simultaneously+ Each P protein is free to interact
with a third RNA, leading to aggregation, rather than to
well-defined oligomeric species+

The dimerization of P RNA in the holoenzyme signif-
icantly affects the interpretation of previously published
in vitro studies of the RNase P holoenzyme (Talbot &
Altman, 1994a, 1994b; Loria et al+, 1998;Gopalan et al+,
1999; Biswas et al+, 2000)+ Published protein–RNA af-
finity measurements are certainly affected by formation
of a holoenzyme dimer+ Furthermore, dimerization could
significantly influence the interpretation of experiments
designed to identify P protein-binding sites+ For exam-
ple, the P protein footprint on P RNA is much larger
than expected for the small size of the P protein+ Our
data suggests that some of the footprint may be de-
rived from intersubunit RNA–RNA interactions formed
upon dimerization+ Likewise, chemical crosslinking be-
tween the protein and the RNA should be reevaluated
because the protein may crosslink to two different RNAs
in the same complex+ Finally,mutational analysis of the
P protein can be complicated due to the potential ef-
fects of the mutant on either P RNA binding or P RNA
dimerization+

Potential function of the P RNA dimer

Several functions can be proposed for the holoenzyme
dimer, depending on the mode of substrate binding+
One can envision that substrate binding may be coop-
erative, either by having two substrate molecules bind
to the dimer or by requiring dissociation of the dimer to
allow substrate binding at either site+ Cooperativity of
this nature could thus promote the specificity of sub-
strate binding and/or fine-tune the regulation by in-
creasing the sensitivity of RNase P activity to the
substrate concentration+ Alternatively, if the specific
structure of the P RNA subunits allows binding of only
one substrate molecule at a time, substrate binding
may be linked to the rapid release of the tRNA product,
thus facilitating the turnover of the RNase P reaction+A
third potential function is the ability of the holoenzyme

FIGURE 4. A model of the topological specificity of the B. subtilis
holoenzyme+ Binding of the 59 leader binding site of the P protein to
a putative single-stranded region in the P RNA can occur symmet-
rically, so that the cognate P RNA–P protein complex is a dimer+ The
same binding event for a noncognate RNA–P protein complex is not
symmetric and both RNAs cannot bind to the same two P proteins,
resulting in an aggregate+
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to process non-tRNA substrates that require a larger
binding surface+A particular example may be the B. sub-
tilis homolog of the SRP RNA, which is much more like
the eukaryotic version (;300 residues) than the E. coli
4+5 S RNA (;120 residues)+ Determination of the func-
tion of the holoenzyme dimer is being actively pursued
in our laboratories+

MATERIALS AND METHODS

Preparation of RNA and the B. subtilis
P protein

RNAs were obtained by standard transcription using T7 RNA
polymerase (Milligan & Uhlenbeck, 1989)+ The E. coli M1
RNA was obtained from a construct described previously
(Harris et al+, 1994)+ The S. cerevisiae P RNA construct
contained the full-length P RNA as described in Tranguch
& Engelke (1993)+ The P protein was prepared from an
overexpression clone using the protocol described previ-
ously (Niranjanakumari et al+, 1998a)+ The concentration of
the P protein was determined by dye binding using bovine
serum albumin as a standard or by absorbance at 280 nm
in 5 M guanidinium hydrochloride using an extinction coef-
ficient of 5120 M21 cm21 (Niranjanakumari et al+, 1998a)+
The concentration of the P RNA was determined by absor-
bance at 260 nm in 50 mM NH4OAc using an extinction
coefficient of 3+46 3 106 M21 cm21+ This extinction coeffi-
cient has been corrected for the hypochromicity effect by
measuring the absorbance after complete digestion of the
P RNA with nuclease P1+

Small-angle X-ray scattering

SAXS experiments were carried out at the SAXS instrument
on the BESSRC ID-12 beam-line of Argonne National Labo-
ratory’s Advanced Photon Source (Seifert et al+, 2000)+ Data
were collected using a 9-element (15 3 15 cm) mosaic CCD
area detector and exposure times were 1–6 s for each mea-
surement+ Sample to detector distance was 3 m and energy
of X-ray radiation was set to 13+5 keV+ Computer-controlled
Hamilton brand syringes injected sample into a thermostated
flow cell made of a 1+5 mm diameter cylindrical quartz cap-
illary+ The background scattering was from a buffer solution in
the identical configuration+ To reduce the possibility of radia-
tion damage, samples were measured under constant flow
conditions+ SAXS data are presented as the scattering inten-
sity per solid angle, I(Q), where the scattering vector Q, is
defined as 4p sin u/l, l is the X-ray wavelength, and u is the
half scattering angle+ The P(r) functions were calculated ac-
cording to

P(r) 5
1

2p2 E
Qmax

Qmin

I (Q)Q sin(Q) dQ (1)

using the indirect Fourier inversion algorithms developed by
Moore (1980)+ The Rg was determined from the second mo-
ment of P(r) according to

Rg
2 5

E
0

dmax

r 2P(r) dr

2 E
0

dmax

P(r) dr

(2)

No significant differences were observed for the Rg values
determined from the P(r) analysis and Guinier analysis (data
not shown)+

Formation of the (P 32P Pbiotin )(P protein) 2

heteroholoenzyme

P32P and other radioactively labeled RNAs were obtained
by standard transcription using T7 RNA polymerase in the
presence of a-32P-CTP+ Pbiotin was obtained in two steps+
First, N6(aminohexyl)adenosine-59, 39 bisphosphate (Sigma-
Aldrich, St+ Louis, Missouri) was ligated to the 39 end of the
nonradioactive P RNA using T4 RNA ligase (England et al+,
1980)+ The ligated product was extracted with phenol/
CHCl3 and precipitated with ethanol+ Next, the RNA was
redissolved in 50 mM NaHCO3, pH 8+5, and 39 mg/mL
sulfosuccinimidyl 2-(biotinamido)-ethyl-1,3-dithiopropionate
(NHS-SS-biotin, Pierce, Rockford, Illinois)+ The reaction mix-
ture was incubated at ambient temperature for 1 h and the
biotinylated RNA product was purified on an 8% polyacryl-
amide gel containing 7 M urea+

In the affinity retention experiment, P32P (or other radio-
actively labeled RNAs) and Pbiotin were mixed at desig-
nated ratios after the renaturation step and prior to the
addition of the P protein+ The total P RNA concentration
was kept constant at 0+1 mM+ The holoenzyme was recon-
stituted as described previously (Loria et al+, 1998)+ Briefly,
the RNA mixture was heated in Tris-HCl at 85 8C for 2 min,
followed by incubation at room temperature for 3 min+ MgCl2
was added at designated concentrations and the RNA was
further incubated at 50 8C for 5 min+ NH4Cl and P protein
were added and the mixture incubated at 37 8C for 2 min+
The final condition was 50 mM tris-HCl, pH 7+5, 10 mM
MgCl2, 0+1 M NH4Cl (buffer A) with 0+1 mM total P RNA
and 0+1 mM P protein+ The holoenzyme mixture (50 mL)
was immediately combined with 50 mL Streptavidin para-
magnetic particles (Promega, Madison, Wisconsin) pre-
equilibrated with buffer A+ After 3 min incubation at room
temperature, the supernatant was removed and the parti-
cles washed with an equal volume of buffer A+ The P32P in
the (P32P Pbiotin)(P protein)2 complex was eluted by the ad-
dition of 10 mL of 50 mM Tris-HCl, pH 7+5, 0+1 M NH4Cl,
50 mM EDTA to the particles+ The eluted mixture was an-
alyzed on denaturing polyacrylamide gels+

Three types of (P RNA)2(P protein)2 complex are formed in
the presence of P32P, Pbiotin, and P protein: (P32P P32P)(P pro-
tein)2, (P32P Pbiotin)(P protein)2, and (Pbiotin Pbiotin)(P protein)2+
The proportion of these complexes is directly related to
the fraction of P32P ([P32P]/([P32P] 1 [Pbiotin]) 5 x) and Pbiotin

([Pbiotin]/([P32P] 1 [Pbiotin]) 5 1 2 x) as x 2, 2x(1 2 x), and
(1 2 x)2, respectively+ Only the (P32P Pbiotin)(P protein)2 com-
plex is detected in the affinity retention experiment+ There-
fore, the amount of P32P eluted (counts per minute in arbitrary
unit) is a function of the P32P fraction:

P32P bound 5 A * 2 * x * (1 2 x), (3a)
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where A is a constant related to the amount of radioactivity
and exposure time in each experiment+ For an aggregate
containing one Pbiotin and one or multiple M132P, this equation
can be modified to

M132P bound 5 ( Ai * (1 2 x) * x i (3b)

The relative affinity of the M1 RNA, S. cerevisiae RNase
P RNA, and the Tetrahymena group I ribozyme was calcu-
lated as follows+ First, the background of P32P binding to the
streptavidin bead in the absence of Pbiotin was subtracted
from the amount of P32P bound in the presence of Pbiotin+ This
amount of the holoenzyme dimer (y axis) can be expressed
as a function of [nonradioactive RNA]/([P32P] 1 [Pbiotin]) 5 x
according to

y ' B/(1 1 (KP RNA /Kother RNA) * x)2 (4)

where KP RNA/Kother RNA is the relative affinity of the P protein
binding to P RNA and to another RNA+ B is a constant related
to the amount of radioactivity and exposure time used in each
experiment+

Molecular modeling

Calculations of P(r) function from predicted models were con-
ducted using the program XTL modified for use with nucleic
acids (Thiyagarajan et al+, 1996)+ The P RNA with the ex-
tended P1 region was built based on the structural model by
Westhof and co-workers (Massire et al+, 1998)+ Seventeen
nucleotides were added and extended from C4 and A395 in
the helix P1 as an extending stem-loop, forming an energy-
favoring continuous groove surface with the neighboring
helix P19+ The model was then refined by 1,000 steps of
conjugate gradient refinement+
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