
The Negative Binomial and distributions, based on. similar underlying
mathematical models, may be useful in fitting data obtained in bio-
logical and medical research. This article discusses these distribu-
tions and some of the mathematical models, and the application
to some medical data is presented.

SOME APPLICATIONS OF THE NEGATIVE BINOMIAL

AND OTHER CONTAGIOUS DISTRIBUTIONS

John Gurland, Ph.D.

1. Introduction

ANY OF THE statistical technics for
the analysis of experimental data

based on samples from Normal popula-
tions are sufficiently well developed to be
regarded as standard tools. In fact, it
is not uncommon practice for data from
non-Normal populations to be trans-
formed in order that the resulting dis-
tribution be sufficiently close to Normal
for the standard technics to be applica-
ble.
Much of the experimentation in the

biological and medical sciences pertains
to statistical distributions which are far
from Nornal. In fact, the distributions
may be discrete. For example, the data
may be numbers of insects on plants, or
numbers of defective teeth in people's
mouths, or numbers of sicknesses suf-
fered by industrial workers. Even if we
should try to approximate the distribu-
tion of numbers of defective teeth, say,
by a continuous curve, its shape would
in general be far from that of the Nor-
mal frequency curve.

There are, of course, continuous dis-
tributions which are also distinctly non-
Normal. A typical example in the medi-

cal sciences is the distribution of survival
times of patients cured by cancer ther-
apy (cf. Boag1). Although continuous
non-Normal populations are widely ap-
plicable and are of interest in them-
selves, they will not be included within
the scope of the present paper. Our
attention will be focused upon such dis-
crete distributions as the Negative Bi-
nomial and other contagious frequency
distributions. The concept of contagion
with respect to frequency distributions
will be described below.

2. The Negative Binomial Distribution
(Pascal Distribution)

2.1 Preliminary Remarks and
Background
Among the most well known discrete

distributions are the Binomial, the Pois-
son, and the Negative Binomial. The
theoretical connections between these dis-
tributions are so close that it is hardly
convenient to discuss any one of them
without referring to the others.
The Binomial distribution is ascribed

to Jakob Bernoulli2 who investigated it
in some detail. It is called the Binomial
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distribution because its probabilities
may be obtained from the terms in the
expansion

(q +p)n= qn+nqn-lp+ 2( )qn-2p2

+ . +n(n-1) (n-2) ... (n-r+l)qn-rpr
+ +pn (1)

Here p(O<p<l) is the probability of
a "success" in each trial, q =l-p is the
probability of a "failure," and n is the
number of independent trials. The no-
tation r! represents (r) (r-1) (r-2) ....

(3) (2) (1) and the Binomial coefficients
appearing in (1) are usually written as

n _n(n-1) .... (n-r+l)
r r! (2)

Thus, the probability that a Binomial
variate X, say, assumes the value r is
given by

P {X=r = (n)prqn-r r=0, 1, 2, ... , n (3)

An example of a fit of the Binomial
to an observed distribution is shown in
Table 1. The data are from Eisenhart
and Wilson3 and give the number of
monocytes in 100 blood cells of a cow in
113 successive weeks. The observed fre-
quencies appear in the second column
and the expected frequencies based on
a Binomial distribution appear in the
third column. Some remarks on the
methods of fitting a theoretical to an ob-
served distribution will be made in Sec-
tion 3. For the present it suffices to
note there is at least some correspond-
ence between the observed and the theo-
retical distributions in the second and
third columns, respectively.
The Negative Binomial distribution is

so called because the probabilities can
be obtained from the terms in the ex-
pansion

(q p)-k=qk[ ±+kP+k(k2+1)(r) +....
+k(k+1) ... (k+r-1) (P)r+....] (4)

where p>O, k>O, and q=l+p. Thus,
the probability that a Negative Binomial
variate X assumes the value r is given by

P{X=r } =(1)kk(k+1) r!. (k+r-1)(p)r

r=0, 1, 2, . . . (5)

The following interpretation of this
probability term is possible. If we im-

agine independent trials with 1 as the
q

probability of a "success" and P as the
q

probability of a "failure," then the ex-
pression in (5) is the probability that
r + k trials will be required to obtain k
successes. Although this interpretation
requires that k be a positive integer,
there are interpretations arising from
other mathematical models underlying
this distribution which require merely
that k be positive.
The Negative Binomial was formulated

by Montmort4 in 1714. Feller5 calls the
distribution given by (5) with k a posi-
tive integer a Pascal distribution in ref-

Table 1-Number of Monocytes in 100
Blood Cells of a Cow in 113 Successive
Weeks (Data from Eisenhart and Wil-
son3)

Monocytes
in 100 Observed Expected Expected

Blood Cells Frequency Frequency Frequency
r f (Binomial) (Poisson)

0 0 0.2 0.3
1 3 1.5 1.7
2 5 4.8 5.2
3 13 10.0 10.3
4 19 15.3 15.4

5 13 18.7 18.3
6 15 18.7 18.1
7 12 15.9 15.4
8 10 11.7 11.5
9 11 7.6 7.6

10 7 4.4 4.5
11 3 2.3 2.5
12 2 1.1 1.2
13+ 0 0.8 1.0
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Table 2-Distribution of Dental Caries in 12-Year-Old Children. Number
of Smooth Surface Cavitation Counts (Data from Grainger and Reid8)

Expected
Count Observed Expected Expected Frequency

Per Child Frequency Frequency Frequency (Poisson v
r f (Pascal)* (Pascal) t Ar Pascal)

0 63 52.6 61.2 100 57.9
1 29 31.6 29.2 71 26.7
2 12 21.5 18.8 59 19.6
3 15 15.2 13.1 44 14.8
4 8 11.0 9.6 36 11.1

5 9 8.0 7.1 27 8.4
6 5 5.9 5.4 22 6.3
7 4 4.4 4.1 18 4.7
8 6 3.2 3.2 12 3.5
9 2 2.4 2.4 10 2.6

10 3 1.8 1.9 7 1.9
11 3 1.3 1.6 4 1.4
12 2 1.0 1.2 2 1.0
13+ 2 3.1 4.2 0 2.9

x2 14.2 10.0 10.1
p (x2) 0.22 0.53 0.43

* Determined by method of moments.
t Determined by maximum likelihood.

erence to the mathematician Blaise Pas-
cal.7 By synecdoche we shall often refer
to the Negative Binomial as a Pascal dis-
tribution (cf. Gurland6).
One of the important properties of this

distribution is that its variance (kp +
kp') exceeds its mean (kp). This prop-
erty is sometimes referred to as over-
dispersion.
An example of fitting the Negative

Binomial to an observed frequency dis-
tribution is shown in Table 2. The data
are taken from Grainger and Reid8 on
the distribution of dental caries among
12-year-old school children. The second
column in the table gives the observed
distribution of smooth surface cavitation
counts and the third column the expected
frequencies on the basis of a Negative
Binomial determined by the method of
moments. The fourth column exhibits
the expected frequencies calculated from
a Negative Binomial determined by the

method of maximum likelihood. (Re-
marks on methods of estimating the
parameters of a distribution in attempt-
ing to fit observed data will be made
in Section 3.) It will be noted there
is some correspondence between the
observed frequencies in the second
column and the expected frequencies in
the third and fourth columns. Further,
the correspondence between the observed
distribution and the Pascal distribution
determined by moments does not appear
as close as the correspondence between
the observed distribution and the Pascal
distribution determined by maximum
likelihood.
The relative mathematical simplicity

in computing probabilities based on the
Negative Binomial is probably a con-
tributing factor to its widespread use
as a contagious distribution. Further
aspects of this distribution will be con-
sidered below. We shall now turn our
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attention briefly to the Poisson distribu-
tion.

The distribution known as the Poisson
was considered by Simeon Poisson9 in
1837. This distribution may be regarded
as a limiting case of the Binomial
distribution in (3) by letting n-- ,
p- *O, while keeping np=A, a constant.
The expression in (3) then becomes

P{X=r eX - r=O, 1, 2, .... (6)

It may be remarked that for a Poisson
variate the variance (,A) is equal to the
mean (A) whereas for a Pascal variate
the variance exceeds the mean.
An example illustrating the fitting of

a Poisson distribution to observed fre-
quencies is given in Table 1. These data
were considered above in fitting the
Binomial distribution. If the same data
are fitted by a Poisson distribution, we
obtain the expected frequencies shown in
the fourth column. It will be observed
the expected frequencies corresponding
to the Binomial and Poisson distributions
are very close. This results from the
large value of n (100) and the small
value of p (0.0596) for the Binomial.
The mean of the Poisson is A= np= 5.96.

It may also be remarked that the Pois-
son may be regarded as a limiting case
of the Negative Binomial distribution by
letting k-- ) , p-*0 in (5) while keeping
the mean constant and equal to A, say.

2.2 Apparent Contagion
(Compound Poisson)

It was pointed out by Feller12 there
are two kinds of contagion, which he
refers to as "true contagion" and "ap-
parent contagion."

Apparent contagion is the result of
heterogeneity arising from distributions
on the parameters involved in a popula-
tion. Thus, in the case of the Poisson dis-
tribution (6), if the values of the parame-
ter X are obtained randomly through some
statistical population, the resulting "mix-
ture" of Poisson distributions would af-

ford an example of apparent contagion.
Such a distribution obtained in this man-
ner is called a compound Poisson dis-
tribution (Cf. 12) . This notion was de-
veloped by Greenwood and Yule'3 and
has been widely applied in studies on
accident proneness (cf. Arbous and Ker-
rich'4).

If the parameter A in (6) is a random
variate with a Gamma frequency func-
tion given by

( ) adCe-axx,6-1 x>0, a>°, ,#>0 (7)r (o)
the resulting compound Poisson distribu-
tion can be shown (Cf. 6) to have prob-
abilities of the form

P{ X =r }=(+1) * * (+r-1)
r!

( a 1 r

1+aJl+aJ
(8)

On setting ,Bk, p , and q=l+", itis

evident that (8) becomes identical with
(5), the probability corresponding to a
Negative Binomial distribution. Conse-
quently the Pascal may be regarded as
a compound Poisson distribution, wherein
the compounding has been effected upon
the parameter A through a Gamma dis-
tribution. As a matter of interest the
shape of the Gamma frequency curve
(7) has been indicated in Figure 1 for
a few combinations of values of a and ,8.
The Negative Binomial fitted to the

data on dental smooth surface cavitation
counts in Table 2 affords an example of
the possibility of interpreting this dis-
tribution as a compound Poisson. The
distribution might be regarded as arising
from an aggregate of Poisson populations
with mean values following a distribu-
tion of the form (7).

2.3 True Contagion
In the case of true contagion the prob-

ability of a "favorable" event depends
on the occurrence of previous favorable
events. Feller'6 discussed the following
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Figure 1-The Gamma Frequency Function7 for Some Values of a and P

mathematical model due to Polya17
which is based on true contagion and
leads in a relatively simple way to the
Negative Binomial distribution.

Suppose an
which Np are
(p±q=l). n
ball are made

urn contains N balls of
white and Nq are black
successive drawings of a
from the urn under the
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procedure that after each drawing the
ball is replaced and in addition NB balls
of the color last drawn are added to the
urn. Let X denote the number of white
balls in n successive drawings. Then the
probability that X assumes the value r
is given by

P =r=n\p(p+s)(p+28) .... (p+[r-
'( } (r) 1(1 +6) (1 +23) ....

1])q (q +S) (q +23) . . .. (q +[,i-r +1] 6) 9
(1+[n-1]6)

If we let n- , p-* 0, a0. while keep-
ing np=A, na- constant, then (9) be-
comes

P{X=rk(kl) .... (k+r- 1) )r

(10)

On setting x-k, it is evident from (5)

that this is a Negative Binomial distribu-
tion. Thus, two different mathematical
models based on apparent and true con-
tagion, respectively, lead to the Negative
Binomial distribution.
The data in Table 2 also afford an ex-

ample of the possibility of interpreting
the Negative Binomial as arising from
true contagion. For it is plausible to
assume that the presence of a dental
cavity in a child's mouth increases the
probability of another cavity.

In the light of two types of contagion
providing a possible explanation of the
relevance of the Negative Binomial dis-
tribution it is apparently impossible from
the data to distinguish between the two
types. It may be remarked, however,
that in the case of multidimensional
forms of the Negative Binomial some
progress has been made in this direction
(cf. Bates and Neyman,18 Arbous and
Kerrich14). An interesting study on ac-
cident proneness with some applications
of the bivariate Negative Binomial dis-
tribution has been made by Adelstein.19
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2.4 Model of Random Colonies
(Generalized Poisson)
Another widely used mathematical

model which leads to the Negative Bi-
nomial distribution is based on a random
distribution of colonies. As an example,
in counts of soil bacteria in microscopic
fields (cf. Jones, Mollison, and Quen-
ouille20), if the number of bacterial colo-
nies per field follows a Poisson distribu-
tion and the number of bacteria per
colony a Logarithmic distribution, then
the distribution of bacteria per field is a
Negative Binomial.
An example which occurs in ento-

mology is concerned with the counts of
larvae over the plots in a field (cf. Ney-
man,21 Skellam,22 Evans23). The larvae
are hatched from egg masses which ap-
pear at random over the field. If the
number of egg masses represented on a
plot under observation follows a Poisson
distribution, and if the survivors from
the egg masses follow a Logarithmic dis-
tribution, then the resulting distribution
of larvae on plots will be a Negative
Binomial.

In technical terms, on the basis of the
above model, the Negative Binomial may
be referred to as a generalized Poisson
distribution (cf. Feller'2) in which the
"generalizer" (cf. Gurland") is a Loga-
rithmic random variable.
The Logarithmic distribution referred

to above has probabilities which are the
terms in the logarithmic series

-alog(1-r)=a[r+ + + *-. -1 (11)

where O<T<l and al0g(I-T) = -1.
Thus, for a Logarithmic random variable

X, say, P tX=O} 0 and

(12)P{ X=r}a-; r=l, 2.

This distribution is ascribed to Fisher'0
and is usually written in a form such as

(12) in which the zero count (corre-
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sponding to P {X = 0) is excluded. It

can be shown that this distribution is
actually a limiting case of the Negative
Binomial when k-)0 and the zero count
is excluded.
A Logarithmic distribution in which

the zero count is not excluded has been
considered by Katti and Gurland.'5

There are other models besides those
considered in 2.2, 2.3, and the present
section which lead to the Negative Bi-
nomial distribution (cf. Anscombe,24
Kendall25) but which are omitted here
for brevity.

3. Estimation and Fitting

One of the simplest methods for esti-
mation of the parameters in the Negative
Binomial and other distributions is the
method of equating the first few sample
moments to the corresponding theoretical
moments and solving the resulting equa-
tions for the unknown parameters. This
is known as the method of moments. The
number of moments used is the same as
the number of unknown parameters.

In the case of the Negative Binomial
distribution (5) the equations using the
first two moments are

kp=x; kp(l+p) =s2 (13)

where x, s2 are the sample mean and
variance, respectively, obtained in the
usual manner

N N
Nx= Xix; Ns2 (-x)

i=l i=l

where N is the total number of observa-
tions.

As an example, the observed distribu-
tion in Table 2 yields x = 2.527, s2 =
10.642; and the estimates of p and k
obtained by solving the two equations in
(13) are p=3.210 and k=0.787. These
are the values of the parameters used in
calculating the expected frequencies
shown in the third column of the table.

Another comparatively simple method
sometimes used is to equate the first few
sample frequencies to the corresponding
expected frequencies and solve the re-
sulting equations for the unknown pa-
rameters (cf. 23,24) . This method might
be called the method of frequencies. The
number of frequencies used is, of course,
the same as the number of unknown pa-
rameters.

In the case of the Negative Binomial
distribution, using the first two frequen-
cies, the equations to solve for p and k
become
fo = Nq-k; fi = Nkpq-k-l (14)
where fo, f1 are the observed frequencies
of zero and one counts, respectively.
From the data in Table 2, fo= 63, f1= 29,
and N=163.

Still another relatively simple method
sometimes used is to equate the first few
sample moments and sample frequencies
to the corresponding theoretical mo-
ments and frequencies. This is, in effect,
a combination of the method of moments
and the method of frequencies. Again,
of course, the number of equations to
be solved must be the same as the num-
ber of unknown parameters.
The efficiency of the above methods

will depend on the true values of the pa-
rameters to be estimated. These meth-
ods may be reliable in some cases and
unreliable in others (cf. Fisher,39 Ans-
combe,24 and Evans23) but are used when
a simple method of estimating is desired.
A fully efficient method of estimating

the parameters is the procedure known
as maximum likelihood (cf. Fisher26) .

The required computations are usually
not as simple as for the preceding meth-
ods, but the method of maximum likeli-
hood is used when it is desired to ex-
tract all the possible information from
the data. In the case of the Negative
Binomial the equations to be solved for
p and k are (cf. Fisher27)

=Nlog l+p; x=kp (15)
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where Ar fr+1+ fr+2 + -..- and the fr
are the observed frequencies.
The first equation in (15) requires an

iterative procedure for its solution (cf.
Bliss28). For the data in Table 2 the
values of Ar are shown in the fifth col-
umn and the solution of (15) is p=
4.299, k =0.588. The corresponding fre-
quencies based on this Negative Bi-
nomial are shown in the fourth column
of Table 2.

It may be remarked that the method
of estimation known as minimum x2 (cf.
Cramer29, Neyman30) will also yield esti-
mators efficient in the same sense as
those obtained by maximum likelihood.
Usually the required computations are
also rather involved as in the case of
maximum likelihood, but in some in-
stances the computations are simpler. As
an example of the application of the
minimum x2 method to some other dis-
tributions the reader is referred to Berk-
son. 31'32
A criterion commonly used for testing

the goodness of fit to the observed fre-
quencies by a theoretical distribution is
the x2 statistic,

2 (observed -expected) 2 (16)expected

due to Karl Pearson.33 If the value of
this statistic turns out to be not unduly
large in the sense that the probability
of obtaining at least such a value is
above 5 per cent, the fit is not consid-
ered unsatisfactory. This does not, how-
ever, necessarily imply acceptance of the
hypothesis of the given theoretical dis-
tribution (cf. Cochran34) especially if
the data are scanty, but should rather
be interpreted cautiously as some evi-
dence in favor of the hypothesis tested.
The x2 statistic is also sometimes used

to compare the closeness of fit to an ob-
served frequency distribution by several
different theoretical distributions (cf.
Bliss,28 Maguire, Brindley, and Ban-
croft'36 Beall and Rescia35 ). If the x2

value using one distribution is consist-
ently smaller than the value using an-
other, this would suggest grounds for
preferring the one distribution to the
other, but again one should be cautious
in making this inference.
To provide an illustrative example of

the use of the x2 statistic, we return
again to Table 2. For a fit by the Pascal
distribution based on the method of mo-
ments the x2 statistic has the value 14.2.
To obtain the probability of getting a
value at least as large as this, we refer
to a table of the x2 distribution (cf.
Cramer33) and find the probability cor-
responding to 11 (i.e., 14-3) degrees of
freedom. The number of degrees of free-
dom is obtained by subtracting from the
number of categories (14) one plus the
number of parameters estimated. This
leads to a probability value of approxi-
mately 22 per cent as shown at the foot
of the third column in Table 2. The
corresponding x2 value using a fit based
on maximum likelihood is 10.0 and the
probability is accordingly 53 per cent.
The decrease in the x2 value for the fit
based on maximum likelihood is sub-
stantial. The fits based on both the above
methods are not rejected, although the
fit based on maximum likelihood ap-
pears preferable.
The distribution of the x2 statistic

(16) is really not exactly that of a x2
random variable; and especially for
probabilities corresponding to the tail of
the distribution some care is required in
carrying out the test. Some writers
recommend pooling frequencies of cate-
gories which have fewer than five or ten
observations, but the inflexible use of
this rule may be harmful (cf. Cochran34) .

4. Other Contagious Distributions

It has been pointed out that the Nega-
tive Binomial distribution may be re-
garded as a compound Poisson (Section
2.2) or as a generalized Poisson distribu-
tion (Section 2.4). In the notation used
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by Gurland6 the Negative Binomial can
be expressed as follows:
Poisson A Gamma

(Compound Poisson) (17)
Poisson v Logarithmic 18

(Generalized Poisson) (1)
The symbol A signifies that the Pois-

son distribution preceding it is being
compounded and that the Gamma dis-
tribution succeding it is employed as a
"compounder" on the parameter A, say,
of the Poisson. As an example of a dif-
ferent compounder
Poisson A Poisson (19)

signifies that the parameter in the Pois-
son on the left of A itself follows a Pois-
son distribution (distribution on the
right of A). This compound Poisson dis-
tribution given by (19) is known as the
Neyman Type A distribution (cf. Fel-
ler,12 Neyman21 ) and has been used
widely in fitting entomological data (cf.
Beall37).

Other examples of compound distribu-
tions are
Binomial A Poisson (20)

Pascal A Poisson (21)

The distribution in (20) is a com-
pound Binomial with the Poisson dis-
tribution as a compounder, and the dis-
tribution in (21) is a compound
Negative Binomial with the Poisson dis-
tribution as a compounder. To avoid
ambiguity in (20) and (21) as regards
which parameters are involved in the
compounding process, we might write

Binomial A Poisson and Pascal A Pois-
n k

son, respectively, to emphasize that it is
the parameter n in (3) and the parame-
ter k in (5) which follows the Poisson
distrbution as the compounder in these
distributions.
The symbol v in (18) signifies that

the Poisson distribution which precedes
it is generalized through the Logarithmic

distribution which succeeds it. In terms
of the descriptive language employed in
Section 2.4 we can interpret (18) by
saying the Poisson distribution preced-
ing v is the distribution of colonies and
the Logarithmic distribution succeding v
is the distribution of individuals per
colony. Some examples of other gen-
eralized Poisson distributions are

Poisson v Poisson (22)

Poisson v Binomial (23)

Poisson v Pascal (24)

As Feller'2 has pointed out, the gen-
eralized Poisson in (22) is also a Ney-
man Type A distribution. By a theorem
in Gurland6 it can readily be seen that
the compound Binomial in (20) and the
generalized Poisson in (23) are the same
form of distribution; further, the com-
pound Pascal in (21) and the gener-
alized Poisson in (24) are the same form
of distribution. Thus, the models in Sec-
tions 2.2 and 2.4 are equivalent, in a
certain sense, for the class of distribu-
tions considered by Gurland.6
Some examples of fitting other con-

tagious distributions than the Negative
Binomial are presented in Tables 2 and
3. In Table 2, the sixth column shows
the expected frequencies on the basis of
a Pascal A Poisson distribution fitted to
the data. As shown at the foot of the
sixth column the x2 statistic has the
value 10.1; and the corresponding prob-
ability obtained from the x2 distribution
with 10 degrees of freedom is 43 per
cent.

It may be remarked that the method
used in estimating the three parameters
in the Pascal A Poisson distribution was
as follows: The first two sample moments
were equated to the first two theoretical
moments, and the ratio fl/fo of the first
two observed frequencies was equated to
the corresponding ratio of theoretical
frequencies. This is a combination of
the method of moments with a modifica-
tion of the method of frequencies. For
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this distribution the method is much
simpler than the method of maximum
likelihood; further, as apparent from
Table 2 the fit is about as close as that
accomplished by the Negative Binomial
distribution based on maximum likeli-
hood.
On assumption of a Pascal A Poisson

distribution underlying these data two
interpretations, inter alia, are possible.
First, the distribution of smooth surface
cavitation counts per child may be re-

Table 3-Sickness Distribution of
Data from Adelstein19

garded as a compound Pascal with the
different values of k following a Poisson
distribution. A second interpretation re-
gards the Pascal A Poisson as a Poisson
v Pascal. Under this interpretation the
number of defective teeth per child (cf.
colonies per field) could be regarded as
following a Poisson distribution, and the
number of carious smooth surfaces per
defective tooth (cf. individuals per colo-
nies) could be regarded as following a
Pascal distribution.

302 Shunters for Period 1943-1947

Expected Expected
Number of Observed Expected Expected Frequency Frequency
Sicknesses Frequency Frequency Frequency (Neyman (Binomial

r f (Pascal) * (Pascal) t Type A) Poisson)

0 25 8.1
1 7 15.3
2 15 20.4
3 23 23.3
4 23 24.5

5 22 24.4
6 18 23.4
7 19 21.8
8 22 19.9
9 23 17.8

10 14 15.7
11 12 13.7
12 17 11.9
13 11 10.2
14 6 8.7

15 10 7.3
16 3 6.2
17 , 5.2
18 3 4.3
19 4 3.6

20
21
22
23
24
25+

x2x
p (X2)

1 3.0
4 2.5
4 2.0
3 1.7
3 1.4
3 5.7

60.6
0.001

11.6
18.6
22.3
23.9
24.0

23.1
21.7
20.0
19.0
17.0

15.1
13.2
11.5
10.0
8.7

7.4
6.4
5.4
4.6
3.9

3.3
2.8
2.4
2.0
1.7
2.4

40.7
0.01

28.0
8.1

14.7
19.2
21.0

21.2
20.9
20.3
19.4
18.1

16.6
14.9
13.2
11.5
9.9

8.4
7.1
5.9
4.9
4.0

3.2
2.6
2.0
1.6
1.3
4.0

18.7
0.72

20.5
5.8

13.9
20.3
21.8

21.6
22.2
22.7
21.8
20.1

18.3
16.4
14.3
12.2
10.3

8.5
7.0
5.6
4.4
3.5

2.9
2.1
1.6
1.2
0.9
2.1

26.7
0.22

* Determined by method of moments.
t Determined by maximum likelihood.
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A further example is afforded by the
data in Table 3 giving the frequency of
sicknesses among 302 railway shunters
over the period 1943-1947. These data
are taken from Adelstein.19 The second
column of Table 3 shows the observed
frequencies and the third column the
expected frequencies based on a Nega-
tive Binomial determined by the method
of moments. The fourth column shows
the expected frequencies based on a
Negative Binomial determined by the
method of maximum likelihood and the
fifth column shows the expected frequen-
cies based on a Neyman Type A distribu-
tion determined by the method of mo-
ments. The sixth column shows the ex-
pected frequencies based on a Binomial
A Poisson determined by the method of
moments with the parameter n taken as
7.

It is apparent from these results the
Negative Binomial provides a poor fit
even when determined by maximum
likelihood. On the basis of the x2 statis-
tic the Binomial A Poisson provides a
better fit and the Neyman Type A the
best fit. A possible explanation of the
poor fit by the Pascal distribution is its
unimodality and the multimodality of
the observed frequency distribution, with
modes at r=0, 3, 4, 9, and so forth. The
Binomial A Poisson and the Neyman
Type A are, for certain values of the pa-
rameters, multimodal distributions and
hence better adapted to situations of this
kind.

Conclusion

The Negative Binomial and other dis-
tributions based on' similar underlying
mathematical models may be effective in
fitting various types of data arising in
biological and medical research. One
may ask, of course, what is the purpose
of trying to fit data by distributions such
as those considered.

In the case of samples obtained from
a population in which Normality is as-

sumed the statistical tests performed do
not usually include a test of fit because
of the experience of a reasonably good
fit by the Normal distribution. Further-
more, many statistical tests based on
Normal theory enjoy the property of
robustness (cf. Box38) which implies
only slight distortions in the behavior of
the tests when the underlying population
is non-Normal.

In the case of data from discrete dis-
tributions fitting may be desirable to
verify the form of the underlying popu-
lation assumed. With a knowledge of
the underlying population it is possible
at least theoretically to construct tests or
estimate parameters for the purpose of
making statistical inference.

In fitting a distribution to a given set
of biological data, say, it is also impor-
tant for the mathematical model under-
lying the theoretical distribution to have
a reasonable biological meaning. The
contagious distributions, including the
Negative Binomial, offer interesting pos-
sibilities in this direction.

Summary
The Negative Binomial distribution is

discussed in its relation to the Binomial
and Poisson distributions. Some mathe-
matical models which lead to it are also
discussed. These include the compound
Poisson and generalized Poisson distri-
butions, and it is shown how the Gamma
and Logarithmic distributions become
involved in these representations. Fur-
ther, a model based on true contagion
is shown to yield the Negative Binomial
as a limiting case. Other compound and
generalized distributions distinct from
the Negative Binomial, but based on
some of the models which lead to it, are
presented and fitted along with the Nega-
tive Binomial to some medical data. A
few remarks on estimation and fitting
are also included.
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