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Summary

Studies of the genetics of certain inherited diseases re-
quire expertise in the determination of disease status
even for single-locus traits. For example, in the diagnosis
of autosomal dominant limb-girdle muscular dystrophy
(LGMD1A), it is not always possible to make a clear-
cut determination of disease, because of variability in
the diagnostic criteria, age at onset, and differential pres-
entation of disease. Mapping such diseases is greatly
simplified if the data present a homogeneous genetic trait
and if disease status can be reliably determined. Here,
we present an approach to determination of disease
status, using methods of artificial neural-network anal-
ysis. The method entails “training” an artificial neural
network, with input facts (based on diagnostic criteria)
and related results (based on disease diagnosis). The net-
work contains weight factors connecting input “neu-
rons” to output “neurons,” and these connections are
adjusted until the network can reliably produce the ap-
propriate outputs for the given input facts. The trained
network can be “tested” with a second set of facts, in
which the outcomes are known but not provided to the
network, to see how well the training has worked. The
method was applied to members of a pedigree with
LGMD1A, now mapped to chromosome 5q. We used
diagnostic criteria and disease status to train a neural
network to classify individuals as “affected” or “not
affected.” The trained network reproduced the disease
diagnosis of all individuals of known phenotype, with
98% reliability. This approach defined an appropriate
choice of clinical factors for determination of disease
status. Additionally, it provided insight into disease clas-
sification of those considered to have an “unknown”
phenotype on the basis of standard clinical diagnostic
methods.
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Introduction

Study of the genetics of inherited diseases usually re-
quires expertise in the determination of disease status,
even if the disease is genetically determined by alleles at
a single locus. Such is the case with autosomal dominant
limb-girdle muscular dystrophy (LGMD), in which
many clinical features help determine disease status
(Gilchrist et al. 1988). It is not always possible to make
a clear determination of affected status, because of var-
iability in the diagnostic criteria, variable age at onset,
and different presentations of the disease. To map the
loci of such diseases, it is important to ensure that there
is a high probability that one is dealing with a homo-
geneous genetic trait and that disease status can be de-
termined with a high level of reliability. One way to
ensure a homogeneous genetic trait is to identify large
pedigrees with many living relatives. Gilchrist et al.
(1988) identified such a large, multigenerational pedi-
gree with apparent autosomal dominant inheritance of
LGMD. This family presents a rare form of LGMD,
since, in most cases, the disease occurs either sporadi-
cally or as an autosomal recessive trait. The original
study of this family included clinical and genetic infor-
mation on 144 individuals, 115 of whom were alive. At
that time 61 individuals had been examined, resulting
in the diagnosis of 16 affected individuals; there were
also 8 individuals who were probably affected but who
had not yet been examined. Linkage analysis by Speer
et al. (1992) mapped an LGMD gene, designated
“LGMD1A” (MIM 159000), to chromosome 5q. In that
study, the total number of individuals who had been
examined had increased to 218. There were still a num-
ber of individuals for whom disease status could not be
determined. An attempt was made (Speer 1993) to use
pedigree-discriminant analysis (Goldin et al. 1980) to
determine the relative importance of diagnostic criteria
in determination of disease status, in the hope that such
an analysis might aid in resolving the status of those
considered to have an “unknown” phenotype; but the
results were unclear.

We have now looked at an alternative approach to
classification of disease status, by application of methods
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of artificial neural-network analysis to the data available
on the pedigree. A neural network can be thought of as
a highly interconnected set of nodes or neurons that
process information in parallel. Artificial neural net-
works are based on the current understanding of bio-
logical neural networks. In artificial networks, all “neu-
rons” at a particular level in the network interact with
all neurons at the subsequent level. By “training” such
a network with a given input set of facts and related,
specified “ideal” output values, the strengths (weights)
of connections between neurons are adjusted until the
network can, with some reliability, produce output val-
ues that are acceptably close to the ideal output values
for a set of input facts. The network can then be “tested”
with a second input set of facts, in which the ideal output
values are again known but are not provided to the
network. By comparing the generated output values with
the ideal output values in this second set, we can evaluate
how well the training has worked. When such a network
is acceptably trained and tested, it can be used to provide
output values for input sets when the “ideal” output
values are not known. The basic idea is that pattern
matching can be “learned” and then used to provide a
reasonable output value when “similar” patterns are en-
countered. A more detailed presentation of neural-net-
work structure and theory, as used in this article, can be
found in the Appendix.

We have applied methods of neural networks to in-
formation on the biologically related members of the
LGMD1A (MIM 159000 [http://www.ncbi.nlm.nih.gov/
omim]) pedigree mentioned above for whom diagnostic
criteria and disease status were available. The goal was
to “train” a network to classify, with a high level of
reliability, individuals as “affected” or “not affected.”
With a reliably trained neural network, we are able to
gain insight into disease classification of those designated
as having an unknown disease phenotype, as well as to
offer a confirmation of the ability of a set of clinical
factors to “objectively” determine disease status.

On the basis of the strategies described below, we were
able to correctly classify x98% of the individuals of
“known” phenotypes, using a set of trained neural net-
works. The trained networks were also used to classify
individuals who have an unknown disease phenotype,
and those results are discussed in relation to the current
linkage information in the pedigree.

Subjects, Material, and Methods

Family Data

The family data used come from the LGMD1A family
(family 39) described by Gilchrist et al. (1988), Speer et
al. (1992), and Yamaoka et al. (1994). A figure showing
the pedigree of this family can be found in the work of

Speer et al. (1992). Clinical diagnosis was made by
trained clinicians. The method for determination of dis-
ease diagnosis was described by Gilchrist et al. (1988).
Information was available for analysis on a total of 257
members of the pedigree, with 50 unrelated spouses
(used only as a control group), 65 clinically affected
individuals, 116 clinically asymptomatic individuals,
and 26 individuals for whom disease diagnosis was not
clear enough to make a definite determination. Eleven
input facts, based on diagnostic criteria, were used in
the current analysis (table 1). The diagnostic criteria,
their mean values, and their ranges are given in table 1,
for the individuals classified as affected, as asymptomatic
(“normal”), or as having an unknown disease pheno-
type. The values for the 50 spouses were close to those
of the asymptomatic group and are not included.

DNA haplotypes for markers flanking the LGMD1A
locus (Yamaoka et al. 1994), markers D5S178 and IL9,
were constructed to determine which asymptomatic in-
dividuals or individuals who have an unknown disease
phenotype were likely to carry the LGMD1A gene. The
defined interval spans 7 cM, and thus the probability
for misclassification of disease-gene carrier state is, at
most, .005, which is the probability of a double recom-
bination event in that interval. In cases in which one or
both of these markers were uninformative, markers sub-
sequently identified that more closely define the region
(e.g., markers D5S414, D5S399, and D5S2116) were
used.

Neural-Network Training Strategies

The neural-network design consisted of a three-layer
network: an input layer, with 11 units containing the
information on the diagnostic criteria; a hidden layer,
with 4 units; and an output layer, with a single numeric
code indicating disease diagnosis (Falk et al. 1996). A
FORTRAN program, NNTRAIN (C. T. Falk, unpub-
lished data), accepts as input the clinical data described
above, for all individuals with known disease phenotype
and, together with information about disease status,
trains a neural network to “learn” the patterns of input
facts associated with diagnoses of affected (coded 0) and
normal (asymptomatic) (coded 1). To train the network,
50 individuals were randomly selected from the set of
181 with known disease status. The training process
continued until the differences between the network clas-
sifications and the clinical diagnoses became acceptably
small, that is, until y! a, where y is the mean squared

error, as defined in the Appendix, and a is a predeter-
mined, small, positive value. Once the network was
trained, the remaining 131 individuals were “tested,” by
means of the trained network. The values generated by
the neural network ranged from 0 to 1. On the basis of
this value, individuals were assigned to the affected or
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Table 1

Average Values, SDs, and Ranges of 11 Diagnostic Criteria Tested in the LGMD
Pedigree

Disease Status and Diagnostic Criterion Average (SD) [Range]

Affected:
Age at onset (years) 39.108 (14.245) [10.00–75.00]
Creatine Kinase 462.538 (444.205) [38.00–2,860.00]
Dysarthria .554 (.501) [.00–.1.00]
Heel-cord contractures .754 (.434) [.00–1.00]
Upper-muscle strengtha 4.588 (.523) [2.50–5.00]
Lower-muscle strengthb 3.735 (1.222) [.20–5.00]
Triceps deep-tendon reflexes 1.185 (.813) [.00–3.00]
Biceps deep-tendon reflexes 1.415 (.855) [.00–3.00]
Brachioradialis deep-tendon reflexes 1.308 (.828) [.00–3.00]
Knee-jerk deep-tendon reflexes .831 (.949) [.00–3.00]
Ankle-jerk deep-tendon reflexes .246 (.626) [.00–2.50]

Asymptomatic:
Age at last diagnosis (years) 28.759 (16.194) [6.00–74.00]
Creatine Kinase 73.224 (38.327) [30.00–318.00]
Dysarthria .000 (.000) [.00–.00]
Heel-cord contractures .009 (.093) [.00–1.00]
Upper-muscle strengtha 4.991 (.036) [4.70–5.00]
Lower-muscle strengthb 4.998 (.074) [4.30–5.00]
Triceps deep-tendon reflexes 1.737 (.538) [.50–3.00]
Biceps deep-tendon reflexes 1.772 (.576) [.00–3.00]
Brachioradialis deep-tendon reflexes 1.716 (.576) [.50–3.00]
Knee-jerk deep-tendon reflexes 1.879 (.518) [.50–3.00]
Ankle-jerk deep-tendon reflexes 1.806 (.600) [.00–3.00]

Unknown:
Age at last diagnosis (years) 25.846 (13.016) [8.00–65.00]
Creatine Kinase 318.077 (427.987) [51.00–2,105.00]
Dysarthria .000 (.000) [.00–.00]
Heel-cord contractures .077 (.272) [.00–1.00]
Upper-muscle strengtha 4.919 (.147) [4.40–5.00]
Lower-muscle strengthb 4.908 (.200) [4.40–5.00]
Triceps deep-tendon reflexes 1.769 (.452) [.50–2.00]
Biceps deep-tendon reflexes 1.885 (.496) [.50–3.00]
Brachioradialis deep-tendon reflexes 1.846 (.485) [.50–3.00]
Knee-jerk deep-tendon reflexes 1.788 (.493) [.00–2.00]
Ankle-jerk deep-tendon reflexes 1.538 (.720) [.00–2.00]

a Includes scores for facial muscles, neck flexors, infraspinatus, deltoids, biceps,
triceps, and wrist extensors. Muscle strength was assessed by manual muscle testing
using the Medical Research Council (MRC) scale (Brooke 1986), in which “5”
represents normal strength and in which “0” indicates no movement.

b Includes scores for iliacus, quadriceps, hamstring, tibialis anterior, and gas-
trocnemius. Muscle strength was assessed by manual muscle testing using the MRC
scale (Brooke 1986), in which “5” represents normal strength and in which “0”
indicates no movement.

normal group. Individuals whose final output values
were X.5 were assigned to the affected group, and those
whose output values were 1.5 were assigned to the nor-
mal group. The neural-network classifications were then
compared with the known clinical diagnoses, to see
whether the network was able to classify disease status
reliably. To account for random fluctuations in the se-
lection of a set of 50 individuals, the process was rep-
licated three times, with different randomly selected
training sets. The results were averaged over the three
replicates, and an individual’s final classification was
based on the averaged result. Once a network had been

trained to an acceptable level of reliability, it was then
used to provide estimated classifications for those of un-
certain disease phenotype. The 26 individuals in the fam-
ily who have an unknown disease phenotype were clas-
sified by means of the three trained networks, and the
results were averaged to provide a neural-network clas-
sification for each individual.

If the data allow for reliable training of a network, it
may be informative to use an alternative training strat-
egy, in which the network is trained by use of all indi-
viduals with known phenotype. This tests the ability of
the trained network to reliably separate the data into
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Figure 1 A, Neural-network classification of disease status for
181 individuals (x-axis) who have a known disease phenotype. Values
(y-axis) are averaged over three trained networks and are 0–1; values
X.5 reflect a neural-network classification of “affected,” and values
1.5 reflect a neural-network classification of “normal” (asympto-
matic). Individuals denoted by a blackened triangle (m) are clinically
affected, and individuals denoted by a circle (V) are clinically asymp-
tomatic. B, Neural-network classification of disease status for 181
individuals who have a known disease phenotype. Values are based
on a single neural network trained on all 181 individuals.

the two classes, affected and normal. Such a trained
network can no longer be “tested” on external data with
known output values, but it can still be used to classify
the set of “unknowns.” Both of the described approaches
were taken, and the results are compared below.

Results

Known Disease Phenotypes

Neural-network training was performed as described
above, on the basis of diagnostic criteria and disease
status for the 181 individuals of known disease phe-
notype. In the three networks trained with 50 randomly
selected individuals, the success rate in classification of
the other 131 individuals of known phenotype was
91%–97%; that is, 3–11 individuals were misclassified
in each separate run. When the results were averaged
over the three replicates, there were only 3 misclassifi-
cations among the 181 individuals, a success rate of
∼98% (fig. 1a). Most individuals have values close to
either 0 or 1, but some are in the intermediate region,
where the classification is uncertain.

If all 181 individuals are used to train the network
and then are reclassified by that network, one can see
whether the data set is truly separable into two classes.
A reliable separation suggests that the training facts (di-
agnostic criteria) are, indeed, relevant to disease classi-
fication. The neural network trained in this fashion cor-
rectly classified 180 of 181 individuals (fig. 1b). Only
three individuals, including the one who was misclas-
sified, are in the intermediate region. The others are
widely separated, clustered around the values of 0 and
1. The network has clearly separated almost all of the
data points unequivocally and correctly.

By way of a control, the 50 unrelated spouses were
classified by the trained neural networks. In all cases and
for both training strategies, all spouses were classified
as normal (data not shown).

Unknown Disease Phenotypes

The 26 individuals who could not be phenotyped by
the clinicians were classified by the three trained net-
works by means of the first strategy described above.
The three resulting values were averaged to give an av-
erage classification for each individual (table 2). For 25
of the 26 individuals who have an unknown disease
phenotype, the haplotype, defined by markers flanking
the LGMD1A gene, is listed in table 2; DNA was not
available for the remaining individual. Those cases in
which there is disagreement between the neural-network
classification and the disease-haplotype designation have
been indicated in a footnote to table 2; these disagree-
ments could be either the result of a misclassification of

the individual or an indication of a recombinational
event. Figure 2a plots the average value generated by
the neural network, for the 25 individuals who have an
unknown disease phenotype but for whom haplotype
information is available. Here, as expected, the results
are not as clear-cut as they are for those of known disease
status. There are six disagreements, and there are many
classification values in the central region, in the .3–.7
range. This is not surprising, considering that the cli-
nicians were unable to make clear determinations as to
disease status. The classification values generated by the
neural network trained on all 181 individuals of known
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Table 2

Average Neural-Network Classification Values, Disease
Designation, and Haplotype, for 26 Individuals Who
Have an Unknown Disease Phenotype

Patient

Average
Classification

Value
Neural-Network

Designation
Haplotype

Designation

3 .033 Affected Disease
5 .269 Affected Disease
9 .342 Affected Disease
11 .492 Affected Disease
19 .164 Affected Disease
20 .334 Affected Disease
26 .325 Affected Disease
8 .423 Affected Normala

12 .328 Affected Normala

6 .979 Normal Unknownb

18 .864 Normal Diseasea

21 .670 Normal Diseasea

22 .972 Normal Diseasea

25 .972 Normal Diseasea

1 .983 Normal Normal
2 .971 Normal Normal
4 .952 Normal Normal
7 .971 Normal Normal
10 .958 Normal Normal
13 .832 Normal Normal
14 .536 Normal Normal
15 .977 Normal Normal
16 .925 Normal Normal
17 .974 Normal Normal
23 .911 Normal Normal
24 .970 Normal Normal

a Disagreement between neural-net designation and hap-
lotype designation.

b No DNA available.

Figure 2 A, Neural-network classification of disease status for
25 individuals who have an unknown disease phenotype. Values are
as described in the legend to figure 1. Individuals denoted by a black-
ened triangle (m) inherited the disease haplotype, and individuals de-
noted by a circle (V) inherited the normal haplotype. B, Neural-net-
work classification of disease status for 25 individuals who have an
unknown disease phenotype. Values (x-axis) are based on a single
neural network trained on all 181 individuals who have a known
disease phenotype.

phenotype give a similar picture (fig. 2b). There are six
disagreements between the neural-network classification
and the haplotype information. The six individuals in-
volved are the same, although their relative positions are
not always the same. There are fewer intermediate values
than before, and there is somewhat better separation
between the classifications.

It is of interest to look at some of the characteristics
of the six discrepant individuals, denoted as “8,” “12,”
“18,” “21,” “22,” and “25” in table 2. Of the six, four
inherited the disease haplotype but were classified as
normal by the neural network. In all four cases, the
creatine kinase (CK) levels were slightly elevated, but all
other measurements were normal. Additionally, all four
are relatively young, 14–18 years of age. The average
age at onset of disease in this pedigree is 39.1 years (SD
5 14.2 years) (see table 1). It is likely that the disease
has not yet manifested itself in these individuals and that,
over time, the diagnostic features will change. In the
other two cases, the individuals inherited the normal
haplotype but were classified as affected by the neural

network. In one case, individual 12, the CK level was
609 U/l, which is well above the range for the asymp-
tomatic class. All other measurements were normal.
Since CK levels are known to be highly influenced by
certain outside factors, such as exercise, this may have
been an aberrant measurement and will be retested. In
the other case, individual 8, the CK level was slightly
elevated, and the measurement obtained for one of the
muscle tests was abnormally low. The classification of
this individual is not robust. The actual numerical values
obtained by use of the two neural-network strategies
(i.e., averaging over three replicates and training on all
individuals whose status is known) are quite different.
Under the first strategy, the numerical value is .423, close
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to the dividing point (see table 2); under the second
strategy, the numerical value is .012. The results for all
six of these individuals who have unknown disease
status suggest that retesting of the relevant diagnostic
criteria would be worthwhile.

Discussion

The determination of disease phenotype in LGMD is
one example that illustrates some of the difficulties in
understanding the fundamental characteristics of com-
plex biological systems. In this case, one is presented
with a set of observable characteristics that seem im-
portant in the classification of individuals into those who
have the disease and those who do not. The classifying
characteristics are such that it is not always possible to
say with certainty whether an individual falls into one
class or the other. In the case of LGMD1A, the disease
phenotype is determined by a single autosomal locus,
and that locus will eventually be found, thereby provid-
ing a reliable indicator of disease status. However, at
this point the diagnosis of affected status is not straight-
forward and complicates the search for the locus. The
beginning of that search, by means of linkage analysis,
requires that we know who has the disease phenotype
and who does not. Without this information, we must
define some individuals as having an unknown disease
phenotype, thus reducing the power of the analysis.

Often, one or more statistical methods are employed
to help determine which characteristics are most im-
portant (and reliable) in the determination of disease
phenotype. One such method, pedigree-discriminant
analysis (Goldin et al. 1980), involves application of
principal-component analysis to a series of clinical var-
iables involved in disease diagnosis. The method at-
tempts to identify a new quantitative “trait” that
captures much of the variance/covariance structure of
the variables. The new trait is then used in segregation
analysis to search for evidence of single-locus segrega-
tion. The approach was applied to the LGMD1A data
(Speer 1993), and no evidence for single-locus segre-
gation was found, although the new quantitative trait
accounted for a high proportion of the variance.

The concept of a neural network clearly has broad
applications. For example, in the context of genetics,
one could envision a neural network trained to recognize
and discriminate between patterns of genetic transmis-
sion in a set of pedigrees. However, the task of devising
and coding the appropriate set of input parameters for
such a network would appear to be substantially more
demanding than the task dealt with in this article. Nev-
ertheless, such applications should become more feasible
as both our knowledge of neural networks and our com-
putational powers increase.

Neural-network methods offer a different way to use

clinical information on diagnostic criteria, to aid in the
reliable determination of disease phenotype. Neural net-
works learn to identify patterns that are important in
the determination of a given output value based on a
set of input parameters. In the setting up and training
of a neural network, it is not necessary to identify, a
priori, which of the many diagnostic criteria or input
parameters are more or less important in the definition
of a given output value. During the process of training,
the network develops “strong” or “weak” connections
that implicitly indicate which factors are important. The
network does not, in its usual formulation, identify ex-
plicitly which factors are, in fact, most important. There
are methods, such as pruning (e.g., see Halkjaer 1996;
Ripley 1996), that make it possible to determine and
eliminate factors that do not contribute to reliable net-
work training. However, such methods might be of lim-
ited use if there are complex interactions between some
of the factors. In the present study we chose not to at-
tempt to determine the relative importance of the avail-
able diagnostic criteria; instead, we wanted to determine
whether a neural network reliably separated individuals
in the pedigree into the two classes, affected and normal
(asymptomatic). Using two different strategies to train
and test, we demonstrated that a neural network could
be trained to perform this task. The results are useful
for several reasons. First of all, they indicate that some
or all of the diagnostic criteria thought to be important
in determination of disease phenotype are, indeed, able
to separate the two groups. Additionally, they give us a
method to study the group of individuals who have been
designated as having an unknown disease phenotype.
The results of the neural-network classifications of these
individuals help identify those cases in which additional
information or reexamination may be worthwhile.

Linkage analysis has now been performed in this ped-
igree, and, for many individuals, it is possible to compare
the neural-network classifications with the presence or
absence of the haplotype thought to be carrying the dis-
ease allele. This information can be used to identify
known recombinants and, thus, to map the disease locus
more precisely. In the case of the 26 individuals who
have an unknown disease phenotype, we cannot know
for certain whether disagreement between the neural-
network classification and disease-haplotype scoring re-
sults from a recombination or from an incorrect clas-
sification. However, the results could be used to give
bounds to the likely location of the disease locus, as long
as the uncertainty of the neural-network classification is
kept in mind.

Since a major goal in the study of a genetic disease,
such as LGMD1A, is to map the locus and to clone the
gene, it is important to have for analysis as much reliable
information as possible. It is therefore not clear exactly
how the information obtained on the individuals who
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have an unknown disease phenotype should be used in
a linkage study, if at all. It is well known that misclas-
sification of only a small number of individuals in a
linkage study can have a major effect on the outcome
of the linkage analysis (e.g., see Kelsoe et al. 1989).
However, once a chromosomal region has been identified
as the site for a locus, cosegregation information on
closely linked markers may make it possible to look
more closely at those individuals who have an unknown
disease phenotype, and they may in fact become useful
when one looks at the fine structure of the region. In
the pedigree used in this study, for example, information
is now available that has made it possible to map the
disease locus and to identify two flanking markers.
Those markers have localized the disease gene to a
7-cM region on chromosome 5q31-q33 (Yamaoka et al.
1994). It is therefore possible to examine in detail the
characteristics of the cosegregation of alleles in the set
of individuals who have an unknown disease phenotype.
Comparison of information obtained from the neural-
network analysis with information on the segregation of
the probable disease haplotype in those individuals can
help confirm disease phenotype, point to possible cross-
over events, and identify individuals whose clinical in-
formation may be unreliable, suggesting that they should
probably be retested for the clinical diagnostic criteria.

Neural-network techniques have been applied to a va-
riety of biological problems, with the aim of answering
very different questions. These include, for example, the
prediction of a drug’s mechanism of action on cancer
cell lines, on the basis of the drug’s pattern of activity
against a panel of malignant cell lines (Weinstein et al.
1992), identification of coding regions in genomic DNA
sequences (Snyder and Stormo 1993), classification of
human chromosomes on the basis of size, shape, and
banding patterns (Sweeney et al. 1994), and diagnosis
of Alzheimer disease or HIV on the basis of measure-
ments of cerebral blood flow or activity (Halkjaer 1996).
The results of these studies illustrate that neural net-
works can be added to the list of computational methods
that may provide answers to some questions about com-
plex biological processes. In problems in which pattern
recognition and data classification can be utilized, neu-
ral-network analysis should be considered along with
other methods.
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Appendix

Neural-Network Structure and Theory

Artificial neural networks were first developed in an
attempt to learn more about the functioning of the brain
and how it trains itself to process information and to
learn (e.g., see Hinton 1992). Very simply, in the human
brain each neuron collects signals from a set of other
neurons, through a series of electrical impulses that ei-
ther excite or inhibit activity in the neuron. When a
neuron receives such signals, it, in turn, processes those
signals and sends out a resulting signal to other neurons.
Learning occurs when these signals are modified so that
the influence of one neuron on others changes. Artificial
neural networks are composed of a set of units organized
into two or more layers, working in parallel, in which
units in each layer are connected, by weighted links, to
all units in the subsequent layer. Each unit converts the
pattern of all incoming “activity,” represented by the
weighted links, into a single outgoing value that is passed
to all units in the next layer. By repeating these processes
from one layer of the network to the next and then
adjusting the weights by factors determined by the dif-
ference between a calculated and a desired output value,
one attempts to train the network to provide the most
reliable set of output values for given input information.

By way of a very simple example, consider the task
of interpretation of the decision of a panel of three
judges. That interpretation will be related to an output
value for the network. The rules for determination of
the output values are as follows: if two or more judges
vote yes (11), then the output is “yes” (11); otherwise,
the output is “no” (21).

Using the step function, andv(x) 5 11 if x x 0
, we define an output function:v(x) 521 if x ! 0 S 5

, where represents the votev(j w 1 j w 1 j w ) j 5 511 1 2 2 3 3 i

of the ith judge and wi is a weight factor associated with
the ith judge’s vote. Thus, an output value is the S value
obtained by application of the step function to the
weighted sum of the judges’ votes.

Consider a set of votes for the three judges: 11, 11,
and 21. If we arbitrarily choose a set of weights,

, , and , then (j1w1 1 j2w2 1 j3w3)w 5 2 w 5 1 w 5 41 2 3

5 21 and , leading to an erroneous out-S 5 v(21) 5 21
put value of “no” (21). If the three weights are w 51

, , , then (j1w1 1 j2w2 1 j3w3) 5 2221 w 5 2 w 5 32 3

and , again leading to an erroneous out-S 5 v(22) 5 21
put value of “no.” However, if the three weights are

, , and , then (j1w1 1 j2w2 1 j3w3)w 5 1 w 5 1 w 5 11 2 3

5 11 and , leading to the output valueS 5 v(11) 5 11
of “yes,” which satisfies the “majority” rule cited above.
By adjusting the weights, we have trained the system to
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Figure A1 a, Illustration of a simple two-layer neural network
with three input units, xi. The input units are connected to the single
output value, y, by means of the weights, wi. b, Illustration of a three-
layer neural network. Each input layer, xi, is connected to each hidden
unit, hj, by the six weights, wij, and each hidden unit is, in turn, con-
nected to the output value, y, by the two weights, wj. Note that, for
simplicity, the weights are not explicitly labeled.

arrive at the specified output values for various patterns
of votes.

In this simple example we do not explicitly need the
assistance of the transfer function and step function to
interpret the decision of the judges, but in more complex
situations the output value might not be obvious from
the input values. In such cases, functions similar to those
described can be used, along with rules for testing and
adjusting the weights, to obtain an optimum set of
weights that transform any set of input values into an
appropriate output value.

Figure A1a shows, schematically, a diagram of a very
simple neural network. It consists of an input layer with
three “units” and an output layer with one unit. The
two layers are connected in such a way that each input
unit contributes to the value of the output unit, where
that contribution is determined by both an input value,
say xi, and a corresponding weight value, wi. Thus, for
a given set of n input parameters and weights, the output
value y is calculated as .ny 5 S w xi51 i i

The objective is to modify the weights in such a way
that the calculated value of y is very close to the desired
output value, d. If we have only one set of input/output
values, this is a relatively simple task, but, if we have a
large set of input vectors with a corresponding set of
desired output values, the task becomes more compli-
cated, since we now wish to find one set of weight values
that will provide reliable estimates of the output values
for all of the sets of input values.

Say that, for the kth input set we have a vector Xk,
, where Xk has components con-k 5 1,2,...,m x ,...,x1k nk

taining information on factors relevant for training a
neural network. We can classify an output parameter,
yk, for each input set as a weighted sum of the input
parameters. Then, , where the weight vec-ny 5 S w xk i51 i ik

tor, W, with components, wi (taken independent of k),
represents the weights for parameters xik. Now consider
a set of such input vectors, {X1, X2, . . . , Xm}, each with
its own “correct” output value, dk, . Wek 5 1,2,...,m
wish to find a set of weights that enables us to most
closely estimate the correct output values. We do this by
training the neural network in such a way as to minimize
the differences between the estimated output values, yk,
and the correct values, dk, for all k.

Let represent the error between the true« 5 d 2 yk k k

and the estimated values for each item. The mean
squared error, y, is then .1 m 2y 5 S «k51 km

We now want to find the weight vector, W, that will
minimize y. This is done by means of a minimization
method to find the minimum of the error surface. Details
of such minimization methods can be found in the work
of Hertz et al. (1991), pp. 115–120, for example. This
formulation of a simple neural network is mathemati-
cally equivalent to linear discriminant analysis (Bishop
1995).

A simple neural network, such as the one described
here, does not always provide a suitable set of weight
parameters to estimate the output values with an ac-
ceptable level of accuracy. Several extensions of this sim-
ple procedure have been developed, and they generally
improve the ability of a network to be trained. One
useful extension is that of using a transformation func-
tion between the input and output values. The example
represented by fig. A1a can be said to have a linear
output function, in which the output value is simply a
linear combination of the input values and the corre-
sponding weight values. More-useful predictive char-
acteristics are obtained with a nonlinear output function,
such as the step function, used above, or the sigmoid
function, which we now will introduce and use. Our
output value, yk, would then be estimated from the sig-
moid function, as , where2Sky 5 1/ (1 1 e ) s 5k k

. The sigmoid function for large positive sk
nS w xi51 i ik
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yields yk ∼ 1 and, for very negative sk yields yk ∼ 0. Thus,
the sigmoid function has the form of a smoothed step
function.

A second extension of the simple model is to add an
additional layer of units between the input and output
layers. This additional layer is called a “hidden layer,”
since the status of the units in this layer cannot be in-
spected from the “outside.” Figure A1b shows a sche-
matic of a neural network that contains the addition of
a hidden layer with two units. (Note that subscripts have
been simplified in this figure, as they were in figure A1a,
and that the figures should, therefore, be interpreted as
schematic representations of the corresponding net-
works.). With a three-layer neural network, we have two
sets of weights, one connecting the input values, xi, with
the hidden values (here depicted by hk), and a second
set, connecting the hidden values with an output value.
As before, each input value contributes to each hidden
value, and each hidden value contributes to the output
value.

The addition of a hidden layer provides for more-
efficient and reliable training of a neural network, but
it also creates a new problem when we try to update the
weights that go from the hidden-layer units to the output
layer. We have no way of knowing the “true” values of
the hidden-layer units, hi, for a given input layer. We
therefore have to make use of the fact that the actual
output values depend on the hidden-layer weights; that
is, these weights form part of the calculation of the hid-
den-layer outputs, which are then used in the calculation
of the output-layer value. We can work “backwards”
by determining the “local gradient of the error surface
with respect to the hidden-layer weights and use this
value to update the weights” (Freeman 1994, p. 64).
This creates what has been called a “back propagation
network” (also see Hertz et al. 1991). We calculate errors
on the output layer first and bring these errors back to
the hidden layer, to calculate error-surface gradients at
that level. (It should be noted that the use of other error
functions for neural-network learning have been studied
[Solla et al. 1988].)

We perform this sequence of steps over and over again,
using information from a set of input/output values, ran-
domly selecting, at each iteration, a particular input/
output combination. We continue this process until the
estimated weights provide a set of output values that are
all acceptably close to the known output values; that is,
until the mean squared error, y, is less than some pre-
determined small number. Once the network is trained,
the weights are fixed; and the network with those
weights can be used to calculate output values for any
given set of input parameters.
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