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Summary

We present a test statistic, the quantitative LOD (QLOD)
score, for the testing of both linkage and exclusion of
quantitative-trait loci in randomly selected human sib-
ships. As with the traditional LOD score, the boundary
values of 3, for linkage, and 22, for exclusion, can be
used for the QLOD score. We investigated the sample
sizes required for inferring exclusion and linkage, for
various combinations of linked genetic variance, total
heritability, recombination distance, and sibship size, us-
ing fixed-size sampling. The sample sizes required for
both linkage and exclusion were not qualitatively dif-
ferent and depended on the percentage of variance being
linked or excluded and on the total genetic variance.
Information regarding linkage and exclusion in sibships
larger than size 2 increased as approximately all possible
pairs up to sibships of size 6. Increasing then(n 2 1)/2
recombination (v) distance between the marker and the
trait loci reduced empirically the power for both linkage
and exclusion, as a function of .4∼ (1 2 2v)

Introduction

During the past 20 years, many genes that underlie hu-
man disease have been localized by genetic linkage anal-
ysis and, subsequently, have been cloned (Collins 1995).
However, few linkages have been firmly established for
quantitative traits in humans, and no previously un-
known genes have yet been positionally cloned as a result
of such analyses. Several methods have been developed
for detection of linkage to quantitative traits in humans
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(Haseman and Elston 1972; Hill 1975; Smith 1975;
Goldgar 1990; Amos 1994; Kruglyak and Lander 1995;
Risch and Zhang 1995; Amos et al. 1996). However,
methods for exclusion of the involvement of a gene or
a chromosomal region in a quantitative trait are
underdeveloped.

Exclusion analysis by use of the LOD-score method
(Ott 1991) has long been established for qualitative
traits. By identification of regions of the genome where
disease-causing genes are not likely to be located, such
analyses facilitate the identification of regions where dis-
ease-causing genes are likely to be located, by a process
of elimination. Exclusion analysis has been used suc-
cessfully to help localize genes underlying diseases such
as Marfan syndrome (Blanton et al. 1990) and is es-
pecially important in studies of a list of candidate genes.

The traditional LOD-score critical values of 3 and 22
are independent of the likelihoods used to determine the
LOD score (Morton 1955; Govindarajulu 1975). In this
article, we evaluate a test statistic, the quantitative LOD
score, which can use the likelihood, from the variance-
component method of quantitative-trait linkage analysis
(Goldgar 1990; Amos 1994), in a sequential test-statistic
framework similar to that of the traditional LOD score
(Morton 1955). We then explore the properties of the
QLOD score for quantitative-trait linkage analysis, with
emphasis on exclusion analysis.

The Genetic Model

The quantitative-trait value of the ith individual is
assumed to result from the effect of a single gene, ai, for
which segregation with a marker is being monitored; pgi

denotes residual polygenic effects, and ei denotes random
environmental effects. Therefore, X 5 m 1 a 1 pg 1i i i

, where m is a fixed effect and where pgi and ei areei

random effects with mean 0 and variances and ,2 2j jpg e

respectively. We assume that ai is a fixed but unobserv-
able effect. However, ai can be modeled by consideration
of the effect that it has on the similarities among related
individuals. A description of the genetic model for a two-
allele system can be found in the article by Amos (1994).
When a, pg, and e are assumed to be independent and
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to act additively, the total variance of the trait is 2j 5t

, with the total genetic variance being2 2 2j 1 j 1 ja pg e

.2 2 2j 5 j 1 jg a pg

Let us assume that the marker locus and the trait locus
are linked, with a recombination fraction of v, but that
they are in linkage equilibrium with one another, in the
population. Under this model, the covariance between
relatives has been given by Amos (1994). For two sib-
lings, the covariance is ,1 12 2 2[ 1 (1 2 2v) (p 2 )]j 1 jmij a pg2 2

where pmij is the proportion-of-alleles identity-by-descent
at marker locus m, between relatives i and j. We will
assume that the quantitative-trait values are normally
distributed in the population and that the distribution
of the trait in the families follows an approximately mul-
tivariate normal distribution (Lange 1978), with the like-
lihood for a sample of R ( ) families, ofr 5 1,...,R

R1 ′ 21( ) ( ) ( )ln L 5 c 2 lnFSF 2 X 2 m S X 2 m ,O [ ]r r r r r r2 r51

where Xr represents the vector of observed phenotypic
values of the trait, for individuals in the rth family, mr

is the mean vector for the quantitative trait in the same
family, and Sr is the variance-covariance matrix among
family members.

The QLOD Score

The LOD score is the log10 of the ratio of the likeli-
hood of the alternative hypothesis, given the data, to the
likelihood of the null hypothesis, given the same data.
Under a sequential testing approach, if the LOD score
is greater than a defined boundary value, A, then the
alternative hypothesis (linkage) is accepted. If the LOD
score is less than some other boundary value, B, then
the null hypothesis (exclusion) is accepted. If the LOD
score lies between B and A, then there are insufficient
data to accept either hypothesis (Wald 1947), and ad-
ditional data must be collected.

Here, we have chosen to adopt the traditional critical
values of 3 and 22 (Morton 1955), for use with the
QLOD score. These values approximately correspond to
a type I error rate of .0001 (Lander and Kruglyak 1995)
and a type II error rate that is considerably !.01 (Morton
1955; Chotai 1984), independent of the likelihood used.
Bayesian arguments also have been offered in support
of these critical values (Morton 1955; Govindarjulu
1975).

Although our approach in implementing the QLOD
score was motivated by sequential testing approaches,
sequential methods have actually been implemented
rarely, if ever, in studies of humans (Chotai 1984). There-
fore, we present sample-size results by following a
fixed–sample-size design but, in the Discussion, contrast

these results with the slightly small average sample sizes
for sequential tests, at a few parameter values.

Simulation Methods

A computer program (Amos 1994) was used to sim-
ulate the nuclear-family data. Parental data were used
only as a framework for simulation of the offsprings’
markers and traits and are not analyzed; as a result, all
the results that we present are restricted to sibships. Pa-
rental genotypes at a trait locus, with allele frequencies
p and q, were assigned on the basis of their expected
frequencies, by use of a uniform (0,1) random-number
generator. A completely informative multiallelic marker
locus was linked to the trait locus, at various values of
v. The polygenic values for the parents were obtained
by sampling from a normal distribution with mean 0
and variance . For each child, the polygenic contri-2jpg

bution was obtained from the average of the polygenic
values of the parents plus a deviate drawn from a normal
distribution with mean 0 and variance . Finally, the2j /2pg

phenotype was assigned from the trait-locus value, the
polygenic value, and a deviate from a normal distribu-
tion with mean 0 and variance .2je

For each family, the likelihoods for the observed data
were calculated under the null and alternative hypoth-
eses, by use of data from the children only. For all cases,
the total phenotypic variance ; thus, all values2j 5 100t

of , , and can be interpreted as percentages of2 2 2j j ja pg g

the total phenotypic variance. In each case, we assumed
that parameter values were known, and the hypotheses
used to evaluate sample sizes were constructed as fol-
lows: for the alternative hypothesis, , , and2 2j 5 x j 5 ya pg

; and, for the null hypothesis,2 2j 5 100 2 (x 1 y) j 5e a

, , and . For each study2 20 j 5 x 1 y j 5 100 2 (x 1 y)pg e

simulated under the alternative model (with a linked
genetic effect), the tested alternative hypothesis used the
simulation parameters, whereas, for the null hypothesis,
the polygenic variance was assumed to be the sum of
the simulated linked and polygenic variances. For each
study simulated under the null model (with no linked
genetic effects), the tested null hypothesis used the sim-
ulation parameters. For the alternative hypothesis tested
under the null model, the simulated polygenic variance
was partitioned into linked and unlinked components.
All estimates for linkage were derived from 5,000,000
nuclear families, and all estimates for exclusion were
derived from 500,000 nuclear families. We used a larger
number of families for the linkage model in order to
ensure more-precise sample-size estimates, since general
interest often focuses on linkage more than on exclusion.
The results from these simulations were used to deter-
mine the mean QLOD score per family and the variance
among families, for each set of parameters.
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Table 1

Number of Independent Sib Pairs Required for 90% Power of Exclusion, for Various Linked
and Total Genetic Variances, When 2j 5 100t

2ja

NO. OF SIB PAIRS, WHEN 52jg

10 20 30 40 50 60 70 80 90

5 71,374 72,822 71,921 69,080 64,628 58,914 52,290 45,076 37,488
10 17,014 16,965 16,555 15,831 14,833 13,608 12,208 10,680 9,060
15 7,254 7,148 6,822 6,392 5,872 5,282 4,643 3,958
20 4,077 3,952 3,767 3,527 3,241 2,917 2,565 2,191
25 2,495 2,376 2,223 2,041 1,836 1,614 1,379
30 1,713 1,628 1,521 1,395 1,254 1,101 939
35 1,181 1,101 1,009 905 793 674
40 891 830 759 679 593 503
45 645 588 525 457 386
50 513 467 415 360 302
55 377 334 288 240
60 309 273 234 193
65 225 191 157
70 187 158 128
75 131 105
80 109 86
85 70
90 57

Our objective was to determine the probability that
a single sample of R independent families will have a
QLOD score !22 or 13. We assumed that the sample
mean and variance of the QLOD score obtained from
the simulation studies described in the previous para-
graph were the same as the population mean, m, and
variance, j2 (Wald 1947; Govindarajulu 1972). The
mean and variance of the QLOD score for a single sam-
ple of R families are Rm and Rj2, respectively. Let D be
the boundary value of interest (either 3 or 22). The
probability, indicated by the Z score, that a single sample
of R families will have a QLOD score 1D can be ob-
tained by use of the normal deviate, Z 5 (Rm 2

. This function can be solved for as follows:2Î ÎD)/ Rj R
, from which the posi-2 2Î ÎR 5 (Zj 5 Z j 1 4mD) /2m

tive roots can be found. The formula is the same for
linkage or exclusion.

Results

Exclusion

Tables 1 and 2 give the number of two-sibling and
three-sibling families, respectively, required for estab-
lishing exclusion with 90% power. As expected, fewer
families were needed for exclusion of the involvement
of a trait accounting for a larger proportion of the ge-
netic variance than for exclusion of a trait accounting
for a smaller proportion. Increasing the number of chil-
dren in the sibship increased the amount of information
per member that the sibship contained. For values of the
parameters investigated, there was an approximately
threefold decrease in the number of three-sibling families

(table 2), compared with the number of two-sibling fam-
ilies (table 1), required for exclusion.

Although it is desirable to find a highly polymorphic
marker within or very near each candidate gene, this
often is not possible. In addition, one may want to use
exclusion analyses as part of a genomewide search for
quantitative-trait loci. Therefore, we tested the ability of
the QLOD score to determine, as a function of v, that
a particular region around a marker locus does not con-
tain a gene with a given effect on the phenotype (i.e.,
given a specific linked genetic variance). A precipitous
decrease in the information for exclusion, per family, as
defined by an increase in the number of families required
for establishing exclusion, was observed as a function
of increasing v (table 3).

Linkage

The QLOD-score test statistic can be used for both
linkage and exclusion analyses. Table 4 shows the num-
ber of two-sibling sibships required, to infer linkage, for
varying values of the linked and total genetic variances.
Table 5 indicates the samples sizes required for linkage,
as a function of v values from .0 to .2.

In figure 1 we depict the mean QLOD score, for a
sibship of a given size (x-axis), divided by the mean
QLOD score for a sibship of size 2, for ,2 2j 5 j 5 5%a g

25%, or 50% of the total phenotypic variance. Also
graphed in figure 1 are several functions for the increase
in information, as a function of sibship size (n): for all
possible pairs, , suggested by Blackwelder[n(n 2 1)]/2
and Elston (1985); , suggested by1 n21[2n 2 3 1 ( ) ]/1.52

Hodge (1984); and , suggested by Suarez andn 2 1
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Table 2

Number of Independent Sib Trios Required for 90% Power of Exclusion, for Various Linked
and Total Genetic Variances, When 2j 5 100t

2ja

NO. OF SIB TRIOS, WHEN 2j 5g

10 20 30 40 50 60 70 80 90

5 23,670 23,147 22,964 22,243 21,049 19,434 17,448 15,143 12,543
10 5,615 5,569 5,396 5,121 4,758 4,352 3,885 3,382 2,850
15 2,459 2,364 2,229 2,065 1,877 1,671 1,454 1,230
20 1,383 1,324 1,244 1,149 1,042 926 805 681
25 847 794 731 661 586 509 430
30 588 550 505 455 403 349 294
35 402 370 332 293 252 212
40 307 280 252 221 190 159
45 220 196 172 147 122
50 176 157 137 116 95
55 128 111 94 75
60 105 90 75 62
65 75 63 50
70 63 52 41
75 43 22
80 36 27
85 22
90 18

Table 3

Number of Independent Sib Pairs Required for 90% Power of
Exclusion, When All the Genetic Variance Is Linked, at Various vs,
and When 2j 5 100t

2ja

NO. OF SIB PAIRS, AT v 5

.0 .05 .1 .15 .2 .25 .3

10 17,014 26,227 42,668 74,461 142,937 315,060 867,897
20 4,077 6,281 10,191 17,692 33,637 72,822 193,100
30 1,713 2,647 4,299 7,452 14,106 30,251 78,588
40 891 1,387 2,262 3,927 7,423 15,831 40,581
50 513 809 1,329 2,318 4,385 9,324 23,679
60 309 497 828 1,456 2,764 5,872 14,817
70 187 311 530 945 1,805 3,843 9,655
80 109 193 341 628 1,200 2,565 7,340
90 57 114 214 404 796 1,717 4,302

Hodge (1979). When the number of siblings in a sibship
was !6, the amount of information obtained for linkage
was within 95% of the expected information suggested
by all possible pairs. However, for sibships of size X6,
the information was considerably less than that sug-
gested by all possible pairs. We also noted that the larger
the linked genetic effect, the smaller the increase in in-
formation, with increasing sibship size. For example, 10-
sibling families provided 42 times as much information
as 2-sibling families, for a 5% linked genetic effect, but
only 32 times as much information for a 50% linked
genetic effect.

Discussion

Sequential testing approaches have several advantages
over other methods of quantitative-trait linkage analysis.
An important advantage is the method’s ability to ex-
clude a gene’s or a region’s involvement in a percentage
of the interindividual variation in a quantitative trait.
This is especially important in candidate-gene linkage
analysis, in which a priori knowledge suggests that cer-
tain genes are involved in quantitative variation and that
linkage analysis is the primary method of prioritizing
them or of rejecting some from further analysis.

In addition, the ability to pool data from several stud-
ies is likely to be very important, because most quan-
titative-trait loci will have small effects (Paterson 1995).
Thus, the results of many studies probably will have to
be combined, to locate many of the genes affecting a
quantitative trait (Li and Rao 1996). For this to be car-
ried out, however, a standardized format for commu-

nication of the results for quantitative-trait linkage stud-
ies is required. Therefore, a convention for the reporting
of human quantitative-trait linkage statistics that per-
mits combining information across studies must be de-
veloped. The traditional method used in two-point
LOD-score analysis is to provide a table of LOD scores
as a function of v. We suggest a table reporting the
QLOD score for every 5% of the total phenotypic var-
iance, up to the estimated total genetic variance, for can-
didate genes.

The literature on the methods and properties of ge-
netic exclusion analysis of quantitative traits is sparse,
despite considerable literature on the methods and prop-
erties of linkage analysis. Therefore, this discussion will
focus mostly on those results pertaining to exclusion
analysis.
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Table 4

Number of Independent Sib Pairs Required for 90% Power of Linkage, for Various Linked and
Total Genetic Variances, When 2j 5 100t

2ja

NO. OF SIB PAIRS, WHEN 2j 5g

5 10 15 20 30 40 50 60 70

5 86,850 75,710 73,993 72,430 69,194 65,567 61,495 57,040 52,292
10 21,515 19,830 19,422 18,559 17,556 16,407 15,132 13,767
15 9,425 9,350 8,433 7,969 7,435 6,841 6,203
20 5,205 5,059 4,819 4,214 3,870 3,501
30 2,190 2,010 1,868 1,709 1,540
40 1,148 1,043 951 852
50 665 596 530
60 405 355
70 249

Table 5

Number of Independent Sib Pairs Required for 90% Power of
Linkage, When All the Genetic Variance Is Linked, at Various vs,
and When 2j 5 100t

2ja

NO. OF SIB PAIRS, AT v 5

.0 .01 .02 .05 .1 .2

5 86,850 92,702 99,689 122,416 198,497 585,690
10 21,515 23,091 25,027 31,753 51,420 154,848
15 9,425 10,133 11,013 14,140 22,916 69,703
20 5,205 5,601 6,096 7,878 12,789 39,179
25 2,190 3,505 3,819 4,958 8,064 24,858
30 1,148 2,361 2,574 3,356 5,470 16,962
35 665 1,682 1,837 2,404 3,930 12,258
40 405 1,240 1,355 1,779 2,919 9,163
45 249 721 790 1,047 1,733 5,520

Comparison of the results presented in table 1, for
exclusion analysis, and those presented in table 4, for
linkage analysis, indicates that the sample size required
for inferring exclusion and that required for linkage are
not vastly different. For example, 17,014 two-sibling
families were required for the exclusion of a 10% linked
effect, compared with 21,515 two-sibling families re-
quired for establishing linkage with 90% power. There-
fore, analyses that exclude the presence of a linked locus
having a specified effect should be possible, on the basis
of those studies that have been designed to be infor-
mative for genetic linkage analysis.

The sample sizes presented in tables 1–5 are for fixed-
sample designs. By using equation (57) in chapter 3 of
the work by Wald (1947), we can obtain the average
sample number necessary for establishing linkage and
exclusion, for a sequential test. A sequential test with a
false-negative rate of 1% requires 10,793 two-sibling
families, but, for fixed sampling, the sample size nec-
essary for establishing linkage ( , )QLOD 5 3 b ≈ .01
with 50% power is 10,976 two-sibling families. To es-
tablish exclusion by use of a sequential test with a false-
positive rate of 0.1%, the average sample size required
is 7,500 two-sibling families, whereas, for a fixed-sample
design with 50% power, the sample size necessary for
establishing exclusion ( , ) is 7,519QLOD 5 22 a ≈ .001
two-sibling families.

We observed that the sample size required for exclu-
sion analysis was influenced by the magnitude of the
polygenic component of the variance of the trait. The
sample size required for exclusion decreased when the
polygenic component of the variance increased, as was
noted by Schork (1993). The exact reason for this re-
lationship is not known; however, some speculation is
possible. As the total polygenic component increases, the
individual-specific environmental variance component,

, decreases. This has the effect of reducing the random2je

genetic variance (i.e., the “noise”) among siblings,
which, in turn, improves the ability to make inferences

about the linked genetic effect (i.e., the “signal” or the
lack of one).

For tables 3 and 5, we investigated the impact that
increasing the distance between the marker and trait loci
had on the power for exclusion or linkage, respectively.
For , multiplication of the sample size required atv ! .1

by provided an estimate of the sample4v 5 .0 1/(1 2 2v)
size that was within 95% of the observed sample size.
Similar results were seen for both linkage and exclusion.
Thus, 2.5- and 5-cM maps have ∼81% and ∼66%, re-
spectively, of the power at . Therefore, as part ofv 5 .0
a genomewide scan, gaps 110 cM between markers need
to be narrowed by typing the intervening marker loci so
that the power of the exclusion (or linkage) analysis
remains acceptable.

Several ways of estimating the relative amount of in-
formation in sibships of differing sizes have been pro-
posed, depending on the hypothesis being investigated.
In figure 1, the results of these proposed methods were
compared with the observed relative linkage information
per sibships of various sizes, compared with sibships of
size 2. When the linked genetic variance and the sibship
size were small, the QLOD score behaved approximately
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Figure 1 Graph of ratio of the mean QLOD score for a sibship
of size n, given on the x-axis, divided by the mean QLOD score for
a sibship of size 2. Relative information is given for linked loci ac-
counting for 5%, 25%, and 50% of the total phenotypic variance,
when all of the genetic variance is linked. Also shown are three ratios
constructed from functions for the amount of information in sibships
of various sizes: , for all possible pairs;n(n 2 1)/2 [2n 2 3 1

, a function identified by Hodge (1984); and .1 n21( ) ]/1.5 n 2 12

like that for all possible pairs, but, as the linked genetic
variance and the sibship size increased, the increased
information behaved less like that for all possible pairs.
It should be mentioned, however, that variance-com-
ponent–based methods, such as the QLOD score, ana-
lyze families as a unit and are not restricted to pairs of
relatives.

In this study, the approach taken for quantitative-trait
exclusion and linkage analysis assumes a virtually ideal
model. A more realistic model would include less-
than–fully informative markers, an error in the mea-
surement of the quantitative trait, and joint estimation
of the population mean and of the total genetic variance.
All of these will lead to a decrease in the power of the
test, for both exclusion and linkage. In addition, we
assumed that only a single genetic locus acting additively
affected the quantitative trait. Incorrect model specifi-
cation might lead to a decrease in power for the linkage
analysis but may not lead to an excess of false-positive
findings. Results from Genetic Analysis Workshop 10
failed to find an excess of type I errors in variance-com-
ponent procedures (Wijsman and Amos 1997), even
though the data were generated with a complex genetic
architecture and most variance-component procedures
that were applied assumed a simple additive model. In
general, exclusion analysis jointly excludes a region and
a genetic model and, therefore, must be used cautiously.

Although most of the conditions were ideal for min-
imization of the sample size required for linkage and for

exclusion, the sampling strategy may not have been
ideal. We assumed random ascertainment of the sibships.
A substantial increase in information per sibship had
been noted for selected samples (Risch and Zhang 1995).
However, nonrandom sampling may give biased esti-
mates of the contribution of each quantitative-trait lo-
cus. To decide among sample strategies would require
an additional comparison of costs of sample collection
and genotyping, which is beyond the scope of these
analyses.

In summary, we combined the likelihoods from the
variance-component–based method of linkage analysis
with the accepted principle of sequential analysis theory,
to develop a method for genetic exclusion and linkage
analysis of quantitative traits in humans. This method
should help genomewide searches for quantitative-trait
loci and prioritization of candidate genes for further
analysis. We examined the performance of this test. The
sample sizes required for inferring exclusion were pre-
sented and were not found to be very different from the
sample sizes required for inferring linkage. Sequential
approaches, such as the QLOD score, should be useful
for the combination of information across studies, to
facilitate mapping of quantitative-trait loci.
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