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Summary

We describe a log-linear method for analysis of case-
parent–triad data, based on maximum likelihood with
stratification on parental mating type. The method leads
to estimates of association parameters, such as relative
risks, for a single allele, and also to likelihood ratio x2

tests (LRTs) of linkage disequilibrium. Hardy-Weinberg
equilibrium need not be assumed. Our simulations sug-
gest that the LRT has power similar to that of the x2

“score” test proposed by Schaid and Sommer and that
both can outperform the transmission/disequilibrium
test (TDT), although the TDT can perform better under
an additive model of inheritance. Because a restricted
version of the LRT is asymptotically equivalent to the
TDT, the proposed test can be regarded as a generali-
zation of the TDT. The method that we describe gen-
eralizes easily to accommodate maternal effects on risk
and, in fact, produces powerful and orthogonal tests of
the contribution of fetal versus maternal genetic factors.
We further generalize the model to allow for effects of
parental imprinting. Imprinting effects can be fitted by
a simple, iterative procedure that relies on the expec-
tation-maximization algorithm and that uses standard
statistical software for the maximization steps. Simula-
tions reveal that LRT tests for detection of imprinting
have very good operating characteristics. When a single
allele is under study, the proposed method can yield pow-
erful tests for detection of linkage disequilibrium and is
applicable to a broader array of causal scenarios than
is the TDT.
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Introduction

The genotypes of triads consisting of index cases and
their parents provide a rich source of information for
assessment of linkage disequilibrium, as has recently
been reviewed elsewhere (Spielman and Ewens 1996).
Previous analytic approaches, such as the transmission/
disequilibrium test (TDT), focus on the transmission of
alleles from parents to affected offspring. This approach
is able to detect both effects attributable directly to al-
leles inherited by the case and effects of unidentified
genes that can be presumed to be in linkage with such
alleles. The TDT has provided a powerful method to
test for linkage in the presence of association. There are,
however, indirect pathways of genetic influence not de-
tectable by this method. One example would be effects
of a mother’s genotype on the development of a fetus,
through the intrauterine environment. The alleles that
she transmits to her child could be irrelevant under such
a mechanism, and purely maternal effects would there-
fore be undetectable by the TDT. Parental imprinting
might also be important to risk, through a mechanism
in which the effect of a given allele on the offspring is
greater or lesser depending on the parental source of
that allele.

These alternative varieties of genetic effect have not
been addressed within the context of studies of affected
individuals and their parents. Appreciating the possible
relevance of the maternal genotype, Mitchell (1997) has
suggested inclusion of the child’s maternal grandparents
in a family-based study. Unfortunately, such studies can
be impracticable, because the grandparents are often not
available. The TDT could, in principle, also be extended
to search for evidence of parental imprinting in studies
of case-parent triads, but this has not been described.

We propose a likelihood-based method of analysis for
case-parent–triad data that can detect effects of the
mother’s as well as the offspring’s genotype (Wilcox et
al., in press) and that can readily be generalized to detect
parental imprinting. Our log-linear approach produces
estimates of relative risks that are inherently adjusted
for population stratification. It is flexible in that it allows
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for the possibility that individuals with a single copy of
the variant allele have a different risk than do individuals
with two copies.

The purpose of the present paper is twofold. In the
simple situation in which only the genes inherited by the
child affect risk, we show that our method yields a like-
lihood ratio test (LRT) that can serve as an alternative
to the TDT for testing for linkage disequilibrium. We
simulate case-parent–triad studies to compare the power
of the two, with and without a background of maternal
genetic effects. Second, we extend our approach to in-
clude possible effects of parental imprinting. We then
propose a different test statistic for imprinting, devel-
oped in the spirit of the TDT. The power of this “trans-
mission asymmetry test” (TAT) is contrasted with that
of the LRT, again via simulations.

The paper is structured as follows. We first describe
the log-linear method for the usual causal scenario in
which the inherited genotype is responsible for the effect.
We then discuss the close relationship of this method to
the conditional-on–parental genotype (CPG) maximum-
likelihood approach described by Schaid and Sommer
(1993). We then describe how the model would be gen-
eralized to allow for possible maternal genetic effects.
We present results of simulations to compare the power
of the LRT, the TDT, and the score statistic, as tests for
linkage disequilibrium. The simulations are done with
and without a background of maternal genetic effects
and under dominant, recessive, and gene-dose models
for causation. We then generalize the log-linear model
to allow for possible effects due to imprinting, and we
pose a second possible imprinting test, developed as a
natural extension of the TDT. Finally, we provide sim-
ulation results to demonstrate the operating character-
istics of the two tests under various imprinting scenarios.

Background

Building on insights of Falk and Rubinstein (1987),
Spielman et al. (1993) introduced the x2 TDT in 1993.
This test is based on comparison of the proportion of
heterozygous parents who have transmitted a particular
allele to their affected child with the expected proportion
(.5). Others (Schaid and Sommer 1993) have proposed
score-statistic methods based on the likelihood, which
can be tailored to particular modes of transmission, such
as dominance. Conditional likelihood methods have also
been developed, which condition on the number of cop-
ies of the variant allele carried by each of the parents
and exploit Mendelian inheritance from parent to child
(Self et al. 1991).

These family-based approaches can be preferable to
comparisons of randomly sampled cases and controls,
because case-control studies can find unimportant as-

sociations that are not etiologic but reflect population
structure. The TDT and the mating-type–stratified like-
lihood-based methods overcome this problem by com-
paring the genotype of cases to that of their parents,
whose nontransmitted chromosomes serve as ethnically
matched genetic controls, even in a population without
random mating and not in Hardy-Weinberg equilibrium
(HWE). For these methods to be valid, the only required
assumption is that, under the null hypothesis, there is
Mendelian transmission. (The affected-family–based
controls method [Thomson 1995] was similarly moti-
vated but leads to valid inference only under restrictive
assumptions [Spielman et al. 1993] and will not be con-
sidered further here.)

The Log-Linear Likelihood Approach

Our likelihood-based approach allows for effects of
the inherited genotype and is easily generalized to a
wider range of causal scenarios. We assume that a par-
ticular allele, called the “variant,” is of interest and that
a series of cases and their biologic parents have been
genotyped. (A gene may have just two alleles, or multiple
alleles may have been grouped into two functional cat-
egories, one of which is the “variant.”) We do not need
to assume HWE. Let “M,” “F,” and “C” denote the
number of copies of the variant carried by the mother,
father, and child (case), respectively. We assume mating
symmetry, in the sense that, in the population at large,
the probability that F 5 2 and M 5 1 is the same as
the probability that F 5 1 and M 5 2, and so on. There
are then six distinct mating types defined by the paired
parental genotypes (Schaid and Sommer 1993).

If we had randomly sampled a set of children from
the population, the corresponding child-parent triads
could provide genotypes (M,F,C) that would, under
Mendelian inheritance, fall into a multinomial with just
the 15 possible categories shown in table 1. Under HWE,
the relative frequencies (table 1, column 3) are simple
polynomials in p, the allele frequency. If HWE does not
apply, then we need to take the relative frequencies for
the mating types into account, and the frequencies can
be expressed, by means of Mendelian inheritance, as in
column 4 of table 1, where the sum of the relative-fre-
quency parameters across the 15 categories is con-
strained to equal 1.

We are interested, however, not in the distribution of
such triads in the population at large but in the distri-
bution of such triads when the triad has been selected
because the child has the condition under study. We can
apply Bayes’s theorem to write the conditional proba-
bility for (M,F,C), given that the child is a case. The
counts still fall into a multinomial distribution with 15
categories, but the relative frequencies now are distorted
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Table 1

Population Frequencies of Case-Parent Triads,
With and Without HWE

MATING TYPE:
M,F,C GENOTYPE

THEORETICAL FREQUENCY

In HWE
Population

When HWE
Is Not Assumed

1:
2,2,2 p4 m1

2:
2,1,2 p3(1 2 p) m2

2,1,1 p3(1 2 p) m2

1,2,2 p3(1 2 p) m2

1,2,1 p3(1 2 p) m2

3:
2,0,1 p2(1 2 p)2 m3

0,2,1 p2(1 2 p)2 m3

4:
1,1,2 p2(1 2 p)2 m4

1,1,1 2p2(1 2 p)2 2m4

1,1,0 p2(1 2 p)2 m4

5:
1,0,1 p(1 2 p)3 m5

1,0,0 p(1 2 p)3 m5

0,1,1 p(1 2 p)3 m5

0,1,0 p(1 2 p)3 m5

6:
0,0,0 (1 2 p)4 m6

Table 2

Frequencies in Case-Parent Triads,
under Scenario A

MATING TYPE:
M,F,C GENOTYPE

THEORETICAL

FREQUENCYa

1:
2,2,2 R2m1

2:
2,1,2 R2m2

2,1,1 R1m2

1,2,2 R2m2

1,2,1 R1m2

3:
2,0,1 R1m3

0,2,1 R1m3

4:
1,1,2 R2m4

1,1,1 2R1m4

1,1,0 m4

5:
1,0,1 R1m5

1,0,0 m5

0,1,1 R1m5

0,1,0 m5

6:
0,0,0 m6

a R1 and R2 are the relative risks associated with
inheritance of one or two copies of the variant allele,
respectively; and mj is the stratum parameter for the
jth mating-type category.

in a mathematically simple way by the corresponding
relative risks. We reexpress the conditional probability
of (M,F,C), conditional on the child being a case, as
follows: P[M,F,CFD] 5 P[DFM,F,C]P[CFM,F]P[M,F]/
P[D].

If the allele under study is a marker for the disease
gene, then the first factor will depend, in a complicated
way, on all three counts—M, F, and C—through the
recombination rate, v (Schaid 1996). Consider “scenario
A,” in which a disease gene is under study (v 5 0) and
what matters is the number of copies of the variant allele
inherited by the child (the parental genotypes are irrel-
evant once we know C). The multinomial would take
the form represented in table 2, where R1 (R2) is the risk
for a child with one copy (two copies) of the variant,
divided by the risk for a child with no copies. The par-
ameters mk now simply serve as stratification parameters
for the six parental mating types. The same sort of struc-
ture arises under HWE, but a constant factor must be
included to serve as a normalization parameter, ensuring
that the relative frequencies sum to 1.

Relation to CPG Maximum Likelihood

The specification of the scenario A likelihood, given
by table 2, which includes stratum parameters for pa-
rental mating type, is functionally equivalent to the like-
lihood considered by Schaid and Sommer (1993) that
was constructed to be CPG. The relative risks estimated

via the multinomial of table 2 are, in fact, identical to
the CPG maximum-likelihood estimates, with the ad-
vantage that the stratified likelihood can easily be fitted
by use of standard software for Poisson regression. As
Schaid and Sommer pointed out, only data from mating
types 2, 4, and 5 are informative. In effect, when the
stratified likelihood of table 2 is fitted, the counts for
the noninformative mating types play a passive role and
have no influence at all on estimation, standard errors,
or significance tests.

The Combined Model, Also Allowing
for Maternal Effects

A major advantage to the log-linear approach is its
ease of generalization to other causal scenarios. First,
we will consider “scenario B,” in which the mother’s
genotype is directly relevant to risk. Later, we will gen-
eralize to a scenario with parental imprinting effects.

A multinomial model exactly analogous to that de-
veloped for scenario A can be developed for scenario B,
in which the mother’s genotype is now what matters.
Notice that, although scenario A involves (apparently)
preferential transmission of the variant allele to cases
whereas scenario B does not, both scenarios are suscep-
tible to the same simple Bayes’s theorem approach (as
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given above) to derive the probabilities for the respective
multinomial distribution.

Under such a generalization, the expected count in
each cell (M,F,C) of the 15-nomial can be modeled in a
log-linear form that captures both possible scenarios at
once, as follows:

( )ln E n 5g 1 b I 1 b I 1 a I[ ]M,F,C j 1 {C51} 2 {C52} 1 {M51}

( )1a I 1 ln 2 I . (1)2 {M52} {M5F5C51}

Scenario A and Scenario B are each special cases of this
model. The index, j, is a function of (M,F) and corre-
sponds to the parental-mating-type stratum. In equation
(1), I{C51} denotes a “dummy” independent variable that
becomes 1 when C 5 1 and is 0 otherwise. If the child’s
genotype and the mother’s genotype do not combine
multiplicatively in their joint effect on risk, then product
terms can also be included as necessary. This model is
easily modified to allow for either a dominant model (a1

5 a2; b1 5 b2), by addition of the two indicator variables,
for the mother and for the child, or a recessive model
(a1 5 0; b1 5 0), by omission of the single-allele-indi-
cator variables. We later extend this model to also allow
for possible effects due to parental imprinting.

Such a model can be fitted by use of widely available
(Poisson regression) software—for example, in GLIM
(generalized linear interactive modeling package [Baker
and Nelder 1978]) or SAS (via the GENMOD proce-
dure)—to maximize the corresponding multinomial like-
lihood and to estimate the parameters on the basis of
maximum likelihood. The only complication is that the
term ln(2)I{M5F5C51} (corresponding to the 2 multiplier
for the [1,1,1] category in table 2) is not entered as an
independent variable but, rather, must be declared as an
“offset,” so that it is incorporated as a linear term with
its coefficient constrained to be 1.

The estimation of the relative-risk parameters is then
straightforward. For example, estimation of R1 is based
on exponentiating the estimate for b1. The correspond-
ing relative risk for a maternal effect associated with a
single copy, which we denote by “S1,” is estimated by
exponentiating the estimated a1. Confidence intervals
can be derived by exponentiating the limits of the cor-
responding standard-error–based confidence intervals
for the corresponding a and b parameters. Our simu-
lations (Wilcox et al., in press) demonstrated that, with
100 case-parent triads, the power to detect a relative risk
of 2.5 was close to .8, the coverage of the nominally
95% confidence interval (95% CI) was consistent with
95%, and there was very little bias in estimation of the
relative risks.

If the investigator is willing to assume HWE, a further
simplification of the aforementioned model is possible.
The stratum parameters are replaced in the linear ar-

gument by a linear term in M 1 F (see the Appendix).
This carries the additional advantage that one can es-
timate the prevalence of the variant allele, using only
case-parent–triad data. However, power for detection of
violation of assumed HWE is evidently small (simulation
results are not shown), suggesting that the assumption
of HWE cannot be reliably verified in practice.

Power Considerations

The model gives rise to x2 LRTs in the usual way. For
example, one can test for whether the child’s genotype
(with respect to the variant allele) has any effect on risk,
by removing the two indicator variables corresponding
to the child’s genotype (while leaving the maternal in-
dicator variables in the model) and computing twice the
change in the logarithm of the maximized likelihood.
Under the null hypothesis that the child’s genotype does
not matter within any of the parental-mating-type cat-
egories—that is, Mendelian transmission of the allele to
cases—this LRT statistic will be distributed as x2 with
2 df. By contrast, in the presence of linkage disequilib-
rium, the LRT will tend to be elevated compared with
the x2.

The separate effects due to maternal and inherited
genotypes can easily be distinguished with the afore-
mentioned combined model. In fact, we have shown
that, once one conditions on mating type, the inherited
number of copies, C, and the maternal number of copies,
M, are statistically independent under Mendelian inher-
itance; hence, testing and estimation based on the model
given above yield results that are completely orthogonal
for the maternal and the inherited genotype (Wilcox et
al., in press). One consequence is that the x2 LRT statistic
for the child’s genotype, adjusting for possible maternal
effects, is identical to an LRT statistic that does not
adjust for maternal effects. Thus, an analysis that strat-
ifies on parental mating type and ignores possible ma-
ternal effects will not cause one spuriously to attribute
to the inherited genotype effects that are in fact maternal.

For detection of an effect of the inherited genotype
(scenario A), the LRT and the TDT can be regarded as
competitors, regardless of whether maternal effects are
also present. We therefore performed simulations to
compare the power of the LRT with that of the TDT
for the same data. We also included, for comparison,
the score statistic proposed by Schaid and Sommer
(1993), which was developed on the basis of the same
mating-type–stratified model but without allowance for
a maternal contribution.

The data were simulated on the basis of several com-
binations of parameter values. All simulations and anal-
yses were performed by use of the GLIM package (Baker
and Nelder 1978). Scenario A (inherited genotype ef-
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Table 3

Fraction Rejecting the Null Hypothesis (No Association, No Linkage) for the Child’s Genotype, in 1,000 Simulated Studies of
100 Case-Parent Triads, with 95% CI for Empirical Estimates of Power

MODELa

FRACTION (95% CI) REJECTING NULL HYPOTHESIS, IN

TDT LRT Score Test

Null (R1 5 R2 5 1 5 S1 5 S2) .050 (.04–.06) .058 (.04–.07) .050 (.04–.06)
Child only:

Dominant:
R1 5 R2 5 2.5; S1 5 S2 5 1.0 .746 (.72–.77) .842b (.82–.87) .829c (.81–.85)
R1 5 R2 5 3.0; S1 5 S2 5 1.0 .855 (.83–.88) .924b (.91–.94) .918c (.90–.94)

Recessive:
R2 5 2.5; R1 5 S1 5 S2 5 1 .347 (.32–.38) .537b (.51–.57) .552c (.52–.58)
R2 5 3.0; R1 5 S1 5 S2 5 1 .501 (.47–.53) .727b (.70–.76) .742c (.71–.77)

Gene dose (R1 5 2; R2 5 3; S1 5 S2 5 1) .758d (.73–.79) .684 (.65–.71) .676 (.65–.71)

a R1 and R2 are as in table 2. S1 and S2 are the relative risks associated with the mother carrying one or two copies, respectively,
of the variant allele.

b LRT was significantly more powerful than TDT (two-sided P ! .01).
c Score test was significantly more powerful than TDT (two-sided P ! .01).
d TDT was significantly more powerful than either LRT or score test (two-sided P ! .01).

fects) could alternatively be present or absent; the genetic
model could be dominant, recessive, or a gene dose (in
which a single copy increases risk but in which two
copies have an even greater effect); the adjusted relative
risks for the disease gene could be 2.5 or 3. We did not
assume HWE. Population structure was such that, for
a 20% subpopulation, the gene prevalence was .3 and
the background risk was .05, in those without the var-
iant; for the remaining, 80% subpopulation, the gene
prevalence was .1, and the background risk was .01. For
each choice of parameters and scenarios, 1,000 studies
were simulated, each of which included 100 case-parent
triads. In a very few simulated data sets in which the
LRT could not be considered valid, because the maxi-
mum-likelihood estimate for either R1 or R2 was 0 or
`—that is, the maximum point was not in the interior
of the parameter space—the score test was substituted
for the LRT. Although confidence intervals are given for
the power, the results for the various tests are properly
compared by paired analysis based on the simulations
in which the results differed (one test rejected and the
other did not). Significant differences are indicated.

In a given setting, one could use prior knowledge to
design a more powerful LRT (or score statistic). For
example, if one had prior evidence that the proper ge-
netic model was dominant, then one could add the two
indicator variables, as described above, and estimate a
single relative-risk parameter in model (1). The resulting
LRT, with 1 df, would have enhanced power, if the dom-
inant were the true model. Similarly, if one suspects that
a gene-dose effect is the proper model, then one can
devise an LRT that is optimal for this alternative, by
fitting a model that specifies linearity in C in model (1).
This 1-df test would have enhanced power if, in fact,
there were a gene-dose effect. Our simulations were run

under the conservative assumption that no such prior
information has been brought to bear on the problem.
Thus, the investigator is assumed to be testing the null
hypothesis: R1 5 R2 5 1, against all possible alternatives,
with the 2-df test.

Results of Simulations for Power

Table 3 shows results under models in which only the
inherited genotype of the child influences risk. All three
tests had estimated type 1 error rates that were fully
consistent with the nominal .05, as shown in row 1. The
LRT based on our log-linear model and the score test
had similar power, and, under both dominant and re-
cessive models, both markedly outperformed the TDT.
By contrast, under a model in which the number of cop-
ies of the variant allele was important—in that a single
copy conferred a relative risk of 2 to the child, whereas
two copies conferred a relative risk of 3—the TDT out-
performed both of the likelihood-based methods.

All three tests had good operating characteristics
against a background of a maternal genotype effect, de-
spite the inevitable correlation between mother and child
(data not shown). In fact, all three generally performed
better in the presence of maternal effects than they did
under a pure scenario A. This difference most likely
arises because, with an allele that is not common, the
presence of maternal genetic effects enriches the distri-
bution of parental genotypes, by, in effect, “oversam-
pling” maternal carriers of the variant allele. Thus, when
there is a maternal effect and when the allele is not com-
mon, the average number of informative families is in-
creased, and the power for both the TDT and the LRT
is correspondingly increased.
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Table 4

Frequencies in Case-Parent Triads, under Model 2

M,F,C Genotype
and Mating Type

Parental Origin
of Allele(s)

Theoretical
Frequencya

1:
2,2,2 MF IMIFS2R2m1

2:
2,1,2 MF IMIFS2R2m2

2,1,1 M IMS2R1m2

1,2,2 MF IMIFS1R2m2

1,2,1 F IFS1R1m2

3:
2,0,1 M IMS2R1m3

0,2,1 F IFR1m3

4:
1,1,2 MF IMIFS1R2m4

1,1,1 M IMS1R1m4

1,1,1 F IFS1R1m4

1,1,0 S1m4

5:
1,0,1 M IMS1R1m5

1,0,0 S1m5

0,1,1 F IFR1m5

0,1,0 m5

6:
0,0,0 m6

a IM and IF are the relative risks associated with inheriting a copy
from the mother or the father, respectively. R1, R2, S1, S2 are as in
tables 2 and 3.

As mentioned above, one could improve on the power
of the LRT, by tailoring it to a particular alternative,
such as a gene-dose effect. If, under the gene-dose model,
the effect of the number of copies of the allele carried
by the child is modeled as linear, by revision of the ar-
gument of expression (1), this linearized LRT reveals
power that was, in our simulations, identical to that of
the TDT. The reasons for this equivalence are given in
the Discussion section.

Extension of the Model, to Allow for Imprinting

Potentially, the risk to the offspring could depend on
whether the inherited copy is maternal or paternal in
origin, because of imprinting mechanisms. To account
for such mechanisms, the general model (1) can be ex-
tended as follows:

( )ln[E n ] 5M,F,C

g 1 b I 1 b I 1 a Ij 1 {C51} 2 {C52} 1 {M51}

1 a I 1 « I2 {M52} F {F-derived copy}

( )1« I 1 ln h I , (2)M {M-derived copy} {M5F5C51}

where h denotes the sum: exp(eF) 1 exp(eM). The pa-
rameter interpretation is that IF 5 exp(eF) (or that IM 5
exp[eM]) estimates the risk for a child who inherits a
paternally derived (or maternally derived) copy of the
allele, divided by the risk for a child who inherits no
copy of the allele. All mating types except 1 and 6 should
be informative for assessment of imprinting effects. For
every category but one in table 2, the parental origin of
the alleles is unambiguous. The one troublesome cate-
gory is (1,1,1), in which, under Mendelian inheritance,
half the children would have inherited the paternal copy
and half would have inherited the maternal copy. If we
had complete data on parental origin, then model (2)
could be fit directly, suggesting that statistical methods
for missing data can be applied. Here the missing data
are just the parental origin for triads in the (1,1,1)
cell—that is, heterozygous cases with two heterozygous
parents.

Table 4 shows the 16-cell multinomial that we would
need with hypothetical complete data on parental origin
of the alleles. We can directly observe 14 of the 16
counts; for two of the categories, however, we can ob-
serve only the sum. This is because the parental source
of the allele must be treated as unknown for the category
(1,1,1).

The likelihood corresponding to the observable data
has, as the expected count for the (1,1,1) cell, the sum
(IM 1 IF)S1R1m4. Once all the relative-risk parameters
have been estimated, the maximized log likelihood for
the observed data is simple to compute.

A problem of colinearity arises in the fully parame-
terized model (2), because C 5 I{C51} 1 2I{C 5 2} 5
I{F-derived copy} 1 I{M-derived copy}. Consequently, model (2) in
its full form is not statistically identifiable. This means
that, when imprinting by both parents is added to a full-
background model, only one additional parameter is fit-
ted. Moreover, the change in minus twice the log like-
lihood is (under the null that there is no parental
imprinting), against that full-background model, a x2

with 1, not 2, df. There is a corresponding problem in
interpretation, in that, against the fully elaborated back-
ground model (1), a model that now includes paternal
imprinting will fit as well as one that includes maternal
imprinting. Because of this colinearity problem, mean-
ingful constraints need to be imposed to allow useful
inference with regard to parental imprinting, on the basis
of model (2). The simplest strategy is to leave out one
of the parental imprinting parameters. Or one can either
assume a dominant model or a recessive model or choose
the one that fits best, thus reducing the number of par-
ameters that must be estimated. Any such parameter
restriction will yield statistical identifiability.

Using the Expectation-Maximization (EM) Algorithm
to Maximize the Imprinting Likelihood

To estimate the parameters, we apply the EM algo-
rithm (Dempster et al. 1977). To fit this algorithm in
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this simple situation, one estimates the expected value
of the missing cell counts, conditional on the current
estimates of all the parameters and on the observed data.
If “n1,1,1” denotes the observed count of triads in the
(1,1,1) cell, then the estimated count when the child’s
copy was paternal in origin is given by

ÎFn ,1,1,1 ˆ ˆI 1 IF M

where and denote the current maximum-likelihoodˆ ˆI IF M

estimates for the imprinting relative risks for the father
and the mother, respectively. The estimated counts are
then treated as real data, and the likelihood in table 4
is maximized by use of standard software (the M step).
Then the estimation (the E step) is repeated. In this way,
the E and M steps are alternated until convergence is
achieved. In the simulations that we have analyzed, this
normally takes X∼12 iterations and always occurs in
X30 iterations. The log likelihood must, of course, not
be based on the estimated data and the pseudocomplete
data of table 4 but, rather, on the observed data likeli-
hood, for which the fitted probability for the (1,1,1) cell
is given by

ˆˆ ˆ ˆ( ) ˆI 1 I S R m .M F 1 1 4

An Alternative TDT-Like Test for Imprinting

One can compute a 1-df test, TAT, as follows: Cal-
culate, among heterozygous mothers not married to het-
erozygous fathers, the number who transmitted and the
number who did not transmit the variant allele to the
affected offspring. Denote these numbers as “a” and
“b,” respectively. Then do the same for the heterozygous
fathers not married to heterozygous mothers, enumer-
ating both a number, c, for the transmitters and a num-
ber, d, for the nontransmitters. Families in which both
parents are heterozygous (mating type 4) must be ex-
cluded as uninformative. The resulting two-by-two table
made up of a–d is then tested for equality of the trans-
mission rates, by means of the usual x2 statistic for com-
parison of proportions. This yields a transmission-asym-
metry statistic and a 1-df x2 TAT.

Imprinting Simulations

Imprinting was simulated under the same population-
structure model described above for comparing the
power of the LRT with that of the TDT. For each of
several combinations of parameter values, 1,000 studies
were simulated, with 100 case-parent triads in each. The
models considered included, in addition to a model that

was fully null (except for mating-type effects), one with
purely paternal imprinting, with paternal transmission
of the variant conferring a relative risk of 2.5 (IF 5 2.5),
and one with purely maternal imprinting, with maternal
transmission of the variant conferring a relative risk of
2.5 (IM 5 2.5). Each of these was also simulated against
a context of background effects involving, in turn, the
genotype(s) of the child or the mother, conferring an
additional relative risk of 2.5, both under dominant
models. Although data were simulated under a dominant
model, dominance was not imposed in the modeling,
since this would generally not be known by the
investigator.

The likelihood tests were done in two ways—by test-
ing imprinting (for one parent) against the correct back-
ground model and by testing imprinting against a fully
parameterized model, allowing for R1, R2, S1, and S2.
For the simplest case, where there is only parental im-
printing, the imprinting effect was also tested against a
model in which the child’s genotype might also be in-
dependently related to risk, to see how much power
would be lost in making that unnecessary adjustment.
All tests were based on x2 statistics (1 df), which are
inherently two sided. The TAT was also computed for
each simulated study, so that its power could be assessed.

Parameter estimation for the imprinting relative risk,
IF or IM, was also done under various choices of back-
ground models. These approaches are, unlike the ma-
ternal and child tests, not orthogonal and can give very
different results, especially for power. Bias in estimation
was assessed by comparing the exponentiated average
of the estimated coefficients to the known relative risk,
2.5. Confidence intervals are given for these estimates,
based on the empirical standard errors from the 1,000
simulated studies.

Results of Analysis of Imprinting Simulations

Results are given in table 5. Models for which the
correct background model was used in the adjustment
have been specified. The EM algorithm converged con-
sistently by the 30th iteration. The estimated imprinting
relative risks were very close to the known 2.5, except
that there was slight upward bias for the sample size
considered. As would be expected, the power results for
pure imprinting scenarios (R1 5 R2 5 S1 5 S2 5 1) were
symmetric for maternal and paternal imprinting, re-
gardless of whether the child’s genotype was (needlessly)
adjusted for (see table 5, rows 1 and 4). Power was very
good, 1.90, against the properly specified null back-
ground model. By contrast, power was poor against a
fully parameterized model. This would be expected,
given the colinearities in the independent variables. The
power for the TAT was approximately as poor as that
for the fully parameterized background analysis. In sim-
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Table 5

Results for Tests for Detection of Imprinting, with Use of LRT, Based on 1,000 Simulated Studies Each

SCENARIO ASSUMED

(N 5 100 FAMILIES)

OVERALL ESTIMATED RELATIVE RISK (95% CI); FRACTION OF TESTS REJECTING IMPRINTING

NULL HYPOTHESIS [POWER FOR TAT]a

Mating Type Only

Mating Type and C (Rows
1, 2, 4, and 5) or Mating
Type and M (Rows 3 and

6) Mating Type, C and M

IF 5 2.5:
IM 5 R1 5 R2 5 S1 5 S2 5 1 IF: 2.48 (2.44–2.52); .924b IF: 2.53 (2.47–2.59); .761 IF: 2.55 (2.44–2.66); .328 [.329]
R1 5 R2 5 2.5; S1 5 S2 5 IM 5 1 Invalid model IF: 2.56 (2.50–2.61); .873b IF: 2.54 (2.42–2.67); .275 [.391]
S1 5 S2 5 2.5; R1 5 R2 5 IM 5 1 Invalid model IF: 2.60 (2.53–2.67); .735b IF: 2.59 (2.49–2.70); .352 [.322]

IM 5 2.5:
IF 5 R1 5 R2 5 S1 5 S2 5 1 IM: 2.50 (2.45–2.54); .928b IM: 2.55 (2.49–2.61); .777 IM: 2.55 (2.44–2.66); .315 [.285]
R1 5 R2 5 2.5; S1 5 S2 5 IF 5 1 Invalid model IM: 2.54 (2.49–2.59); .877b IM: 2.60 (2.48–2.72); .264 [.388]
S1 5 S2 5 2.5; R1 5 R2 5 IF 5 1 Invalid model IM: 2.56 (2.51–2.62); .868b IM: 2.64 (2.52–2.78); .281 [.323]

a Type 1 error rate .05.
b Model is not overparameterized compared with the true scenario.

ulations of the fully null model (not shown) for the LRT
and the TAT, the type 1 error rates were consistent with
the nominal .05.

For the more complex settings, in which there is, in
addition to imprinting, an independent effect of either
the child’s genotype (scenario A) or the mother’s ge-
notype (scenario B), the power remained generally high
for the LRT, provided that no unnecessary adjustments
were included in the modeling. The one exception to this
was in the scenario in which paternal imprinting occurs
simultaneously with a maternal genetic background, in
which the power against the properly specified back-
ground dropped to .74. Power remained low for the
TAT.

Discussion

With case-parent–triad data, the relative risks asso-
ciated with a particular variant allele can be estimated
by maximum likelihood, by use of widely available sta-
tistical software. The log-linear model allows for causal
scenarios in which the child’s own genotype is directly
relevant to risk, in which the mother’s genotype is di-
rectly relevant, in which parental imprinting plays an
important role, or in which the truth is some combi-
nation of these. In the special case where risk is deter-
mined by the child’s own genotype, the LRT is closely
related both to the CPG method described by Schaid
and Sommer (1993) and to the conditional maximum-
likelihood approach described by Self et al. (1991) and
applied by others to multigene analyses (Langholz et al.
1995; Thomas et al. 1995).

A model including imprinting is somewhat more dif-
ficult to fit than are the models involving either scenario
A or scenario B, in that an iterative missing-data pro-
cedure is required to develop the maximum-likelihood

estimates. However, the simpler, TDT-inspired TAT for
imprinting had low power compared with that of the
LRT. This is presumably at least in part because the TAT
does not use the information from mating type 4, in
which both parents are heterozygous, whereas the LRT
makes full use of these families.

We had previously reported that a study of 100 case-
parent triads would yield a power of ∼.80 for detection
of an effect of the maternal genotype (a relative risk of
2.5, dominant model) (Wilcox et al., in press). Our cur-
rent results suggest that power for detection of maternal
or paternal imprinting may be even higher, ∼.90, for the
same population structure and sample size.

The relative-risk parameters that arise in these models,
for imprinting, maternal effects, and effects of the child’s
own genotype, are interpretable as etiologically relevant
“population-structure–adjusted” relative risks, in that
the stratification on parental mating type has adjusted
for effects of population structure. Thus, the model pro-
vides a way to estimate parameters and to test linkage
disequilibrium for the usual causal scenario, but it also
allows for generalization to a broader range of causal
scenarios (e.g., scenario B) that do not necessarily in-
clude any appearance of distortion in transmission from
parent to child.

We have described these results in the context of a
“variant” allele, without clearly specifying whether the
gene is considered to be a candidate disease gene (per-
haps with low penetrance) or a marker that is in linkage
with a disease gene. If the gene under study is in fact a
marker, then the model laid out, in table 2, for scenario
A is not quite correct, because the risk in a child who
carries a certain number of copies of the marker depends
also on the genotypes of the child’s parents. Because of
recombination, the risk in a homozygous child with one
homozygous parent should be higher than the risk in a
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homozygous child with two heterozygous parents. Nev-
ertheless, the model in table 2 is correct under the null
hypothesis of no linkage disequilibrium, and hence tests
based on this model are statistically valid, if not optimal,
even for studies of marker alleles.

Because it tests for linkage and association simulta-
neously, the TDT can be thought of as a test for linkage
in the presence of known association, or as a test for
both linkage and association (Spielman and Ewens
1996). The log-linear model that we have described
yields an LRT for the effect of the child’s genotype (sce-
nario A) that is also simultaneously a test for association
and linkage, and thus the LRT can be regarded as a
competitor with the TDT. Our simulations suggest that,
despite the inherent disadvantage of having 2 df rather
than 1 df, both the LRT and the closely related score
statistic proposed by Schaid and Sommer (1993) often
outperform the TDT.

This enhanced power of the likelihood-based methods
under a dominant or a recessive model is most likely
due to how they use parental information. The TDT
considers only transmission and treats all heterozygous
parents as independent. The likelihood-based methods
exploit the added information related to joint transmis-
sion from pairs of parents. This distinction is most clear
when one considers the triads that fall into the (1,1,1)
category. For the TDT, these triads, even if numerous,
do nothing but decrease the x2 statistic, since one het-
erozygous parent has transmitted a copy of the gene
whereas the other heterozygous parent has not. Al-
though each such family adds two to the denominator
of the computed TDT statistic, it adds nothing to the
numerator. On the other hand, the likelihood-based
methods use the information that the child in such a
triad did inherit a copy of the gene, and larger than
expected counts in the (1,1,1) category will increase the
value of the test statistic. Conceptually, looking only at
which heterozygous parent did (or did not) transmit the
gene to an affected child, as is done by the TDT, sacrifices
important information related to what the child actually
received as the joint transmission from the two parents.
Thus, if parents who are both heterozygous jointly trans-
mit a single copy to the affected child more than twice
as often as they jointly transmit no copies, this provides
important evidence of a genetic effect. Analysis of par-
ents singly, as in the TDT, overlooks this evidence.

Our power results were identical for the TDT and the
linearized LRT, the latter being a test in which model
(1) has been modified to have an argument linear in C.
The reason for this equivalence is quite simple. Under
the linearized model, the maximum-likelihood estimate
for the coefficient of C can be shown to be the logarithm
of b/c, where b (c) is the number of heterozygous parents
who did (did not) transmit the variant to their offspring.
In the linearized LRT, b/c is the estimated relative risk

for carrying a single copy of the variant and (b/c)2 is the
estimated relative risk for carrying two copies of the
variant. The TDT is defined as (b 2 c)2/(b 1 c). Both
tests are thus testing the null hypothesis that, conditional
on b 1 c, b will, on average, be half of the total. The
two tests are asymptotically equivalent, the TDT being
the score test for the linearized model ( ) (Schaid2R 5 R2 1

and Sommer 1994) and the LRT being the test based on
the change in the maximized likelihood. Apparently, a
sample of 100 families is close enough to infinite for this
equivalence to hold empirically. Thus the TDT can be
regarded as a linearized version of the LRT, and in this
sense the (not necessarily linearized) LRT provides a gen-
eralization of the TDT.

It follows that the TDT will be statistically optimal
only when the relative risk associated with carrying two
copies of the variant is the square of the relative risk
associated with carrying one copy. This gives additional
insight into its relatively poor performance under the
dominant and the recessive models, which violate that
pattern.

Finally, the LRT, the TDT, and the score test all assume
Mendelian transmission under the null hypothesis, and
all are vulnerable to distortion if this assumption fails.
For studies of birth defects, such failure is not implau-
sible—for example, homozygosity for the variant allele
could be incompatible with survival of the early embryo.
Spielman and Ewens (1996) discussed this issue in re-
lation to distortion of the meiotic process itself and sug-
gested that one could rule out such a phenomenon by
studying the unaffected siblings. Such a strategy should
work well if the penetrance is low. Another issue has to
do with survival of the affected fetus to term, since we
must consider not just the occurrence of a birth defect
such as spina bifida but also its occurrence among fetuses
surviving to birth and therefore eligible for study. How-
ever, we have shown elsewhere (Wilcox et al., in press)
that poor survival of affected fetuses has no effect on
the multinomial distribution for case-parent triads, pro-
vided only that the conditional probability of survival
among babies with the defect does not depend on the
case’s or the parents’ genotype.

In summary, our proposed method for analysis of
case-parent triads provides an easy-to-apply test of link-
age disequilibrium that can distinguish between effects
of the offspring’s genotype and prenatal effects of the
mother’s genotype and that can be adapted to test for
parental imprinting. The model can be constructed to
make use of HWE for studies of well-mixed populations,
but this assumption is not required in general. Simula-
tions suggest that the LRT based on the log-linear model
is, under both recessive and dominant models, more
powerful than the TDT. Estimation of population-struc-
ture–adjusted relative risks is also straightforward, with
use of standard software for Poisson regression. Models
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that include an imprinting scenario require some spe-
cialized software, but the resulting likelihood-ratio sta-
tistic yields a powerful test that outperforms a TDT-
inspired alternative.
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Appendix

Analysis to Assess and Exploit HWE

The theoretical distribution of case-parent triads un-
der the assumption of HWE can be generated from
model (1), by substitution of the logarithms of the pol-
ynomials in p (shown in table 1) for the gj and by in-
clusion of a normalizing constant to ensure that the
probabilities sum to 1.0.

The resulting distribution can be fitted by use of stan-
dard log-linear software and, in fact, can be shown
to be a reduced version of the mating-type–stratified
model. To see this, note that the polynomials in p
shown in table 1 can be written in the following form:
pM1F(1 2 p)42M2F, and this can be rewritten as {[p/(1 2
p)]M1F}(1 2 p)4. Taking logarithms, we can write the
logarithm of the expected count under the HWE model
as follows:

( )g 1 f M 1 F 1b I1 {C51}

( )1b I 1 ln 2 I .2 {C52} {M5F5C51}

The parameter, f, is the logit of p, the prevalence of
the variant allele. Thus, if HWE holds, one can estimate
the allele prevalence in the population by using case-
parent triads only, by taking the anti-logit of f, which
is 1/[11exp(2f)]. A confidence interval for the preva-
lence can be based on the confidence interval for f, by
taking the anti-logit of the two limits. A second conse-
quence is that one can test the hypothesis that HWE
holds, by means of case-parent–triad data. To do this,
one performs an LRT based on comparison of the like-
lihood for the HWE model and that for the mating-type
model. Comparing any two such models leads to a

4-df x2 statistic, because the mating-type model requires
six parameters, whereas the HWE model requires only
two.
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