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Genetic Basis of Peroxisome-Assembly Mutants of
Humans, Chinese Hamster Ovary Cells, and Yeast:
Identification of a New Complementation Group of
Peroxisome-Biogenesis Disorders Apparently Lacking
Peroxisomal-Membrane Ghosts

To the Editor:
Complementation analysis has been used to study the
genetic basis of peroxisome-biogenesis disorders (PBDs;
MIM 601539) at the Academic Medical Centre (AMC)
in the Netherlands (Brul et al. 1988), Kennedy Krieger
Institute (KKI) in the United States (Roscher et al. 1989),
and Gifu University in Japan (Yajima et al. 1992). These
initial studies led to identification of 15 complementa-
tion groups. When we standardized these complemen-
tation groupings to establish the true number of different
complementation groups, we found a total of 9 inde-
pendent groups (Shimozawa et al. 1993). In only 5 years,
the molecular study of PBDs has advanced rapidly: (1)
Several peroxisome-deficient mutants of Chinese ham-
ster ovary (CHO) cells and yeast were isolated, and these
mutants were used to clone PEX genes, by functional
complementation, that are required for peroxisome as-
sembly. (2) Five PEX genes involved in peroxisome bio-
genesis—PEX1, -2, -5, -6, and -12—have been identified
as apparently responsible for PBD groups E (group 1 at
KKI), F (group 10 at KKI), 2, C (group 4 at KKI), and
3, respectively (Shimozawa et al. 1992b; Dodt et al.
1995; Fukuda et al. 1996; Yahraus et al. 1996; Chang
et al. 1997; Okumoto and Fujiki 1997; Portsteffen et al.
1997; Reuber et al. 1997); and PEX7 was found to be
responsible for rhizomelic chondrodysplasia punctata
(RCDP) (Braverman et al. 1997; Motley et al. 1997;
Purdue et al. 1997). (3) The role of these six PEX genes
may be importing peroxisomal-matrix protein, since
empty peroxisomal-membrane structures (peroxisomal
ghosts) were seen in fibroblasts from PBD groups C (4
at KKI), E (1 at KKI), 2, and 3 (Santos et al. 1988;
Wendland and Subramani 1993).

We have now identified a new complementation group
of PBDs, group J (we are leaving out “I” to avoid con-
fusion with group 1 at KKI), which is genetically dif-
ferent from the 11 currently known groups, including
complementation groups G (Poulos et al. 1995) and H
(Shimozawa et al. 1998). Complementation tests on hu-
man fibroblasts from various PBD patients were per-

formed by restoration of peroxisomes by means of im-
munocytochemical staining of catalase in fused cells
(Yajima et al. 1992). Formation of peroxisomes in the
majority of multinucleated cells was detected after fusion
between fibroblasts from the patient and fibroblasts
from the 11 complementation groups (A–H, 2, 3, and
6) of PBD (data not shown). These observations mean
that this patient can be regarded as representing a new
complementation group, J (table 1). Interestingly, careful
immunofluorescence-microscopy studies of fibroblasts
from a patient belonging to the newly identified group
J, performed with an antibody directed against human
70-kD peroxisomal-membrane protein (PMP [PMP70])
(Imanaka et al. 1996), revealed the absence of empty
peroxisomal-membrane structures (ghosts) (fig. 1a and
b), as well as, when performed with anti–human catalase
antibody, catalase-containing particles—that is, peroxi-
somes (fig. 2a and b). Furthermore, among the 11 com-
plementation groups so far tested, fibroblasts from all
patients belonging to group D very rarely have peroxi-
somal ghosts (fig. 1c) and those from group G have none
(fig. 1d), whereas peroxisomal ghosts were detected in
the fibroblasts from PBD groups A–C, E, F, H, 2, 3, and
6 (fig. 1e–m). In fibroblasts from a patient with
RCDP, both catalase-containing (fig. 2c) and PMP70-
containing particles were seen (fig. 1n). In addition, we
performed immunofluorescent staining with an anti–
adrenoleukodystrophy protein (ALDP; 75-kD PMP) an-
tibody. As in the case of PMP70, ALDP-positive particles
were not detected in fibroblasts from PBD complemen-
tation groups G and J, and ALDP-positive particles were
rarely found in those from group D. In contrast, ALDP-
positive particles that were larger and fewer than those
in control fibroblasts were detected in fibroblasts from
the other nine complementation groups (data not
shown). These results suggest that the primary defect in
PBD groups D, G, and J may not be matrix-protein
import but, rather, synthesis or maintenance of PMP
(Santos et al. 1988; Wendland and Subramani 1993;
Baerends et al. 1996; Dodt and Gould 1996; Wiemer et
al. 1996).

The patient from the newly identified complementa-
tion group J had the phenotype of classic Zellweger syn-
drome (ZS; MIM 214100). Dihydroxyacetone phos-
phate acyltransferase activity was severely diminished in
fibroblasts from the patient (0.11 nmol/120 min per mg
protein), in comparison with findings in control fibro-
blasts (1.55 nmol/120 min per mg protein) (Shimozawa
et al. 1988). b-Oxidation activity of lignoceric acid rel-
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Table 1

Complementation Groups of PBDs

COMPLEMENTATION GROUP

PHENOTYPE(S)b

PEROXISOMAL-MEMBRANE

GHOSTSc

CHO
MUTANT(S)

HUMAN

GENE MAPPING

YEAST

GENEGifu KKIa AMC

A 8 ZS, NALD, IRD 1
B 7 (5) ZS, NALD 1
C 4 3 ZS, NALD 1 ZP92 PEX6 (PAF2) 6p21.1 Pex6
D 9 ZS 2
E 1 2 ZS, NALD, IRD 1 Z24, ZP101 PEX1 7q21-22 Pex1
F 10 5 ZS, IRD 1 Z65 PEX2 (PAF1) 8q21.1 Pex2
G ZS 2
H NALD 1
J ZS 2 ZP119d

2 4 ZS, NALD 1 ZP102 PEX5 12p13.3 Pex5
3 ZS 1 ZP104, ZP109 PEX12 Pex12
6 NALD 1

ZP110, ZP 111
ZP114

R 11 1 RCDP PEX7 6q22-24 Pex7

a The numbering listed under KKI is based on the study by Moser et al. (1995).
b NALD denotes neonatal adrenoleukodystrophy, and IRD denotes infantile Refsum disease.
c A plus sign (1) indicates presence, and a minus sign (2) indicates absence.
d Kinoshita et al. (1998).

ative to that of palmitic acid in this patient’s fibroblasts
was also decreased (0.038), in comparison with findings
in the control cells (0.58), determined as described by
Suzuki et al. (1991). In addition, all of the patients from
PBD groups D, G, and J had only the severe phenotype
of ZS (Shimozawa et al. 1993; Poulos et al. 1995),
whereas some patients from the other nine PBD groups
had the severe phenotype but others had milder phe-
notypes, such as neonatal adrenoleukodystrophy and in-
fantile Refsum disease.

We then performed cell fusion between fibroblasts
from group J and CHO mutants ZP110 (Tateishi et al.
1997), ZP114 (Tateishi et al. 1997), and ZP119, the
CHO mutant newly isolated by Kinoshita et al. (1998),
which were found to belong to complementation groups
other than the known PBD groups (A-H, 2, 3, 6, and
RCDP) (Shimozawa et al. 1998). Numerous peroxi-
somes were detected after fusion by use of methods re-
ported elsewhere (Shimozawa et al. 1992a), between fi-
broblasts and CHO mutants ZP110 (fig. 2d) and ZP114,
whereas no peroxisome was detected after fusion be-
tween fibroblasts and ZP119 (fig. 2e). These observa-
tions imply that the newly identified CHO mutant
ZP119 represents ZS fibroblasts from group J. Further-
more, this CHO mutant, like group J, had no peroxi-
somal ghosts (Kinoshita et al.; 1998), whereas large but
fewer particles immunoreactive with anti-PMP70 anti-
body were detected in CHO mutants Z24, Z65, and
ZP92, which belong to the same complementation
groups as E, F, and C, respectively (Shimozawa et al.
1992a).

We then transfected human PMP70 cDNA (Kamijo

et al. 1992) into fibroblasts lacking peroxisomal ghosts,
from groups D, G, and J, according to methods reported
elsewhere (Shimozawa et al. 1996). In all these trans-
fectants, peroxisomes were not detected when we per-
formed immunostaining with an anti–human catalase
antibody (fig. 2f–h), and the same held true for trans-
fectants of PMP70 into fibroblasts from groups A–C, E,
F, H, 2, 3, and 6 (data not shown). Therefore, human
PBD groups caused by defects in the PMP70 gene have
heretofore not been identified. Furthermore, when we
transfected, into the fibroblasts from the group J patient,
human PEX13 cDNA, which encodes an SH3 protein
of the peroxisomal membrane (Gould et al. 1996). Per-
oxisomes were not evident in the transfectants (fig. 2i).
In summary, (1) in mammalian cell lines there are 15
known peroxisomal-deficient complementation groups,
including RCDP and CHO mutants; (2) abnormalities
of PMP synthesis, not matrix-protein import, may be
the primary defect, at least in PBD groups D, G, and J,
and all patients from these groups manifested only the
severe phenotype of ZS, whereas the other groups in-
cluded various phenotypes; and (3) there were no PBD
groups complemented by human PMP70.

It was first reported that in ZS fibroblasts from com-
plementation group 4 at KKI (group C at Gifu [PEX6
defect]) the PMPs were located in unusual empty
membrane structures (peroxisomal ghosts) of a larger
size—a finding determined mainly by use of an anti-
PMP70 antibody (Santos et al. 1988).Later, ghost size
and abundance were noted in seven ZS fibroblasts be-
longing to five complementation groups (Santos et al.
1992), and detectable PMP70 in vesicles was noted in



Figure 1 Immunofluorescent staining with anti–human PMP70 antibody. a, Control fibroblasts. b, Fibroblasts from group J patient. c–m, Fibroblasts from patients from groups D, G, A–C, E,
F, H, 2, 3, and 6. n, Fibroblasts from RCDP patient. ( ). In the fibroblasts from groups J and G, no PMP70-positive particles are visualized, except for the nonspecific puncta, and theBar 5 15 mm
cytosol is stained strongly and diffusely. Very few and various PMP70-positive particles are detected in the fibroblasts from group D and the other nine groups (A, B, C, E, F, H, 2, 3, and 6).



Figure 2 Immunofluorescent staining with anti–human catalase antibody. a, Control fibroblasts. b, Fibroblasts from group J patient. c, Fibroblasts from RCDP patient. d and e, Cell hybrids of
fibroblasts from the group J patient with ZP110 and the group J patient with ZP119, respectively. f–h, Transfectants with human PMP70 cDNA into group D, G, and J fibroblasts, respectively. i,
Transfectants with human PEX13 cDNA into group J fibroblasts. ( )Bar 5 15 mm
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those from KKI groups 1 (E at Gifu), 2, 3, 6, and 8 (A
at Gifu) (Wendland and Subramani 1993). ALDP-pos-
itive particles were also detected in two PBD cell lines
from group 1 but were rare in ZS fibroblasts from group
D (Mosser et al. 1994). All these data support our find-
ings of heterogeneity of peroxisomal ghosts in PBD com-
plementation groups.

At least 18 yeast PEX genes have been identified, and
several human genes have been considered to be human
orthologues of these PEX genes. It has been suggested
that there are yeast mutants without peroxisomal
ghosts—for example, Hansenula polymorpha per9 or
Pichia pastoris pas2 (PEX3 gene defect) (Baerends et al.
1996; Wiemer et al. 1996)—and that these PEX genes
may play roles of synthesis or maintenance of peroxi-
somal membrane. Therefore, any of these PEX genes
may be primary defects of PBD groups D, G, and J. We
are using western blot and pulse-chase experiments with
some PMP antibodies to perform detailed analyses of
ghosts in these three groups, and we are examining genes
responsible for these PBD groups by identifying human
orthologues of these PEX genes and by performing func-
tional cloning of peroxisome-deficient CHO mutants.
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Evidence of Somatic and Germinal Mosaicism in
Pseudo–Low-Penetrant Hereditary Retinoblastoma, by
Constitutional and Single-Sperm Mutation Analysis

To the Editor:
Retinoblastoma is a pediatric cancer of the retina, ini-
tiated by two consecutive inactivating mutations at the
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retinoblastoma locus (RB1; Friend et al. 1986; Fung et
al. 1987; Lee et al. 1987). Tumorigenesis may occur by
two distinct pathways: in nonhereditary retinoblastoma
(60% of patients), unifocal clonal expansion occurs after
two somatic RB1 mutations in a single retinal precursor
cell; however, in hereditary retinoblastoma (40% of pa-
tients), the first RB1 mutation is inherited classically and
is present in both retinas, where uni- or multifocal tu-
morigenesis can be initiated in any cell by the somatic
mutation of the remaining allele.

Typically, germ-line mutation may be passed domi-
nantly by an affected genitor, or it can be transmitted
as a prezygotic, mostly paternal neomutation from a
healthy parent. However, postzygotic mutagenesis has
long been suspected to contribute to the pool of trans-
mittable mutations of RB1. Two main predictions char-
acterize retinoblastoma patients with mutational mo-
saicism: (1) somatic mosaicism may significantly reduce
tumor susceptibility, and (2) gonadal mosaicism may
cause linkage-based analysis of inheritance to be biased
toward apparent low penetrance, as a result of a non-
Mendelian output of mutant versus wild-type gametes.

Several cases of retinoblastoma with mosaicism are
mentioned in the literature (Greger et al. 1990; Huang
et al. 1992; Shimizu et al. 1994; Thonney et al. 1996;
Lohmann et al. 1997; Sippel et al. 1998). The incidence
of mosaicism as well as its phenotypic influence on he-
reditary retinoblastoma remain to be determined, to
improve genetic counseling and to shed light on the
mechanisms underlying expression and penetrance of
retinoblastoma.

To detect the presence of mosaicism in hereditary ret-
inoblastoma, we selected pedigrees found through either
healthy carriers or affected individuals in whom linkage
analysis concomitantly documented an apparent low
penetrance, from a series of 210 consecutive index pa-
tients referred for genetic counseling to the Retinoblas-
toma Clinics at the Jules Gonin Hospital during the pe-
riod 1986–96. Among these patients, 147 (70%) had
bilateral disease, and 34 (16.2%) had a familial history
of retinoblastoma. All patients with familial retinoblas-
toma were investigated genetically by linkage analysis
using intragenic DNA-sequence polymorphisms, and all
were informative (Munier et al. 1992, 1996). Apparent
low penetrance was present in eight pedigrees. After the
exclusion of two families with fortuitous familial ag-
gregation of independent retinoblastoma cases (Munier
et al. 1993), the six remaining pedigrees were docu-
mented for reduced penetrance, as defined by the pres-
ence of healthy individuals 13 years of age in linkage
phase with affected family members. A systematic search
for the RB1 mutation in these six families was then per-
formed in order to describe the molecular basis of the
presumed low penetrance.

Among the six families (A–F) with apparent low pen-

etrance, linkage analysis detected 21 unaffected carriers,
of whom 6 were obligate retinoblastoma transmitters;
2 of the 6 obligate transmitters were founders (in families
A and B; data not shown). The other four pedigrees were
founded either by unilaterally (families C, D, and F) or
bilaterally (family E) affected males, and attenuated ex-
pressivity or retinoma was present in three of these
males: two in family E (the affected father had one eye
enucleated for unilateral retinoblastoma and a unifocal
flat chorioretinal scar, reminiscent of type IV regression,
in his untreated eye; the affected son had bilateral mul-
tifocal retinomas) and one in family F (the affected
grandfather had a unifocal staphylomic macular scar).

Two abnormal conformers were identified when SSCP
analysis of exons 8 and 23 was performed for the two
index patients of families D and E, respectively (fig. 1).
Sequence analysis of these DNA fragments revealed CrT
transitions at CpG dinucleotides of two arginine codons,
at positions 251 and 787, in families D and E, respec-
tively. These changes also abolished two TaqI restriction
sites. When segregation of the mutations was analyzed
in both families, the TaqI restriction digest showed a
faint undigested band in affected fathers, in addition to
the expected digested products, suggesting the presence
of somatic mosaicism. Confirmation of mosaicism was
obtained following analysis of the TaqI site in cloned
PCR amplicons of exons 8 and 23. The mutant digestion
pattern was recovered in only 8 (10.7%) of 75 inserts
from family D and in 4 (12.1%) of 33 inserts from family
E. In contrast with the results of the linkage analysis,
nonpenetrance failed to be validated by the presence of
mutations in the three unaffected sibs (individuals III-1
and III-2 in family D and individual III-2 in family E)
of the probands, strongly suggesting germinal mosaicism
in the founders.

Direct quantitative analysis of gonadal mosaicism was
performed on semen from only the family E founder (fig.
2), by means of a TaqI restriction assay in amplicons of
exon 23. Single sperms were isolated by fluorescence-
activated cell sorting into 96-well microtiter plates (Cui
et al. 1989; Li et al. 1991). We performed amplification
reactions in 576 wells and obtained an amplification
signal for 415 wells. No amplification was obtained for
the 40 negative controls (wells without cells), which is
consistent with absence of contamination. All 18 posi-
tive controls (10 spermatozoa/well) gave a signal on an
agarose gel; two alleles were observed in 3 wells, indi-
cating the presence of more than one spermatocyte. The
remaining 394 wells had only one allele. The mutated
and wild-type alleles were easily distinguished, after TaqI
digestion, as one 255-bp amplicon or as products of

bp, respectively (fig. 2). Of 394 unicellular159 1 96
digested products, 365 (92.64%) revealed the presence
of a normal allele, and 29 (7.36%) revealed the presence
of a mutant allele.
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Figure 1 Pedigrees of two low-penetrant retinoblastoma families (D and E), and genotypes after linkage and/or mutation analysis at the
RB1 locus. mw 5 heterozygote for the RB1 mutation, ww 5 homozygote for the RB1 wild type, w/(m/w) 5 mosaic, and lis 5 esterase D
lisbon isoenzyme. The blackened circle represents a bilaterally affected female patient; half-blackened squares represent unilaterally affected
males; hatched and half-hatched squares represent patients with bilateral and unilateral retinomas, respectively; and squares containing a black
dot represent unaffected male carriers of the apparently disease-linked haplotype.

Intragenic linkage analysis of 34 familial retinoblas-
toma cases revealed a low-penetrance pattern of in-
heritance in eight families, of which four followed
pseudo–low-penetrant mechanisms, including indepen-
dent occurrence of RB1 mutations in two different sets
of cousins (Munier et al. 1993) and, as shown in this
study, germ-line mosaicism in two affected founders. For
the four remaining families, the molecular basis of the
apparent low penetrance could not be determined and
will await identification of the disease-causing muta-
tion(s). Given the reported sensitivity (26%–83%) of the

various RB1 mutation-scanning methods for hereditary
retinoblastoma (Blanquet et al. 1995; Liu et al. 1995;
Lohmann et al. 1996), the observation of mutations in
33% of the cases was not surprising. One possible ex-
planation is that several mutations can be missed by
SSCP screening or may lie outside the scanned RB1 ex-
ons (exons 2–26). Analysis of incomplete penetrance in
retinoblastoma has previously led to the identification
of two major types of gene alterations, resulting in either
transcription reduction via a promoter mutation (Sakai
et al. 1991; Cowell et al. 1996) or partial protein in-
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Figure 2 Determination of genotypes in single sperm from pa-
tient II-1 from family E, as detected by ethidium-bromide staining of
TaqI-digested PCR products. Lane 1, Undigested PCR product. Lane
2, Digested PCR product from 10 spermatozoa (presence of the two
alleles). Lanes 3–6, PCR product from single sperm with a mutant
allele (lane 4) or a normal allele (lanes 3, 5, and 6). Lane M, Molecular-
weight marker (1-kb ladder; Gibco BRL).

activation via missense mutations (Kratzke et al. 1994;
Lohmann et al. 1994; Ahmad et al. 1997) and in-frame
deletions (Lohmann et al. 1992; Dryja et al. 1993; Brem-
ner et al. 1997; Schubert et al. 1997).

We report two affected patients with somatic and
gonadal mosaicism for two RB1 nonsense mutations
(R251X and R787X). The pathogenicity of these two
mutations has been well established (Yandell et al. 1989;
Cowell et al. 1994). For both affected patients, somatic
mosaicism has been documented in peripheral lympho-
cytes and possibly involves the retina, as suggested by
the nonpenetrance of retinoblastoma in one eye of the
founder of family D. Mosaicism further extends to in-
clude the germ line, as proved by the segregation of three
different chromosomes 13 in both families (fig. 1). In
family D, indirect evidence of gonadal mosaicism in the
father was provided by the analysis of three informative
meiotic events in his progeny, after exclusion of non-
paternity, since his affected girl and two unaffected sons
inherited the same paternal haplotype, including a rare
esterase D polymorphism, ESD*Lis (Munier et al. 1988).
In family E, direct evidence of germ-line mosaicism in
the father’s semen is based on the study of 394 meiotic
events, from which 7.3% of the spermatozoa are mutant,
which is not very different from the 12.1% observed in
the peripheral leukocyte DNA.

In contrast to the ectodermal lineage of the retina,
leukocytes and primordial germ cells have an extraem-
bryonic origin and derive from the blastocyst endoderm.
Since the didermic stage starts at ∼8 d after conception,
it is tempting to adopt this age as the upper limit for
the occurrence of the postzygotic mutations R251X and
R787X. On the other hand, the earliest mutational event
leading to mosaicism can already have taken place in
the postmeiotic gametes, as “half-chromatid mutations”

(Carlson and Desnick 1979). The fact that the mutations
in both mosaics occurred on the paternally derived chro-
mosomes suggests that the well-known preferential pre-
zygotic paternal mutagenesis (Dryja et al. 1989; Zhu et
al. 1989) lasted in the zygote until the 8th d of devel-
opment. Interestingly, these two mutations are CrT
transitions at CpG dinucleotides, most likely occurring
by spontaneous 5-methylcytosine deamination. In sup-
port of this mutational mechanism, the genome of hap-
loid spermatozoa is known to have a higher methylation
content than the undermethylated DNA of the oocyte
and to be completely devoid of repair capabilities (Monk
1995). Hypermutability of the male-derived conceptus
genome may be momentarily repressed following the
massive demethylation that takes place at ∼2 d after
conception. De novo methylation of the unmethylated
blastocyst genome occurs again, at ∼6 d after concep-
tion, at the time of implantation (Dost and Lee 1995;
Razin and Shemer 1995). The CpG of codon 251 in
RB1 was recently proved to be constitutively methylated,
whereas no information is yet available with regard to
the methylation status of the CpG of codon 787 (Man-
cini et al. 1997). In summary, we tentatively can assign
a mutational window spanning from shortly before fer-
tilization to the 8th d of development. Since both ob-
served mutations in the two mosaics occurred on the
paternally derived chromosomes, most likely following
a cytosine methylation–mediated mechanism, the mu-
tational events involved likely happened no later than 2
d after conception, on the methylated paternal genome,
before massive demethylation took place. Furthermore,
we postulate that the different methylation status be-
tween sperm and oocyte genomes may temporarily per-
sist in the zygote and, hence, may cause a preferential
paternal origin of mosaicism.

This study indicates that hereditary retinoblastoma
does not originate exclusively from gametic neomuta-
tions but also may result from embryonic mutagenesis.
The relative contribution of gametic and embryonic neo-
mutations in hereditary retinoblastoma remains un-
known but may be determined by systematic screening
for both somatic mosaicism in patients with presumed
de novo mutations and cryptic mosaicism in their par-
ents. The time interval between the end of meiosis and
the differentiation of soma from the germ line is viewed
by some as a significant source of transmittable domi-
nant neomutations, with estimates ranging from 5% to
115% (Dost and Lee 1995).

The mosaic nature of the two mutations described in
this study could not be detected in any of the other 10
germ-line mutations identified by us (data not shown).
A search was performed in index patients and their
healthy parents. On the basis of this small series, we
estimated a mosaic prevalence of 16.6% (2/12). Inter-
estingly, Lohmann et al. (1997) estimated a similar prev-
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alence, with 1 (16.6%) in 6 mutations that cause isolated
unilateral hereditary retinoblastoma found to be mosaic
in nature. Such a frequent occurrence of mosaicism was
also highlighted recently by Sippel et al. (1998), whose
data indicate a 10% rate of mosaicism in a population
of 156 retinoblastoma patients. Finally, in a review of
140 retinoblastoma cases associated with constitutional
13q14 chromosomal rearrangements, 25 (18%) had
proved mosaicism (Munier et al. 1989).

Taken together, these data suggest that mosaicism may
be a frequent phenomenon, often interfering with ex-
pression and transmission of retinoblastoma. Somatic
mosaicism may cause attenuated expression, such as uni-
laterality or nonpenetrance of retinoblastoma. Likewise,
germinal mosaicism may be associated with apparent
reduced penetrance of retinoblastoma in linkage-based
molecular assessments of inheritance. This fact should
be included in the calculation of the recurrence risk of
retinoblastoma, especially for families with unilaterally
affected male founders.
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Genetic Counseling and Prenatal Diagnosis for
mtDNA Disease

To the Editor:
Over the last decade, clinicians have seen an increasing
number of patients who have been diagnosed with
mtDNA disease (Chinnery and Turnbull 1997b). As a
consequence, clinicians also have seen more and more
women of childbearing age carrying a pathogenic
mtDNA mutation who seek advice about the potential
risks to future offspring (Chinnery and Turnbull 1997a).
With this trend in mind, the recent editorial by Poulton
et al. (1998) was timely, tackling the difficult but in-
triguing problem of the origin, segregation, and inher-
itance of heteroplasmic mtDNA mutations. The authors
placed particular emphasis on the transmission of path-
ogenic mutations, and, on the basis of their interpreta-
tion of mechanisms, they suggested an approach to the
counseling for and prenatal diagnosis of mtDNA disease
that could be used in clinical practice. However, because
our understanding of the mechanisms governing these
processes is rudimentary at best, caution must be used
when counseling families with mtDNA disease.

At the most general level, two processes contribute to
the marked intrafamilial variation of genotype and phe-
notype that is the hallmark of mtDNA disease (Chinnery
and Turnbull 1997b). The first process occurs during the
early embryonic development of a female. Between the
formation of the zygote and the maturation of the oocyte
lineage, the cellular copy number of mtDNA is reduced
and then amplified. This results in a high level of vari-
ability in the level of mutated mtDNA that is transmitted
to the subsequent generation. Poulton et al. (1998) refer
to this process as the bottleneck, but whether the vari-
ability results from selection events (e.g., see Hauswirth
and Laipis 1985) or from random drift (Jenuth et al.
1996) is the subject of debate. In the second process,
further diversity is generated as mutated genomes dif-
ferentially replicate and segregate during histogenesis
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Figure 1 Percentage of mutant mtDNA in blood, for 72 indi-
viduals harboring the A3243G MERRF (myoclonic epilepsy with rag-
ged red fibers) mutation. For the details of data acquisition, see the
article by Chinnery et al. (1997).

and organ maturation (for a review, see Lightowlers et
al. 1997).

These two processes are of intense interest to those
scientists who seek to understand the mechanisms that
determine the inheritance of mtDNA. Not surprisingly,
their importance also has been recognized by clinicians
who counsel women at risk of transmitting hetero-
plasmic pathogenic mtDNA mutations. At present, un-
fortunately, very little guidance can be offered to these
women. There are three possible approaches to resolving
the clinical problem: (1) application of our understand-
ing of the mitochondrial genetic bottleneck; (2) empirical
investigation of the relationship between the maternal
mutation load and the mutation load and clinical phe-
notypes among offspring; and (3) the use of prenatal
diagnostic tests.

Although our rudimentary understanding of the bot-
tleneck might be tempting to use when counseling pa-
tients, it is, in fact, of limited practical use at present.
There are a number of theoretical and experimental
problems that beset the bottleneck phenomenon. First,
differences in the number of mtDNA molecules and in
the number of cell divisions during germ-line develop-
ment may have a profound effect on the size of the
bottleneck, thus weakening any simple extrapolation of
data from animal studies to humans (Austin 1995; Stra-
chan and Lindsay 1997). Second, undefined differences
among embryos may result in bottlenecks of different
sizes (Herbert et al. 1995); there is no evidence of a
simple, one-size-fits-all bottleneck (Howell et al. 1992).
Finally, and perhaps most importantly, although math-
ematical models of the bottleneck can be used to predict
the range of possible levels of mutant mtDNA in an
offspring, the resulting range is so wide as to be of lim-
ited value in counseling. For the specific example de-
scribed by Poulton et al. (1998)—namely, a female with
21% mutant mtDNA in her blood—the 95% confidence
interval of the mutation load in her offspring is
0%–50%. Furthermore, even if prediction of the precise
level of mutant mtDNA in the blood of the offspring
was possible, the clinical outcome from a particular
mtDNA mutation load cannot be predicted with a high
level of confidence, at the present time (Chinnery et al.
1997). For example, even for the A8344G mutation,
there is considerable overlap between the levels of mu-
tant mtDNA detected in the blood of clinically affected
individuals and the levels in their unaffected relatives
(fig. 1). Thus, the complex and multisystem clinical phe-
notypes are difficult to predict on the simple basis of
blood levels of mutant mtDNA in an individual har-
boring an mtDNA mutation.

An alternative, more empirical approach would be to
study the outcome of pregnancy in a large number of
women with heteroplasmic mtDNA mutations, without
making any assumptions about the mechanism of the

bottleneck. Thus, even with the limitations of a retro-
spective multicenter study, the frequency of clinically af-
fected offspring born to women who harbor the A3243G
or the A8344G point mutation recently has been shown
to be related to the level of mutant mtDNA in the moth-
ers’ blood (Chinnery et al., in press). However, the re-
lationship clearly differed for the two pathogenic mu-
tations, which indicates significant differences in the
expression of the two mutations, for a given inherited
mutation load. Although the use of this retrospective
data to give precise estimates of the risks involved for a
particular female is premature, these observations un-
derscore the potential value of more-extensive longitu-
dinal, tissue-distribution, and, especially, prospective
analyses.

Finally, preimplantation testing of a chorionic villus
biopsy may prove useful for counseling; however, at
present, there is very little data to support its use. If the
level of mutant mtDNA is distributed evenly to all the
tissues of a developing embryo and if the mutation load
stays constant with time, then this technique may be
reliable (as may be the case for the T8993G/C point
mutations). However, it is already known that the level
of mutant mtDNA is not distributed evenly in most pa-
tients with mtDNA disease and that this differential seg-
regation probably occurs at the later stages of devel-
opment. Even subtle variations in tissue mutation load
may lead to a profound variation in the phenotype, and
sampling of a single cell or chorionic villus may not
reflect the load in clinically relevant organs such as the
brain. Further studies are needed to establish the value
of these potentially hazardous techniques in the coun-
seling of patients with mitochondrial disease.

The prevalence of pathogenic mtDNA defects is at
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least 1/10,000 in the general population of northern Eu-
rope (Majamaa et al. 1998; P.F.C. and D.M.T., unpub-
lished data). Many of these individuals are women of
childbearing age who urgently need genetic counseling
and advice, with regard to both the prognosis for their
children and the risk of disease in subsequent offspring.
Poulton et al. (1998) have highlighted some of the dif-
ficulties encountered in counseling these patients, and
their discussion has given us much food for thought.
However, their recommended acceptance of a proposed
simple bottleneck model and its application to prenatal
mitochondrial diagnosis is premature.
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Reply to Chinnery et al.

To the Editor:
We thank Chinnery et al. (1998 [in this issue]) for their
appreciation of our article (Poulton et al. 1998) and for
their reiteration of its main points, particularly the need
to gather further data prospectively. Our article is in full
agreement with all four of their reservations about direct
application of current knowledge to clinical practice,
and their new data on the 8344 mutation are very similar
to the example we cite (Hammans et al. 1993). A recent
study by White et al. (1998) that uses an empirical ap-
proach generates advice that is very similar to the pre-
dictions of our model.

We would, however, like to correct two points. First,
our figure 2 (Poulton et al. 1998) refers to levels of
mutant mtDNA in ovary and progeny, not in blood
(clearly stated in the figure). To clarify the validity of
our predictions, we now display the figure, along with
the measured levels of mutant mtDNA (fig. 1; Marching-
ton et al. 1998). It is clear that such accurate estimates



Letters to the Editor 1911

Figure 1 Fitting the repeated- and single-selection models to the
data on mtDNA rearrangements: idealized plots for patient 1, for
predicted percentage mutant in offspring, when 21% mutant mtDNA
is in ovary, for repeated sampling ( , ; top) and for singleg 5 15 n 5 135
selection ( , ; middle). Both reasonably fit the observed dis-g 5 1 n 5 8
tribution (bottom; Marchington et al. 1998).

of the level of mutant mtDNA in ovary only rarely will
be available to the genetic counselor; hence, we use the
8344 mutation as an example of a mutation that “gen-
erally exhibits less variation between tissues than is seen

among some of the other, more common mtDNA mu-
tations” (Poulton et al. 1998, pp. 755–56).

Second, our discussion in the section “Models De-
scribing the Mitochondrial Bottleneck” (Poulton et al.
1998, pp. 754–55) is far from a “recommended accep-
tance of a proposed simple bottleneck model” or a pre-
mature “application to prenatal mitochondrial diag-
nosis” (Chinnery et al. 1998, p. 000). We did not rec-
ommend acceptance but suggested that “once more data
have been collected [such as that described in White et
al. 1998], such estimations will become usable in the
medium term; reasonable fits may be more useful to
patients than is the quality of information currently is-
sued” (Poulton et al. 1998, p. 756). We also stated,
“Although most clinicians will feel that CVS [chorionic
villus sampling] is not yet widely applicable to mtDNA
disease, there is clearly an urgent need to collect the
human data needed to complete the picture” (Poulton
et al. 1998, p. 756).
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Figure 1 Two-color FISH analysis of nuclei from squash prep-
arations of fetal ovary. The larger meiotic oocyte displays two red
hybridization signals, corresponding to the centromeres of chromo-
some 18 (D18Z1), and three green hybridization signals, correspond-
ing to the centromeres of chromosome 16 (D16Z2). The diffuse oocyte
hybridization signals are due to the dispersed chromatin structure of
an oocyte during meiosis. The smaller somatic cell shows two distinct
hybridization signals, for the same probes, indicating disomy for both
chromosomes 18 and 16.

Am. J. Hum. Genet. 63:1912–1914, 1998

Molecular Cytogenetic Detection of Confined
Gonadal Mosaicism in a Conceptus with Trisomy 16
Placental Mosaicism

To the Editor:
Confined placental mosaicism (CPM) is a dichotomy be-
tween the chromosomal constitution of the placental and
embryonic/fetal tissues, observed in 1%–2% of all de-
livered pregnancies, and most commonly involves a tri-
somic clone confined to the placenta (Kalousek 1990).
CPM has been shown to exist in three different forms
(types I–III), depending on its origin and the placental
cell lineages involved. In a diploid zygote, the trisomic
cell line in CPM can arise from mitotic duplication of
one chromosome in a specific placental cell lineage (ei-
ther trophoblast or chorionic stroma), giving rise to type
I or type II CPM. Rescue of a trisomic zygote, owing to
chromosome loss by a postzygotic mitotic error in the
embryonic progenitor cells, leads to trisomic cell-line ex-
pression in both placental lineages and is termed “type
III CPM” (Kalousek et al. 1993; Robinson et al. 1997).

Embryological literature provides evidence that the
chorionic stroma of the placenta and the primordial
germ cells (PGCs) of the embryonic gonads share com-
mon progenitor cells (Buehr 1997), suggesting that con-
ceptuses diagnosed with CPM involving the placental
stroma may be at increased risk for gonadal mosaicism.
We describe the conventional cytogenetic, molecular cy-
togenetic, and molecular genetic analyses of multiple fe-
tal and placental tissues from a conceptus diagnosed
with trisomy 16 placental mosaicism. Our results dem-
onstrate the presence of trisomy 16 mosaicism in the
placenta and disomy for chromosome 16 in all fetal tis-
sues studied, except oocytes, which show mosaicism
with a significant level of trisomy 16. This is the first
published data documenting the existence of germ-cell
mosaicism in an otherwise nonmosaic fetus, for a con-
ceptus diagnosed with CPM.

Fresh fetal and placental tissues were obtained from
a conceptus therapeutically aborted at 12 wk of gesta-
tional age and prenatally diagnosed with 100% trisomy
16 by means of cultured chorionic villus stroma. Con-
ventional cytogenetic analysis, FISH, and microsatellite
analysis were used to study the distribution of the tri-
somy 16 cell line in the conceptus. This study was ap-
proved by the Clinical Research Ethics Board of the Uni-
versity of British Columbia.

Trypsin G–banded metaphase chromosomes from cul-
tured amnion and placental stroma were prepared in
accordance with standard procedures. Trophoblast and
stromal cell suspensions for FISH were obtained from
chorionic villi, as described elsewhere (Henderson et al.

1996). Touch preparations of fetal lung and kidney and
smears of umbilical cord blood and fetal brain were
prepared by use of silanized slides. The fetal-cell prep-
arations were fixed in 100% methanol for 5 min and
then in 3:1 methanol/acetic acid for 5 min and were air
dried. The fetal ovary was squashed onto silanized slides,
as described by Blandau et al. (1963). By use of a chro-
mosome 16–specific centromeric probe (D16Z2; On-
cor), FISH was performed on all fresh tissues, except
oocytes (see below), in accordance with the manufac-
turer’s recommended protocol. By means of a Zeiss epi-
fluorescence microscope, ∼500 nuclei were scored, and
the proportion of nuclei displaying one, two, three, or
four or more hybridization signals was recorded for each
sample. In addition, for each tissue type studied, FISH
analysis was performed on identically processed disomic
controls, to establish the cutoff values for significant lev-
els of trisomy. From this tissue-specific control data, the
lower level of trisomy detection was calculated for each
tissue type, as described by Lomax et al. (1994).

For molecular cytogenetic analysis of the gonads, only
meiotic prophase I oocytes were scored. Oocytes in the
prophase of meiosis I can be identified by their large size
and diffuse chromatin (Baker 1963) and are morpho-
logically distinguishable from somatic cells (fig. 1). In
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Table 2

Results of Microsatellite Analysis of Loci on Chromosome 16

Tissue D16S423 D16S398

Maternal blood ab ab
Paternal blood cd )
Trophoblast ) abc
Chorionic stroma ) abc
Amnion ) abc
Fetal lung aa ab
Fetal adrenal gland aa )

Table 1

Results of FISH Analysis with Probe D16Z2

Tissue
Two

Signalsa

Three
Signalsa nb

Cutoff Values
(No. of Controls)c

Trophoblast 21 76 1,004 6.6 (6)
Stroma 17 59.3 1,648 9.7 (8)
Oocyte 64.8 26 227 7.1 (8)
Brain 85.6 6.6 501 7.7 (8)
Lung 89.4 1.2 500 8.8 (5)
Kidney 93.6 2.2 500 6.2 (4)
Cord blood 87.4 5.8 501 5.9 (9)

a Nuclei displaying two or three hybridization signals (zero, one,
and four signals not shown).

b Total no. of nuclei scored.
c Cutoff values for significant levels of trisomy, as calculated from

hybridization results from control samples.

order to select for oocytes with unpaired chromosomes
and to eliminate erroneous results from paired chro-
mosomes producing a single indiscriminate signal, two-
color FISH was performed by use of both a chromosome
16–specific centromeric probe (D16Z2) and a chromo-
some 18–specific centromeric probe (D18Z1; Oncor).
Only those oocytes in which the internal control (chro-
mosome 18) exhibited two hybridization signals were
scored for the chromosome 16 probe.

Conventional cytogenetic analysis of 15 metaphases
from cultured placental stroma identified mosaicism, di-
somy, and trisomy for chromosome 16, whereas analysis
of five metaphases from cultured amnion demonstrated
only a diploid cell line. By use of FISH analysis, high
levels of trisomy 16 were documented in trophoblast and
chorionic stroma, whereas only disomy 16 was detected
in fetal kidney, brain, lung, and cord blood (table 1).
The finding that 26% of the oocytes displayed three
hybridization signals corresponding to chromosome 16
indicates a significant level of trisomy in the germ cells
of this ovary (fig. 1).

Microsatellite analysis at D16S423 demonstrated the
presence of maternal uniparental disomy in fetal lung
and adrenal gland (table 2). Results at D16S398 were
consistent with a maternal meiotic origin of the extra
chromosome 16 in placental tissues, including tropho-
blast, chorionic stroma, and amnion. A recombination
event presumably occurred between D16S423 and
D16S398, explaining reduction of maternal alleles to
homozygosity for D16S423 and heterozygosity for
D1S398.

This is the first published data documenting the ex-
istence of germ-cell mosaicism in an otherwise nonmo-
saic fetus, for a conceptus diagnosed with CPM. Our
findings are consistent with trisomic zygote rescue re-
sulting in diploid fetal somatic tissues, including blood,
and placental mosaicism involving both the trophoblast

and chorionic stroma. Although no mosaicism was de-
tected in the fetal somatic tissues, the mosaicism ob-
served in the germ cells was concordant with that found
in the extraembryonic placental tissues. These results
highlight the complex processes of origination and de-
lineation of fetal and placental tissues.

In the developing human, the trophoblast is the first
cell lineage to differentiate, forming the outer cells of
the 16-cell morula. In the next developmental stage, blas-
togenesis, the trophoblast constitutes the outer layer,
whereas the inner cell mass comprises multipotent cells,
of which the majority become progenitors of the ex-
traembryonic mesoderm and a smaller number give rise
to the embryo/fetus proper (Markert and Petters 1978).
During the 3d wk postconception and after, the progen-
itors of the extraembryonic mesoderm contribute to the
formation of the placental stroma and the mesodermal
layers of the amnion, the umbilical cord, and the sec-
ondary yolk sac (Vogler 1987). The secondary yolk sac
is known to be the source of both the hematopoietic and
PGC progenitors (Fujimoto et al. 1977; Vogler 1987).

Evidence for common progenitors of the PGCs and
placental stroma is provided by animal models. For the
mouse, studies following the development of embryonic
cell lineages show that both the extraembryonic meso-
derm and the PGCs originate from common progenitors
in the epiblast of the pregastrulation embryo (Lawson
and Hage 1994; Buehr 1997). These studies also provide
evidence that the germ-cell line is not lineage restricted
at 6–6.5 d postcoitum in mice. Alkaline phosphatase,
used to identify early germ cells, is first detected at ∼7.2
d postcoitum, when the PGC progenitor cells move into
the extraembryonic region between the endoderm and
the mesoderm of the ventral part of the amniotic fold.

In the human embryo, PGC progenitors are first ob-
served in an extraembryonic location within the sec-
ondary yolk sac, together with hematopoietic progeni-
tors (Fujimoto et al. 1977). The fate of these two
extraembryonically located progenitors is different. Re-
cent evidence from studies of the mouse show that the
contribution, to embryonic hematopoiesis, of the he-
matopoietic progenitor cells from the secondary yolk sac
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is transient and that definitive hematopoiesis is auton-
omously initiated later in the aorta-gonad-mesone-
phrous region of the embryo (Medvinsky and Dvierzak
1996). Thus, the PGCs represent the only permanent
contribution from the secondary yolk sac, to the makeup
of the embryo/fetus. The temporary sequestration of the
germ line into extraembryonic regions (e.g., the second-
ary yolk sac in humans) has been described in many
vertebrates, but the reasons for it are not understood. It
has been suggested that the germ cells may be withdrawn
from embryonic tissues, to escape the widespread tissue-
specific methylation that occurs around the time of gas-
trulation (Buehr 1997).

The technical advances provided by molecular cyto-
genetic techniques permit accurate cytogenetic analysis
of placental and fetal tissues in pregnancies with CPM
and provide a unique opportunity to study the origin
and interrelationship of various embryonic and extraem-
bryonic cell lineages in mosaic conceptuses. However,
since termination of a pregnancy with CPM is rare, op-
portunities to obtain further morphological data from
human embryos or fetuses demonstrating the presence
of aneuploid clones in both PGCs and chorionic stroma
are infrequent. The consequences of germ-cell mosaicism
likely will be specific for individual trisomic chromo-
somes involved in CPM. For example, some young
mothers who give birth to offspring with trisomy 21
were born to mothers of advanced maternal age (Aa-
gesen et al. 1984). It is possible that these young mothers
originated as a trisomy 21 zygote that was rescued, lead-
ing to CPM 21 and trisomy 21 germ-cell mosaicism in
their gonads. Further long-term prospective studies of
individuals born from pregnancies with CPM are re-
quired, to document the effect of various placental aneu-
ploidies on gonadal development and human fertility in
both males and females. A diagnosis of CPM involving
the chorionic stroma may represent an increased risk of
chromosomal mosaicism in the germ cells and may have
reproductive consequences later in life.
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The Sib Transmission/Disequilibrium Test is a Mantel-
Haenszel Test

To the Editor:
Spielman and Ewens’s (1998) proposed extension of the
transmission/disequilibrium test (TDT), using discor-
dant sibships, provides a simple and elegant way to apply
the TDT in instances in which parents are not available.
It is easy to see that the adapted test, called the “sib
TDT” (S-TDT), is numerically equivalent to a Mantel-
Haenszel test of trend, also known as the “Mantel ex-
tension test” (Rosner 1995).

The original Mantel-Haenszel test is used routinely in
matched case-control studies, to test for association be-
tween disease and exposure. When exposure is expressed
as a quantitative risk factor with C levels, the Mantel
extension test allows the investigator to obtain a 1-df
test against the alternative of a monotone trend. For each
matched set, a table classifying subjects according2 # C
to disease and exposure status is formed. The statistic
is determined by assigning the columns quantitative val-
ues corresponding to exposure level. The statistic also
may be derived as a score test for no association within
each matched set, by use of a model for the log odds of
disease, which is linear in exposure level.

To obtain the S-TDT by use of the Mantel extension
test, sibship is used as the stratifying variable, and for
each sibship a table cross-classifying sibs on the2 # 3
basis of disease status and genotype is formed. The quan-
titative value of exposure that yields the S-TDT assigns
to each genotype the number of putative disease-asso-
ciated alleles that a sib has (i.e., 2, 1, or 0) for genotypes
AA, AB, or BB.

The advantages of viewing the S-TDT as a Mantel
extension test are threefold. First, the test is already
widely available on commercial software. For example,
SAS currently implements the Mantel extension test as
part of its Cochran-Mantel-Haenszel procedure. This
version of the test allows user-specified scores for the
levels of the quantitative variable but does not provide
a continuity correction. Another program, StatXact,
provides an exact P value for the Mantel extension test,
as well as the asymptotic P value.

Second, it immediately is obvious how to use the test
with other genetic models. For example, for an arbitrary
genetic model, an investigator may want to use the 2-
df Mantel-Haenszel test, which makes no assumption
about how risk varies with number of A alleles. To test
a dominant model, a value of 1 would be assigned to
genotype AA or AB and a value of 0 to genotype BB;
to test a recessive model, exposure values of 1 for AA
and of 0 for all other genotypes would be used.

Third, if the marker is actually a candidate gene, the
investigator may wish to estimate risk ratios. Collapsing
over sibships and estimating risk ratios by use of the

margin results in biased estimates, which may be2 # 3
confounded because sibships may come from different
populations with different disease risks and allele dis-
tributions. Instead, to estimate risk ratios, a Mantel-
Haenszel estimate of odds ratio—or, in the general
case, conditional logistic regression (Breslow and Day
1980)—should be used.
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Reply to Laird et al.

To the Editors:
Laird et al. (1998 [in this issue]) point out that the sib
transmission/disequilibrium test (S-TDT) is identical in
principle to the Mantel extension test for trend in mul-
tiple strata. We were not aware of this test and inde-
pendently developed the S-TDT. Despite identity in the-
ory, however, our test differs in practice from the Mantel
extension test in two respects.

First, unlike the Mantel extension test described by
Rosner (1995) and its implementation in SAS programs
as described by Laird et al. (1998), our approach makes
a continuity correction in the z score calculation and
thus provides a somewhat more accurate approximation
of P values. The difference is substantial when the data
consist of only a small number of families. For instance,
in our numerical example of three families (Spielman
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and Ewens 1998), the use of a continuity correction led
us to a z score of 1.9839, which results in a two-sided
P value of .0473. The SAS program computes a two-
sided P value of .016, which is also the value computed
by use of the formula of Rosner (1995). In this example,
the exact P value can be found by exhaustive enumer-
ation of all permutations of the data from the three
families: it is , which is close to our value3/70 5 .0429
and is more than twice the value computed by the SAS
program.

Laird et al. (1998) comment that the SAS calculation
does not include a continuity correction but imply that
the StatXact computer program can compute exact P
values for the S-TDT. In practice, no procedure can do
this when the sample consists of data from a large num-
ber of families, since in such cases an exact calculation
would involve an astronomically large number of per-
mutations. For such cases, StatXact resorts to Monte
Carlo methods by using samples taken at random from
the large number of permutations possible. We ourselves
used this procedure for the S-TDT (Spielman and Ewens
1998).

Second, instead of the square of the z statistic, which
the Mantel extension test applies, we prefer to use the
unsquared z statistic, because one of our aims is to pro-
vide a combined test for data from some families that
are suitable for the S-TDT test and from some that are

suitable for the TDT (Spielman and Ewens 1998). The
combined test is easily performed by use of the un-
squared statistic but not by use of the squared statistic.
A computer program that incorporates the continuity
correction and that allows for the combination of the
S-TDT and TDT procedures is now available at http://
spielman07.med.upenn.edu/TDT.htm.
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