
Am. J. Hum. Genet. 66:1933–1944, 2000

1933

The Power of Genomic Control
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Although association analysis is a useful tool for uncovering the genetic underpinnings of complex traits, its utility
is diminished by population substructure, which can produce spurious association between phenotype and genotype
within population-based samples. Because family-based designs are robust against substructure, they have risen to
the fore of association analysis. Yet, if population substructure could be ignored, this robustness can come at the
price of power. Unfortunately it is rarely evident when population substructure can be ignored. Devlin and Roeder
recently have proposed a method, termed “genomic control” (GC), which has the robustness of family-based designs
even though it uses population-based data. GC uses the genome itself to determine appropriate corrections for
population-based association tests. Using the GC method, we contrast the power of two study designs, family trios
(i.e., father, mother, and affected progeny) versus case-control. For analysis of trios, we use the TDT test. When
population substructure is absent, we find GC is always more powerful than TDT; furthermore, contrary to previous
results, we show that as a disease becomes more prevalent the discrepancy in power becomes more extreme. When
population substructure is present, however, the results are more complex: TDT is more powerful when population
substructure is substantial, and GC is more powerful otherwise. We also explore general issues of power and
implementation of GC within the case-control setting and find that, economically, GC is at least comparable to
and often less expensive than family-based methods. Therefore, GC methods should prove a useful complement
to family-based methods for the genetic analysis of complex traits.

Introduction

The past decade has witnessed the rise of family-based
designs as an alternative to, and then a replacement for,
population-based association studies, such as the case-
control design. This succession is motivated by the fact
that, because of population substructure, case-control
designs can produce spurious associations (Li 1972),
whereas family-based designs, when teamed with ap-
propriate test statistics, do not (e.g., the TDT test) (Spiel-
man et al. 1993; Ewens and Spielman 1995). Indeed,
some journals now hesitate to publish studies employing
case-control designs.

Recent articles, however, have explored the relative
merits of both family-based and case-control designs
(e.g., see Morton and Collins 1998; Risch and Teng
1998). As an alternative to spurious associations that
arise from population substructure, they suggest that
the unreliability of association tests might be due to low
power combined with the large number of tests con-
ducted. Another source of false positives occurs when
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affected individuals are cryptically related, as might oc-
cur because they share a genetic disorder (Devlin and
Roeder 1999). In this instance, test statistics for case-
control studies are apt to be inflated, relative to expec-
tations, under the assumption of an independent sample
and no genetic association with the disease.

Under the assumption of little population stratifica-
tion, there are two significant advantages to population-
based designs. The samples can be easier and less ex-
pensive to ascertain. Furthermore, it is commonly
believed (Morton and Collins 1998) that case-control
studies are more powerful than family-based designs,
although this opinion is not held universally.

The reality of population stratification, however,
weighs against case-control designs. How can concerns
about diminished statistical efficiency for family-based
designs be weighed against concerns about stratification
for population-based designs? In a recent article, Devlin
and Roeder (1999) present a population-based associ-
ation method termed “genomic control” (GC) that au-
tomatically accounts for nonindependence, in a case-
control sample, caused by population stratification and
cryptic relatedness. It comes at the price, however, of
additional genotyping—specifically, genotyping multi-
ple loci unlikely to affect liability. We call these “null
loci,” because they are assumed to have no effect on
the disease under study.

For a case-control analysis of candidate genes, GC
computes x2 test statistics for independence for both null
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Table 1

Genotype Frequencies for a Case-
Control Design

SUBJECTS

A ALLELES

TOTAL0 1 2

Case r0 r1 r2 fN

Control s0 s1 s2 (1 2 f)N
Total n0 n1 n2 N

and candidate loci. By means of the variability and mag-
nitude of the test statistics observed at the null loci,
which are inflated by the impact of population strati-
fication and cryptic relatedness, a multiplier is derived
to adjust the critical value for significance tests for can-
didate loci. In this way, GC permits analysis of stratified
case-control data without an increased rate of false pos-
itives. If population stratification and cryptic relatedness
are not detected from null loci, then GC is identical to
a standard test of independence for a case-control
design.

For case-control methods, GC is currently limited to
single nucleotide polymorphisms (SNP) for statistical
and population genetic reasons given in Devlin and Roe-
der (1999). This drawback is ameliorated by the fact
that a dense set of SNP covering the genome is under
development (Collins et al. 1998; Wang et al. 1998). In
addition, efficient methods to assess SNP genotypes are
expected in the near future. An outstanding question,
however, is how the GC methodology compares to fam-
ily-based designs in terms of statistical and economic
efficiency, especially when the research goal is to identify
genes affecting liability to complex disorders. For sta-
tistical efficiency, the answer likely depends on the pop-
ulation under study (Ewens and Spielman 1995). We
address this issue in detail in this report. Economic ef-
ficiency is more difficult to assess because it changes
over time. At the present time, GC is not prohibitive,
and appears to compare very favorably to family-based
designs. However, with the cost of genotyping dropping
and the cost of ascertainment rising, we envision GC
will be considerably more cost effective in the near
future.

This report is organized into six major sections. A
brief overview of GC is first presented (“GC Method”).
Then the statistical efficiency of GC and TDT for sim-
plex families (mother, father, and affected progeny) are
contrasted when population substructure is absent (“No
Population Stratification”) and when it is present (“Pop-
ulation Stratification”). We then examine power for GC
for selected versus unselected controls (“Power for
GC”), with the premise that the former is more powerful
and the latter less expensive. Finally, we discuss the
choice of family-based versus case-control designs.

Throughout this report, we assume that alleles affect
liability directly, rather than having an indirect effect
mediated by linkage disequilibrium. For the latter case,
the relative efficiency of trios versus GC is the subject
of ongoing study. Moreover, we do not evaluate the
impact of allelic heterogeneity; see Slager et al. (2000)
for the effect of allelic heterogeneity on association tests.

GC Method

For the analysis of case-control data, Devlin and Roeder
(1999) presented GC methods using Bayesian and fre-

quentist techniques and, for two study designs, targeted
candidate-gene analysis and association scans over large
portions of the genome (e.g., see Risch and Merikangas
1996). Here, we review the frequentist version of GC
for candidate-gene analysis.

For a case-control study and n biallelic markers, let
N denote the number of subjects genotyped, where

is the proportion of N that are cases. For our0 ! f ! 1
analyses, we assume f is a constant near 0.5, which is
typical for case-control data. The data for each marker
are given by a table of genotype by case and2 # 3
control (see table 1, which implicitly defines the re-
maining notation). To test for lack of independence, 1-
df x2 statistics corresponding to dominant, recessive,
and additive genetic models might be applied. For rea-
sons discussed in Devlin and Roeder (1999), we choose
the additive model and employ Armitage’s (1955) trend
test

2N{(r 1 2r ) 2 f(n 1 2n )}1 2 1 22Y = , (1)2f(1 2 f){N(n 1 4n ) 2 (n 1 2n ) }1 2 1 2

which corresponds to the additive genetic model.
We assume the n loci under study consists of c biallelic

polymorphisms in candidate genes and null SNP(n 2 c)
dispersed throughout the genome. For the disorder of
interest, we assume the null loci have no impact on
liability and that they are not in linkage disequilibrium
with polymorphisms affecting liability. (As described be-
low, these assumptions need not be met strictly.) Al-
though the test statistic will be computed for all n loci,
only the candidate gene polymorphisms will be tested
for association.

For each marker locus l we obtain a statistic using2Yl

the trend test, . When the marker is in linkagel = 1, ) ,n
equilibrium with the disorder and there is no population
substructure or cryptic relatedness, is distributed as2Yi

. The GC model allows for extra variance by as-2X (0)1

suming that the test statistic is inflated by a factor l;
consequently, . The GC-model approach is2 2Y /l ∼ X (0)l 1

based on the assumption that the variance inflation fac-
tor l is approximately constant across the genome for
all loci that are not associated with the disorder. In
Devlin and Roeder (1999), we verify that this assump-
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Table 2

Allele Distribution for a Case-Control
Design

Subjects A1 A2 Total

Case r 1 2r1 2 r 1 2r1 0 2fN
Control s 1 2s1 2 s 1 2s1 0 2(1 2 f)N
Total n 1 2n1 2 n 1 2n1 0 2N

tion holds whenever is approximately equal acrossFst

biallelic loci.
Consequently, l can be estimated. From the proper-

ties of the gamma distribution, a robust estimator of l

is derived (Rice 1988, p. 336), as follows: l̂ =
, where the loci are or-2 2 2{median(Y ,Y , ) ,Y )/0.456}c11 c12 n

dered so that indexes the candidate genes).l = 1, ) ,c
More efficient estimators exist for l, but we favor the
median, because it provides a consistent estimate of the
inflation factor even if a small fraction of the null loci
actually affect liability to the disease or are linked to
the gene under study. When n and N are large, is2 ˆY /l
approximately distributed , under the null hypothesis.2x1

When c candidate genes are examined, a Bonferroni
correction provides the critical value for the test:

. When l is constant across the genome, this sim-2x (a/c)1

ple adjustment will result in a test statistic with type I
error rate equal to the nominal level. When l follows
a distribution across the genome, with standard devi-
ation of the same order as the mean, then this adjust-
ment will result in a test statistic with type I error rate
roughly equivalent to the nominal level. Conditions en-
suring that variability in l is small are delineated in
Devlin and Roeder (1999).

Devlin and Roeder (1999) discuss frequentist and
Bayesian procedures for performing GC for a genome
scan. Several frequentist outlier procedures are appli-
cable to the situation (see Barnett and Lewis 1995, chap-
ter 6). One simple frequentist procedure is similar to
the one discussed above, except that all markers are
tested for association. The modified estimate for l is

and the critical value2 2 2l̂ = {median(Y ,Y , ) ,Y )/0.456}1 2 n

is . The effect of treating outliers as null loci in2x (a/n)1

the estimation of is a slight positive bias in the esti-l̂

mator, which has the effect of decreasing both the power
and the size of the test somewhat. Because l is robust
to outliers, the impact of this on the test will be neg-
ligible. We favor this simple method over more efficient,
classical methods for outlier detection, because the
method is fairly robust to swamping and masking and
is applicable even if the markers are spaced densely
enough to possess significant spatial correlation. The
Bayesian procedure presented by Devlin and Roeder
(1999) models outliers in a more comprehensive
manner.

For each marker, the data in table 1 also can be sum-
marized via a allelic table (table 2). Sasieni (1997)2 # 2
discusses the pitfalls of the use of allelic, rather than
genotypic, analyses. Here we note that, in the special
case of no population stratification, the two tests are
essentially identical (Devlin and Roeder 1999). Con-
sequently, the GC approach reduces to the allelic test
under this condition.

No Population Stratification

In this section, we assume no population stratification,
and, hence, from a mathematical point of view, a com-
parison between the TDT and GC reduces to a com-
parison between the TDT and the simple allelic test for
association (Sasieni 1997; Devlin and Roeder 1999). For
the family-based sample, we evaluate simplex families
of mother, father, and affected child (henceforth referred
to as “trios”) using the TDT test.

Properties of the Case-Control Sample

Assume there exists a single susceptibility locus with
alleles A and a, which occur with frequencies p and

, respectively. A increases susceptibility for aq = 1 2 p
disease of population prevalence K. We denote affected
individuals by and unaffected individuals by . ForD N

the moment, we follow Risch and Merikangas (1996)
by considering a multiplicative model with penetrance
functions , andP(DFaa) = f P(DFAa) = f = gf0 1 0

. Under the assumption that the pop-2P(DFAA) = f = g f2 0

ulation is in Hardy-Weinberg equilibrium, 2K = q f 10
2 22pqf 1 p f = (pg 1 q) f .1 2 0

In the allele table for the case-control sample, each
individual has two entries reflecting the alleles compris-
ing their genotype (table 2). With this rule in mind, the
joint probabilities can be calculated di-p ,p ,p ,pAD AN aD aN

rectly. The expected values for the allele table are given
below.

fpgf (pg 1 q)0p =AD K

(1 2 f)p[1 2 gf (pg 1 q)]0p =AN 1 2 K

fqf (pg 1 q)0p =aD K

(1 2 f)q[1 2 f (pg 1 q)]0p = (2)aN 1 2 K

The odds ratio associated with the allelic table is:
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Figure 1 Relative efficiency of TDT versus case control for the
multiplicative model and disease prevalence . The axes repre-K = 0.2
sent the disease-allele frequency p, the relative-risk parameter for the
multiplicative model g, and the ratio of the number of subjects nec-
essary to obtain 80% power, . The discontinuity in the sur-N /NTDT CC

face in the upper left-hand corner represents the region where no
genetic models exist.

1 2 f (pg 1 q)0
v = g .[ ]1 2 gf (pg 1 q)0

Under the null hypothesis of no association,H0

, and, under the alternative ,p 2 p = 0 H p 2AFD AFN a AFD

. Under the common probability of the Ap ( 0 HAFN 0

allele is . Let and be thep = fp 1 (1 2 f)p z zA. AD AN a/2 12b

and b percentiles of the standard normal, re-(1 2 a/2)
spectively. The total number of subjects (both cases and
controls) needed for a size a test that has power 1 2 b

is

21 1 1 1aÎ Îz p (1 2 p )( 1 ) 1 z p (1 2 p ) 1 p (1 2 p )[ ]A. A. 12b AD AD AN ANf 12f f 12f2

N = .GC 2(p 2 p )AD AN

After substituting the table probabilities (2) and sim-
plifying the resulting expression, we find:

2( )U 1 V
N = ,GC 2( ) ( )2 q p g 2 1 1 2 f f

where

a ÎU = z 1 2 K 1 p 1 2f g2 1 1 2f 1 p 1 2f g2 1 2K g1f g ,( ) ( ) ( ) ( )[ ] [ ]
2

and

2Î( ) ( ) ( ) ( )V = z 1 2 K g 2 f g 2 1 q 1 2 K 2 p 1 K 2 p p g .[ ]12b

Efficiency of GC versus TDT

Using the results of Knapp (1999), we obtain the num-
ber of subjects (not trios) needed to obtain 80%NTDT

power for the multiplicative model. The relative effi-
ciency, defined as the ratio , is complex, butN /NTDT GC

the limit for alternatives close to the null simplifies to a
convenient form. The asymptotic efficiency (as ) isg r 1

N 6 (1 2 f) fTDTr(f) = lim = . (3)gr1 2N (1 2 K)GC

With equal sampling of cases and controls, this ratio is
. It is clear from this expression why it is23/[2 (1 2 K) ]

advantageous to sample an equal number of cases and
controls: when , the relative power is optimized.f = 0.5
Case-control studies are known to have reduced power
when f approaches 0 or 1, which affects relative
efficiency.

Similar issues about efficiency were explored in the
epidemiological literature of the late 1960s, in the con-
text of matched pairs versus unpaired, case-control de-
signs. Chase (1968) shows the Pitman-like efficiency is
equal for the two procedures. That is to say, for alter-

natives very near the null, the two procedures have equal
power. This result supports Morton and Collins (1998),
who claim that TDT is two-thirds as efficient as case-
control tests when trios are measured, because three gen-
otypes are required to obtain two transmissions for the
TDT test. When the prevalence is small, our result ap-
proximately matches the theoretical results obtained by
Chase (1968) and the predictions made by Morton and
Collins (1998). For common disorders, however, the
comparison favors GC over TDT even more strongly
than is predicted by the literature. Our results differ from
those of Chase because he computed the efficiency under
the assumption of a fixed number of pairs with non-
matching exposure levels in the matched case-control
sample. This assumption does not apply to the genetic
setting, because the number of heterozygous parents is
a random quantity that cannot be controlled.

The asymptotic relative efficiency only addresses a
small portion of the space of alternatives. Thus, we ex-
plore relative efficiency as a function of prevalence K,
risk g, risk allele frequency p, and for power of 80%.
Exploring four levels of prevalence K (0.002, 0.02, 0.1,
0.2), the relative efficiency only changes substantially for
larger values of K. For , the relative efficiencyK = 0.2
varies between 2.04 and 2.52 (fig. 1). For , onK = 0.002
the other hand, relative efficiency ranges from 1.46 to
1.54, with the minimum at small and large p and rel-
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Table 3

Genotype Probabilities

SUBJECTS

A ALLELES

TOTAL0 1 2

Case
2fq f0

K
fpqf1

K

2fp f2

K
f

Control
2(1 2 f)q (1 2 f )0

1 2 K
(1 2 f)pq(1 2 f )1

1 2 K

2(1 2 f)p (1 2 f )2

1 2 K
1 2 f

NOTE.—In this notation, the prevalence is K, the frequency of the disease
allele A is , the penetrances are , and the fraction of thep = 1 2 q f ,j = 1,) ,3j

sample that are cases is f.

atively large g, and the maximum at intermediate values
of p and relatively large g. For , the range is,K = 0.02
roughly, 1.45–1.6; for the range is, roughly,K = 0.1
1.7–1.95. It is apparent from this analysis that GC tests
are considerably more powerful than the TDT test for
multiplicative models and no population substructure.
Notably, for common diseases, GC sometimes requires
only 40% as many subjects to obtain the same power
as the TDT test (fig. 1).

Results for General Models

To investigate the asymptotic relative efficiency for
models other than the multiplicative model, we first gen-
eralize our notation. Let , and be the true modelf f f0 1 2

penetrances for 0, 1, and 2 liability alleles (labeled A)
at the locus, and let . In the abovef = f 1 d , j = 1,2j j21 j

parameterization, . As2 2K = f 1 (2pq 1 p )d 1 p d0 1 2

given by Suarez et al. (1978), is the2V = 2pq(qd 1 pd )A 1 2

additive variance and is the domi-2 2 2V = p q (d 2 d )D 2 1

nance variance for the locus. The heritability of the locus
is given by

2 2 2 2V 1 V 2pq(qd 1 pd ) 1 p q (d 2 d )A D 1 2 2 1H = = .
K(1 2 K) K(1 2 K)

The genotypic probabilities for the true model is given
in table 3. Taking the limit as ( ), the as-d r 0,d r 01 2

ymptotic relative efficiency in the general model matches
that given for the multiplicative model in (3); see Ap-
pendix A for proof.

Using the methods and parameters given in the pre-
vious section, we also have explored additive, dominant,
and recessive models for the full parameter space. In each
instance, there is no region in which TDT is more effi-
cient than GC (data not shown).

Population Stratification

Clearly, populations are stratified, some more than oth-
ers. Thus, the power of population-based and family-
based designs should be contrasted under more realistic
scenarios of population substructure. GC is critical in

this instance, because standard tests of independence for
the case-control design will yield a false-positive rate
higher than the nominal value, inappropriately raising
the power of the test. In this section, we evaluate effi-
ciency by simulations, because substructure is too com-
plex to be analytically tractable, except in special cases.

Probability Model for Generating Multilocus Systems

This section lays out a convenient model for multiple
liability loci, the competing-risk model from reliability
theory (Leemis 1995). The advantage of this model is
that it is relatively easy to ensure that parameter con-
straints are met even in the multilocus setting. For this
model, a subject becomes affected by the disease if at
least one of the loci transmits a disease signal. Let ,Xl

be the binary random variables associatedl = 1, ) ,c
with each locus; means that locus l transmits aX = 1l

disease signal. If at least one of the has value 1 (i.e.,Xl

transmits the disease signal), then the subject is affected.
Provided is small, the competing-risks modelP(X = 1)l

is roughly equivalent to a model that behaves additively
over loci, because rarely will more than one locus send
a signal. Otherwise, the effect of the loci on liability is
subadditive, to account for the intersection of signals
from liability loci. Let be the penetrance of the ge-′fl,j

notype with j liability alleles at locus l, under the as-
sumption that all the other liability loci are “turned off.”
As in the one-locus case, we parameterize as follows:

, with the restriction , . Pro-′ ′ ′ ′f = f 1 d d > 0 j = 1,2l,j l,j21 l,j l,j

vided is small, the resulting is approximately′P(X = 1) dl l,j

, and so the results are not affected by the use of ′d fl,j l,j

instead of . Notice is not the true (i.e., marginal)′f fl,j l,j

penetrance when all loci contributing to the disease are
present.

Simulations

Using the competing-risk model, we generate c = 5
disease loci that contribute equally to the heritability.
Define per locus heritability as , ; likewise,H l = 1, ) ,cl

let . The liability allele for the lth locus
1

cK = 1 2 (1 2 K)l

has frequency in the entire population of p = 1 2 q Pl l
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Table 4

Median Inflation Factors, l

TYPE AND

NO. OF STRATA

l AT Fst

.001 .003 .01 .03

Common:
2 1.04 1.03 1.05 1.09
3 1.04 1.03 1.06 1.08
4 1.03 1.03 1.04 1.08
6 1.03 1.03 1.04 1.08
10 1.03 1.03 1.04 1.07

Disjoint:
2 1.43 2.16 4.74 11.94
3 1.22 1.60 2.91 6.63
4 1.16 1.41 2.25 4.84
6 1.11 1.31 1.97 3.87
10 1.13 1.26 1.78 3.32

Figure 2 Estimating l with varying numbers of loci. A smooth
curve is fit to the median value of l (top panel) and the coefficient of
variation (bottom panel) obtained under varying conditions; the solid,
dotted, and dashed lines are for equal to 0.03, 0.01, and 0.003/Fst

0.001 combined, respectively.

, but its frequency varies among subpopu-[0.01,0.99]
lations. Let denote Wright’s standardized measure ofFst

variation among subpopulations. It is assumed that pl

follows a distribution.(12F ) (12F )st stBeta [ p , (1 2 p )]l lF Fst st

The following equalities and constraints apply to our
model:

′ 2 2K = f 1 (2p q 1 p )d 1 p d (4)l l,0 l l l l,1 l l,2

2 2 2 22p q (p d 1 q d ) 1 p q (d 2 d )l l l l,2 l l,1 l l l,2 l,1H = (5)l K(1 2 K)

with the restrictions:

′ ′ ′f > 0, 0 < d < 1 , j = 1,2 , f = f 1 d 1 d < 1l,0 l,j l,2 l,0 l,1 l,2

(6)

To compare the power of GC and TDT, we simulated
data under a broad range of conditions with 50 ran-
domly selected genetic models drawn for each condition:

inH {0.002,0.01,0.025,0.05,0.075}l

K in {0.0005,0.002,0.01,0.02,0.05,0.1,0.1,0.2}
inF {0.001,0.003,0.01,0.03}st

nstrata in when cases and controls{2,4,6,8,10}
were sampled from different subpopulations and

when cases and controls were sampled from{2,3,4,6,10}
the same subpopulations.

This range of single-locus heritabilities is reasonable for
a complex disorder; for example, in terms of Risch’s
(1990) , the risk ratio for siblings, the heritabilitieslS

correspond to from 1.125 to 4.75 for andl K = 0.01S

purely additive effects. For a particular set of conditions,
if it was possible to find a genetic model that meets the
constraints (given ), then data sets werep P [0.01,0.99]l

generated with candidate genes, nullc = 5 n 2 c = 45

loci, sample size and . (For details onN = 360 f = 0.5
data generation, see Appendix B.)

Using the simulated data, we first investigated the size
of the GC test to ensure that it was not adversely affected
by population stratification. For , we found thea = 0.05
size of the test was slightly conservative (0.048) by in-
tegrating over the entire model space. The size of the
test was very close to the nominal value for each value
of .Fst

Because the true value of the inflation factor l is dif-
ficult to compute analytically and is unknown in prac-
tice, we then used the simulations to determine the num-
ber of null loci required to yield good estimates of l.
The experiment was conducted at four levels of (0.03,Fst

0.01, 0.003, 0.001) (table 4); results for the two lowest
levels of substructure were indistinguishable. For each
experiment, was estimated as described in “GCl̂

Method.” For small n, this estimator of l was biased
upward, because was forced to be 11 for all experi-l̂

ments. We fitted a quadratic to the resulting estimates
to determine at what value of n a reliable estimate of l

was obtained (fig. 2). The fitted values clearly reach an
asymptote by , but the test performed reliably evenn = 70
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Figure 3 Classification and regression tree comparing the power
of TDT and GC when cases and controls were sampled from disjoint
subpopulations. Power is compared across 24,000 conditions that var-
ied by heritability (H), , number of strata (nstrata), prevalence (K) andFst

genetic model. Each leaf indicates which test is most powerful for the
majority of models described by the branch. Splits are three-way: if
both models have power !20%, then the model is declared to be of
“low power”; otherwise, we compare the average size of the GC and
TDT tests across the five loci. The trio of numbers at each leaf are
the percentage of conditions for which GC was most powerful, TDT
was most powerful, or both procedures were of low power,
respectively.

Figure 4 Classification and regression tree comparing the power
of TDT and GC when cases and controls were sampled from common
subpopulations. See figure 2 for details.

when only 20 null loci are used (fig. 2, and unpublished
data).

To investigate the power over tens of thousands of
model configurations, we approximated power for any
particular model. For each configuration of parameters,
50 data sets were generated and analyzed with both the
GC and TDT methods. The sample TDT and GC s2x

were computed for each of the loci. By performing a
total of 24,000 experiments, we explored a very large
portion of the model space and inevitably also sampled
models that occur with high probability. Per-experiment
power was computed as the number of tests out of five
rejected at the 0.05 level. If a test does not reject for any
of the five candidates, then we conclude that the test has
power !20%. If both TDT and GC had power !20%
for a particular configuration, we declared the config-
uration as “low power.” When there were ties but not
low power, we computed the average of the c test sta-
tistics and declared the test with the higher average as
the one having higher power.

A classification and regression tree (CART) was con-
structed to interpret these results on power (figs. 3 and
4). The response variable was trivariate: either GC or
TDT was more powerful, or the configuration was of
low power. CART seeks to find covariates that group
models with similar performance. As CART naturally
groups similar models, it smooths our approximations
to the power of each model.

Figure 3 displays results of a simulation designed to

illustrate the most extreme form of population stratifi-
cation. The population is constructed from nstrata distinct
subpopulations. All of the cases are drawn from half of
the subpopulations and all of the controls from the re-
maining half of the subpopulations. Out of 24,000 ex-
periments, GC and TDT are more powerful on 41% and
39%, respectively. In the remaining 20% of the exper-
iments, the methods have low power and comparison is
not fruitful. The central two branches of the tree describe
a region where both methods tend to have low power
for . This lack of power is not surprising becauseN = 360

with modest levels of substructure for onel ! 1.02S

branch and with high levels of substructurel ! 1.08S

for the other branch. The outer two branches delineate
the interesting region of the model space. It is apparent
that GC obtains its best power when is !0.01, whereasFst

TDT is advantageous when subpopulations are few and
highly differentiated. Not surprisingly the TDT method
is most strongly favored when fewer strata (nstrata < 4)
are present or when there is substantial population sub-
structure, (unpublished data).F 1 0.02st

Figure 4 is constructed under more reasonable con-
ditions. Both cases and controls are sampled from the
same strata. However, a natural association between
strata and cases/controls is induced by the sampling pro-
cess: those strata with larger p will produce cases more
often than strata with smaller p. Hence, we oversample
strata associated with larger p, to obtain cases, and un-
dersample the same strata, to obtain the controls; see
Appendix B for the algorithm. For these simulations,
out of 24,000 experiments, GC and TDT are more pow-
erful on 71.5% and 22%, respectively. In the remaining
6.5% of the experiments, the methods have power
!20%. There is only one small portion of the tree (fig.
4) for which the methods are nearly equal in power. It
occurs in that portion of the model space for which both
methods have little power ( , ). InH/K ! 0.045 l ! 1.02S

fact, the same effect is evident throughout the tree. As
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Table 5

Power to Detect a Locus Accounting for .5%–2% of the
Heritability of a Trait by Means of GC and a Case-Control
Design of 400 Cases and 400 Controls

HERITABILITY FOR LOCUS

AND FREQUENCY OF

LIABILITY ALLELE

POWER WITH USE OF CONTROLS

Selected Unselected

.005:
.005 .700 .727
.01 .895 .892
.02 .976 .976
.05 .997 .996

.01:
.005 .939 .939
.01 .994 .992
.02 1.00 1.00
.05 1.00 1.00

.015:
.005 .982 .984
.01 .999 .999
.02 1.00 1.00
.05 1.00 1.00

.02:
.005 .993 .995
.01 1.00 .999
.02 1.00 1.00
.05 1.00 1.00

NOTE.—In this power analysis, which mimics evaluation of a
candidate gene acting additively to affect liability to bipolar dis-
order, two kinds of controls were evaluated: selected controls,
which were screened to exclude individuals affected by bipolar
disorder, and unselected controls, which were not screened. Other
attributes of the sample are described in the text.

power diminishes from left to right in the tree (fig. 4),
the performance of the two methods becomes closer to
equality.

Power for GC

To this point, we have considered only the relative power
of GC for a case-control sample versus TDT for family
trios. The direct power of GC for any particular study
can be estimated given certain assumptions about the
population. For example, consider planning an associ-
ation study for bipolar disorder and assume that 400
white cases and controls will be recruited. (For simplic-
ity, even though individuals from other self-identified
groups may be recruited, we focus on the sample of
whites.) Let , an accepted value for bipolar dis-K = 0.01
order, the disease alleles behave additively, with fre-
quency ranging from 0.005 to 0.05 and the heritability
attributable to the locus ranging from 0.5% to 2%. To
assess power in this case, we take (see Dis-F = 0.003st

cussion) and assume cases and controls are drawn from
the same subpopulations.

For these power calculations, we also assume that the
polymorphism/mutation tested has a direct impact on
liability and that allelic heterogeneity is absent. As dis-
cussed elsewhere (e.g., see Slager et al. 2000), these as-
sumptions are optimistic. Under these assumptions, for

, GC has excellent power even for the small-a = 0.0001
est locus-specific heritabilities (table 5).

Notably, suppose the controls were not actually
screened for bipolar disorder; instead, these “unse-
lected” controls were simply a random sample from the
population (i.e., containing 1% frequency of bipolar
cases). Power is not reduced substantially in this in-
stance (table 5). In fact, for the conditions explored in
this report, the power for “selected” versus “unse-
lected” controls is very similar unless K is substantial,
namely (unpublished data). A program avail-K 1 0.10
able from the authors can be used to compute power
under a variety of conditions.

Discussion

Perhaps the most noteworthy methodological develop-
ment during the past decade, in terms of genetic asso-
ciation analysis, has been the family-based design and
complementary significance tests. These tests are re-
markably robust to population substructure and can
have excellent power to detect polymorphisms of rela-
tively small impact on liability. Herein, we have exam-
ined one such family design, consisting of two parents
and an affected child (trios), comparing its efficiency to
that of the case-control design. The arithmetic of a trio
required to assess the Mendelian transmission of two
alleles makes family-based tests likely to be inefficient,

relative to case-control tests. In this study, we investigate
efficiency in detail in two settings: when population sub-
structure is absent and when it is present.

For stratified populations, it makes little sense to com-
pare the power of standard tests of independence for
the case-control and family-based designs, because the
former has an inflated false-positive rate. Tests of case-
control data must be penalized for this false increase in
power. Devlin and Roeder (1999) propose a method,
GC, to determine this penalty—that is, the degree to
which x2 statistics are inflated due to population sub-
structure and a related phenomena, cryptic related-
ness—and to correct for it. In its purest form, GC re-
quires evaluation of loci unrelated to disease for both
cases and controls (null loci). The degree to which tests
of allelic independence at null loci deviate from the stan-
dard x2 distribution, measured by l, determines the re-
quired degree of correction.

When population substructure is absent, our results
show that GC is substantially more efficient than TDT
(fig. 1). As the effect on liability for any locus ap-
proaches zero, the efficiency approaches a constant, re-
gardless of the frequency of the liability allele. The con-
stant depends on the prevalence K of the disease,
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Figure 5 versus mean allele frequency (p) for the worldwideFst

population (bottom) and selected European populations (top). The
fitted curves were obtained via a smoothed local regression by use of
the S-plus loess function with the default parameters (Chambers et al.
1991). Bottom, data were taken from table 2.12.1 of Cavalli-Sforza
et al. (1994). We deleted heavy-chain immunoglobulin alleles
(IGHG1G3 alleles) and the Duffy blood group (FY*O), which show
extreme variability among populations and appear to be under selec-
tion. Top, and mean p were calculated from Roychoudhury andFst

Nei (1988), by use of all loci with at least 7 populations reported (out
of 11 cited in the text). For biallelic loci, the smallest p was used; for
multiallelic loci, the first was used. was calculated by use ofP ! .5 F ts
the shortcut formula by Weir (1990, p. 155).

approaching three halves as K also approaches zero, but
it becomes more extreme as K increases.

Even when population substructure is present, our
simulations agree with the theoretical calculations in
Devlin and Roeder (1999) and suggest that, for a well-
designed study, the effect of population substructure is
not sizable (table 4). Only when the cases and controls
are sampled from nearly distinct strata, and is large,Fst

does the inflation factor rise much above 1.0. Provided
cases and controls are not sampled from disjoint strata,
half of the values of l are 1.1 or less, even in the extreme
case. To compute the impact of such an inflation, recall
that the GC test is not significant unless the trend test
statistic (1) is greater than . For , the net2l x l = 1.11

effect is to require significance at about the levela/2
for a in the range . Thus it is not sur-(0.01,0.00001)
prising the power for GC is greater than TDT under
our simulated conditions, which we believe are similar
to those encountered in practice.

The GC approach is better suited to some populations
than it is for others. Because the African American pop-
ulation results, in part, from white/black admixture,
family-based methods may be the ideal method for as-
sociation analysis (Ewens and Spielman 1995). Alter-
natively, white populations have very low levels of Fst

and thus are ideal for GC. Morton (1992) reports values
on the order of 0.0006–0.002, with a European average
of 0.001. Using a sample of 122 classical genetics mark-
ers, Devlin and Roeder (1999) estimate F = 0.0006st

across major European populations, with a standard
deviation of 0.0012. The National Health Examination
Survey (1980) has examined substructure within and
across regions of the United States (Northwest, North-
east, South, and West) using a stratified, random sample
of two major ethnic groups, whites and blacks. The
variation among regions is quite small for eight loci,
with the estimated for whites (ChakrabortyF = 0.0002st

1993). As expected, the estimate is larger for blacks,
(Chakraborty 1993).F = 0.006st

The success of the GC approach rests, in part, on
limited variability of l (and, thus, ) across the genome.Fst

For neutral alleles and equal mutation rates across loci,
theory suggests is constant for alleles both within andFst

between loci regardless of their frequencies (e.g., see
Wright 1969). In practice, does vary, but the variationFst

depends on the populations examined. It also can vary
as a function of allele frequencies, but, again, the re-
lationship depends on the populations examined. For
example, fitting a line to the data on and allele fre-Fst

quencies (p) for worldwide populations reported in Cav-
alli-Sforza et al. (1994), we find a significant relation-
ship (fig. 5). However, the greatest change occurs for

, and appears not to vary with p thereafter.p ! 0.1 Fst

Worldwide populations show the most extreme sub-
structure (Devlin et al. 1993). It is reasonable, therefore,

to examine how varies in less substructured popu-Fst

lations. For this evaluation we choose a subset of Eu-
ropean populations that roughly represent the ethnic
composition of white Americans. We derived allele fre-
quencies for 11 populations (Ashkenazi Jews, French,
Germans, Greeks, Italians, Dutch, Norwegians, Span-
ish, UK-English, and western Russians) for loci reported
in Roychoudhury and Nei (1988). Unlike in the world-
wide view, there is no apparent relationship between

and p (fig. 5). Moreover, the variability of is small.F Fst st

Several conclusions follow from these observations
for GC designs. First, experiments should be designed
to minimize population substructure. Second, when
highly substructured populations are analyzed, every ef-
fort should be made to account for the substructure in
the statistical analysis, as this will increase the power
of the test. Third, if highly substructured populations
must be analyzed and the nature of the substructure is
unknown, then one should select null loci having rel-
atively common alleles, making GC conservative. In this
instance, the relative efficiency of GC versus TDT will
change, and it is likely TDT will be more efficient (fig.
3).

It is important to remember that, on average, cryptic
relatedness also tends to inflate test statistics in a pop-
ulation-based study (Devlin and Roeder 1999). In small,
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isolated populations, notable levels of kinship can be
present amongst what appear to be unrelated individ-
uals. GC adjusts for this inflation automatically, but at
a substantial cost in power, because l can become quite
large. In such populations, family-based methods are
likely to be more powerful.

When N family trios are recruited, GC typically re-
quires recruitment of ! unrelated individuals to3N
achieve equal power, at least for a well-designed study,
with the fraction determined by the prevalence of the
disease and the degree of population substructure.
When substructure is small, ! individuals are re-3 N2

quired. Yet relative power is only one part of the equa-
tion. The other is the relative costs of the competing
study designs, which involve recruitment and genotyp-
ing. In terms of genotyping costs, GC is more expensive
than family-based designs, because of the cost of ge-
notyping null loci. Even at current prices, however, the
cost of genotyping 20–60 null loci for cases and controls
is not prohibitive. By contrast, recruitment costs are
usually lower for the case-control study, relative to a
similarly powered family-based study—sometimes sub-
stantially so. Thus, on balance, GC implemented by a
case-control study should be at least competitive with,
and probably less expensive than, family-based designs.

As envisioned by Devlin and Roeder (1999), GC uses
the genome itself to determine population history and
to produce appropriate corrections for population-
based association tests. GC does not depend on the case-
control design. In fact, it has its roots in the linkage
analyses of Puffenberger et al. (1994) and Houwen et
al. (1994). When interest lies in the association of se-
lected SNPs and a quantitative trait, GC methods can
be implemented with only a population-based sample.
In addition, it is possible to evaluate association by con-
trasting regions of the genome suspected of harboring
liability loci to regions thought not to contain such loci.
Devlin et al. (in press), for example, construct such tests
for excess haplotype-sharing using affected individuals
only. Ideally, such haplotype analyses can use the spatial
correlations among dense markers to efficiently detect
association. Although GC will not be ideal for all set-
tings, we believe it is an important tool for the genetic
dissection of complex traits.
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Appendix A

Asymptotic Relative Efficiency: The General Case

Using the notation and equations given in our section
“No Population Stratification,” and letting w = (qd 11

, we obtain the following equations for the expectedpd )2

sample size:

2 2 2Î Î( Uz 1 Vz ) K (1 2 K)a b

N = ,CC 2( )2qp 1 2 f fw

where

2 2( ) [ ]K 2 K 1 1 pw 1pwf K 2 K(1 2 qw) 2 qwf[ ]
U = 2 2( ) ( )1 2 K K 1 2 f f

and

[ ][ ] [ ][ ]K 2 1 1 qw K 2 1 2 pw K 2 pw K 1 qw
V = 1 .2 2( ) ( )1 2 K 1 2 f K f

Using Knapp’s (1999) formula for singletons, we require
where andÎm = (e 2 e )/( e 1 e ) e 2 e = (2pqw)/K1 2 1 2 1 2

. m simplifies toe 1 e = (2pq[2K 1 (1 2 2p)w])/K1 2

. Notice thatÎ Î2pqw/ K[2K 1 (1 2 2p)w]

Îpqm
lim = .

w K(d ,d )r(0,0)1 2

Define as the total number of subjects (not families)NTDT

required:

23(z j 1 z j )a H b H0 aN = ,TDT 2m

where andj = 1H0

lim j = j = 1 .H Ha 0
(d ,d )r(0,0)1 2

Both and have in the denominator. Set2N N wCC TDT

and . The fact that the nonzero limits0 ! f ! 1 0 ! p ! 1
of the following continuous functions exist at (d ,d ) =1 2

,(0,0)

2 2 2( ) ( )1 2 K K z 1 za b
2lim N w = ,CC ( )2pqf 1 2 f(d ,d )r(0,0)1 2
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23(z 1 z lim j )a b Ha
(d ,d )r(0,0)2 1 2lim N w = 2TDT m

2lim(d ,d )r(0,0)1 2 w
(d ,d )r(0,0)1 2

2 2 23(z 1 z ) 6K (z 1 z )a b a b= =
pq 2pq2K

implies that

2 ( )6f 1 2 fN N wTDT TDTlim = lim = .2 2( )N N w 1 2 K(d ,d )r(0,0) (d ,d )r(0,0)CC CC1 2 1 2

If the number of cases equals the number of controls
( ), then the limit becomes1f = 2

N 3TDTlim = .2( )N 2 1 2 K(d ,d )r(0,0) CC1 2

Appendix B

Outline for Simulations

For simulation data, five liability or candidate loci
were produced ( ), each with heritability equal toc = 5
H. Thus, if each locus had , the total heritabilityH = 0.05
for the five loci was 25%. To hasten computation, while
still meeting model constraints (as described above in
“Population Stratification: Simulations”), the realized
heritability for each locus was allowed to vary by !1%
of its target value. Monotonicity of the penetrances was
strict, with ; otherwise the choice of genetic′ ′ ′f ! f ! f0 1 2

model was unrestricted as long as it met parameter
constraints.

For a given run, the following parameters (H, K, ,Fst

nstrata, N, c, n) were fixed and the entire process was
repeated until simulation results were obtained.n = 50sim

Only a subset of the potential model configurations re-
sulted in models that met the constraints. As a prelude
to a simulation for a given set of parameters, the fol-
lowing process was performed:

Generate random .p P (0.01,0.99)
Solve equalities for (4) and (5).d ,j = 1,2j

Check all constraints (6); if met, declare model
feasible.

If constraints are unmet after 200,000 attempts, as-
sume no model exists for .(H,K)

If the model was declared feasible, then the following
steps were undertaken. For each locus, we randomly

select models until we find one that meets the
constraints.

LOOP over diseased loci to produce c li-l = 1, ) ,c
ability loci that meet constraints.

Generate for each locus.pl

Generate random .d ,j = 1,2l,j

Check constraints; if met, keep .p ,d ,dl l,1 l,2

Generate , , nstrata, given and .p s = 1 F pls st l

LOOP over other loci , to producel = c 1 1, ) ,n
null loci. Generate , nstrata, given andn 2 c p s = 1, ) , Fls st

.pl

At this point, each of the loci is associatedl = 1, ) ,n
with a mean allele frequency and the nstrata subpo-pl

pulations have allele frequencies and their variationpsl

about is scaled by . Each of the liability locip F l = 1,cl st

is associated with a genetic model ( ) that satisfiesd ,dl1 l2

the constraints. From these populations, we now ran-
domly draw nuclear families with one child, until we
obtain N subjects who satisfy the design constraints for
either TDT or GC.

LOOP from to M to produce N subjects (for TDT1
and all children must be affected; for GC, runM = N/3

this twice to get affected and unaffectedN/2 N/2
children).

DO UNTIL family has either an affected or an un-
affected child, depending on design setting.

Draw a subpopulation at random.
Draw parents at random.
Obtain child.

Output the appropriate family data.
Compute the sample TDT / GC for each of c loci;2x

compute number of tests rejected at the 0.05 level, and
the power of the test. If a test does not reject for any of
the c candidate loci, then we conclude that the test has
power !20%. Record the average of the c test statistics.
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