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GABAergic mechanisms in the pathogenesis and treatment
of epilepsy

B. S. MELDRUM
Institute of Psychiatry, De Crespigny Park, Denmark Hill, London SE5 8AF

1 Evidence relating to the role of GABA in the pathogenesis of epilepsy is reviewed.
2 Impaired GABAergic function appears to contribute to seizure susceptibility in a

variety of genetically-determined syndromes in animals, e.g. genetically epilepsy prone

rats showing sound-induced seizures, gerbils with genetically determined epilepsy, and
baboons, Papio papio, with photosensitive epilepsy.
3 In epilepsy secondary to a cerebral insult there is some morphological and biochemical
evidence for impaired GABAergic function in experimental situations, but little definitive
evidence in man.
4 Pharmacological approaches to enhancing GABAergic inhibition include the use of
GABA agonists (or prodrugs), GABA-transaminase inhibition, GABA uptake inhibition,
and action at the GABA/benzodiazepine allosteric site.
5 Experimental data suggest that the best prospect for potent anticonvulsant action with
fewest side effects (myoclonus, sedation, ataxia) is at present offered by GABA-transam-
inase inhibitors or novel agents acting on the benzodiazepine receptor site.
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Introduction

GABA, 4-aminobutyric acid, is the principal
inhibitory transmitter in the mammalian brain.
It acts at the GABA/benzodiazepine (GABAA)
receptor to increase membrane chloride con-
ductance and thereby stabilise or hyperpolarise
the resting membrane potential (if extracellular
chloride concentration exceeds intracellular
[Cl-]). The GABAlbenzodiazepine receptor
molecule has recently been purified and
sequenced (Schofield et al., 1987). It is composed
of a and b subunits each with 4 hydrophobic
(membrane spanning) sequences that provide
the ion-channel and a large N-terminal extra-
cellular domain that provides sites for GABA
and for benzodiazepines and barbiturates to act.
GABA/benzodiazepine receptors are found
post-synaptically on dendrites, the somatic
membrane and on the axon initial segment.
Another type of receptor responding to GABA,

the GABAB receptor, is found on presynaptic
terminals and on postsynaptic membranes.
Whereas at the GABAA receptor the effects of
GABA are mimicked by muscimol and the
bicyclic GABA analogue, THIP, at the GABAB
receptor baclofen is a potent agonist. Bicuculline
is an antagonist at the GABAA receptor but not
at the GABAB receptor. The GABAB receptor
increases potassium conductance and decreases
calcium entry. Presynaptically, activation of the
GABAB receptor decreases neurotransmitter
release, as has been shown for monoamines and
excitatory amino acids (Bowery et al., 1980).
Postsynaptically, the increase in K+ conductance
is associated with a slow inhibitory potential
(Newberry & Nicoll, 1984). There are marked
regional differences comparing the density of
GABAA and GABAB receptors in autoradio-
graphs (Bowery et al., 1987).
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Neurons releasing GABA fall into many
structural types that have been characterised in
Golgi studies or immunocytochemical studies
employing antisera either to glutamic acid
decarboxylase or to a GABA-glutaraldehyde-
protein complex (Houser et al., 1983; Somogyi
& Soltesz, 1986). Intrinsic inhibitory interneurons
show great structural diversity, including, for
example, the chandelier cells found in cortex
and hippocampus, that have very large numbers
of terminals located exclusively on axon initial
segments (Somogyi et al., 1985). There are also
GABAergic neurons that relay to more distant
structures such as, for example, the striatal
neurons that project to the substantia nigra (SN),
and those in the SN pars reticulata that relay to
the thalamus and superior colliculus. GABAergic
intrinsic interneurons and extrinsic neurons both
play crucial roles in the origin and spread, or in
the suppression, of epileptic activity. This can be
shown by the focal injection of agents impairing
GABAergic neurotransmission. Such agents fall
into two broad categories, those inhibiting the
synthesis of GABA (such as 4-deoxypyridoxine,
isoniazid, thiosemicarbazide, L-allylglycine) and
those blocking its post-synaptic action (such as
bicuculline, picrotoxin). Systemic injection of
such agents induces generalised convulsions
(Meldrum, 1975, 1985). Their injection into the
neocortex produces focal cortical seizures. Their
injection into the hippocampus, amygdala or
prepyriform cortex produces limbic seizures.
Interestingly the focal injection of bicuculline
into the striatum can, by stimulating the GABA-
ergic striato-nigral system, block limbic seizures
induced by pilocarpine or by bicuculline itself
(Turski et al., 1987).

GABA in the pathogenesis of epilepsy

The proconvulsant effect of any impairment of
GABA-mediated inhibition is very evident in
animal models of epilepsy and in in vitro prepara-
tions such as the hippocampal slice. Treatment
with an inhibitor of glutamic acid decarboxylase
sufficient to partially block the synthesis of
GABA can reproduce in normal baboons the
genetically determined syndrome of photo-
sensitive epilepsy (Meldrum et al., 1975). Thus it
is natural to ask if any genetic or acquired abnor-
mality of GABAergic inhibition could be
responsible for any of the diverse epileptic
syndromes occurring in man.

Genetically-determined abnormalities

ImpairedGABA synthesis is probably responsible
for the seizures occurring in the rare genetic

syndrome of pyridoxine dependency. In two
genetically-determined epileptic syndromes in
animals abnormalities have been found in the
GABAlbenzodiazepine receptor system. Thus
in seizure-susceptible gerbils a reduction in the
binding of [3H]-flunitrazepam is found in the
substantia nigra, pars reticulata(-20%) and in
the midbrain periaqueductal grey (-12%)
(Olsen et al., 1985). This abnormality precedes
developmentally the appearance of the seizures
and could contribute to their occurrence. In an
inbred strain of mice (DBA/2) showing sound-
induced seizures at a critical age there is a reduc-
tion in the number of high-affinity GABA
receptors in the brain (Horton et al., 1982) and
benzodiazepine binding is reduced in the sub-
stantia nigra, midbrain periaqueductal grey,
caudal pons central grey, laterodorsal tegmental
nucleus and inferior colliculus central nucleus
(Olsen et al., 1986). Using immunocytochemical
methods to identify neurons containing glutamic
acid decarboxylase it appears that the number of
GABAergic neurons is increased in inferior
colliculus central nucleus in genetically epilepsy-
prone rats showing sound-induced seizures
(Roberts et al., 1986). A somewhat similar
increase in the number of GABAergic neurons
has been described in the hippocampus of seizure-
sensitive gerbils (Peterson et al., 1985). These
increases have been interpreted by Ribak as
contributing to epileptogenesis by a process of
'disinhibition' but it is perhaps more probable
that they represent an attempt to compensate for
a deficiency in GABAergic transmission.
GABAmimetic drugs are exceptionally potent
as anticonvulsants in the seizure-susceptible
gerbils (Loscher et al., 1983).
The genetically determined syndrome of

photosensitive epilepsy in the Senegalese baboon
may be caused by a deficiency in cortical
GABAergic inhibition. In support of this
hypothesis are the theoretical issues discussed by
Meldrum & Wilkins (1984) and several direct
observations. The latter include the correlation
observed between the reduction in the cerebro-
spinal fluid GABA concentration and the degree
of photosensitivity (Lloyd et al., 1986) and the
potent anticonvulsive action of focal cortical
infusion of GABA (Brailowsky et al., 1987).

Acquired abnormalities of GABAergic systems

It is possible that cerebral insults that predispose
to epilepsy (such as blunt or penetrating head
injuries, anoxic or ischaemic insults, and pro-
longed febrile convulsions) do so by selectively
damaging GABAergic systems. Evidence to
support this thesis comes from animal experi-
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ments and from neurosurgical specimens but the
results are still somewhat controversial. Focal
motor epilepsy can be induced in the monkey by
application of alumina gel to the sensorimotor
cortex. The number of nerve terminals staining
positively for glutamic acid decarboxylase is
markedly reduced in the cortical focus (Ribak et
al., 1979). By electron microscopy there is a
preferential loss of symmetric (inhibitory)
synaptic junctions compared with asymmetric
(excitatory) junctions (Ribak et al., 1982). If
such changes occurred around a traumatic or
space-occupying lesion in the brain they could
account for the focal initiation of seizures. It has
also been proposed that GABAergic neurons
are selectively vulnerable to hypoxic brain
damage or to damage resulting from status
epilepticus (see Meldrum & Corsellis, 1984).
Evidence for this includes the report that in
infant monkeys subjected to a 30 min episode of
hypoxia there is a selective loss of symmetric
synapses (presumed to be GABAergic) in the
cortex (Sloper et al., 1980). A link to increased
seizure susceptibility has not, however, been
demonstrated.
Some very recent studies employing immuno-

cytochemical staining in the hippocampus suggest
that in ischaemia and in status epilepticus the
GABAergic interneurons tend to be preserved
but certain peptide-containing interneurons
(those staining for somatostatin) are selectively
lost (Sloviter, 1987). It may be that one function
of these interneurons is to activate the GABA-
ergic system so that loss of somatostatin neurons
could impair feedback inhibitory mechanisms.
A further possibility is that insults early in life
can cause long-term modifications in GABA/
benzodiazepine receptor systems. For example,
a change in hippocampal benzodiazepine binding
in adult rats has been reported as a consequence
of febrile seizures induced at 15 days of age
(Chisholm et al., 1985).

In man the principal studies have been of
neurosurgically resected specimens of either
anterior temporal lobe or neocortex. Comparison
of tissue from the epileptogenic zone (determined
electrographically) with non-epileptogenic tissue
showed a decrease in glutamic acid decarboxylase
activity in a proportion, but not all, of a group of
27 patients undergoing focal resection (Lloyd et
al., 1985). However, Babb (1986), performing
glutamic acid decarboxylase staining on resected
hippocampi (with detailed cell counts in all the
hippocampal subfields), did not find preferential
loss of GABAergic intemeurons (in most regions
principal neurons were preferentially lost).
Furthermore, the staining of GABAergic
terminals on surviving pyramidal neurons indi-

cated no loss of GABAergic innervation. At
present the contribution of a selective loss of
GABAergic neurons to acquired epilepsy in
man remains unknown.

Studies of the GABA content in lumbar CSF
have shown a significant reduction in patients
with a wide range of epileptic syndromes
compared with non-neurological controls, both
for adults (Manyam et al., 1980; Wood et al.,
1979) and for children (Loscher et al., 1981;
Loscher & Siemes, 1985). These data support the
concept that diminished GABAergic inhibition
contributes to seizure susceptibility.

Enhancing GABA-mediated inhibition

Drugs that enhance GABA-mediated inhibition
have an anticonvulsant effect in a wide range of
animal models of epilepsy. The effect depends
critically on the mechanism by which GABA-
mediated inhibition is enhanced. Direct agonists
can be proconvulsant in some models. There is
not a strong preferential effect in models
dependent on impaired GABA transmission (e.g.
seizures due to isoniazid, bicuculline or picro-
toxinin) compared with other seizure models.
We shall consider sequentially the different
mechanisms of enhancing GABA-mediated
inhibition listed in Table 1.

Table 1 Mechanisms for enhancing GABA mediated
inhibition

1 GABA, GABA agonists, GABA prodrugs
e.g. liposome-entrapped GABA

muscimol, THIP,
cetylGABA
progabide, SL 75102

2 Enhanced GABA synthesis and/or synaptic
release

e.g. ? benzodiazepines,
? valproate
vigabatrin

3 GABA-transaminase inhibition
e.g. L-cycloserine

ethanolamine-o-sulphate
y-acetylenic GABA
vigabatrin

4 GABA uptake inhibition
e.g. nipecotic acid, THPO,

SKF 89976A, SKF 100330A
5 Action at GABA/benzodiazepine allosteric site

e.g. benzodiazepines,
,B-carbolines
triazolopyridazines

6 Action at chloride ionophore/picrotoxinin/
barbiturate site

e.g. barbiturates
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GABA penetrates the blood-brain barrier poorly

Cardiovascular and other side-effects prevent
the therapeutic use of high systemic doses of
GABA. Considerable ingenuity has been
devoted to achieve brain delivery for systemically
administered GABA. An anticonvulsant effect
against isoniazid-induced seizures in rats has
been reported following intraperitoneal injection
of a liposome-entrapped solution of GABA, i.e.
GABA sonicated with phosphatidyl-serine
(Loeb et al., 1986). Various esters of GABA
have been used as prodrugs. These include
benzoyl GABA, pivaloyl GABA and cetyl
GABA. Anticonvulsant effects of these esters
have been observed in rodent models of epilepsy
(Galzigna et al., 1978; Frey & Loscher, 1980). A
more elaborate chemical delivery system has
been devised by Bodor and colleagues. This
utilises a carrier containing a pyridine ring that
participates in dihydropyridine pyridinium redox
reactions. GABAbenzyl ester is linked via an
amide bond to the redox carrier which is lipo-
philic in its dihydropyridine form. Following
entry to the brain it is oxidised to a charged
quaternary complex that is trapped in the brain
and hydrolysed to yield GABA. Administration
of this complex to rats undergoing a conflict
procedure produces an anxiolytic effect
(Anderson et al., 1987) but anticonvulsant studies
have not yet been reported.

Muscimol and the synthetic bicyclic analogue
of GABA, THIP, are potent specific GABAA
agonists. They are anticonvulsant in several
rodent models of epilepsy employing convulsant
drugs. However they are proconvulsant in Wistar
rats with spontaneous petit-mal-like epilepsy
(Vergnes et al., 1984). They also enhance spike
and wave discharges and induce diffuse myo-
clonus in baboons with photosensitive epilepsy
(Pedley et al., 1979; Meldrum & Horton, 1980).

L-baclofen, the GABAB agonist, likewise
appears anticonvulsant in some rodent tests but
facilitates spike and wave discharges both in
Wistar rats and in photosensitive baboons
(Meldrum & Horton, 1974).
Progabide is a GABA receptor agonist acting

on both GABAA and GABAB receptors, and is
metabolised in the brain to yield SL 75102 (a
more potent GABA agonist than progabide)
and to GABA itself (Lloyd et al., 1982). It is by
no means certain that progabide acts by enhancing
GABAergic transmission: in some test systems
it mimics the action of phenytoin rather than that
of muscimol (Fromm et al., 1985). Progabide is
anticonvulsant in a wide range of rodent models
of epilepsy (Worms et al., 1982) and has some
efficacy in man.

Enhancing synaptic release ofGABA

It is likely that the synaptic release of GABA can
be facilitated by drugs acting either on presynaptic
receptors or on the synthesis ofGABA. However,
definitive evidence is lacking. Benzodiazepines
may facilitate GABA release (Curtis et al., 1976).
It has been claimed that valproate, ethanolamine-
o-sulphate and vigabatrin all enhance synapto-
somal GAD activity (Loscher, 1981). In the case
of vigabatrin enhanced release of GABA into
cortical superfusates has been demonstrated both
at rest and during peripheral nerve stimulation
(Abdul-Ghani et al., 1980). This probably
represents enhanced release but an indirect effect
on reuptake cannot be excluded.

GABA-transaminase inhibitors

Various compounds that interact with pyridoxal
phosphate inhibit GABA 2-oxoglutatarate
aminotransferase (GABA-T) activity, and the
activity of many other transaminases and
decarboxylases. These inhibitors include amino-
oxyacetic acid and L-cycloserine, which have
long been known to show anticonvulsant activity
(Kuriyama et al., 1966; Scotto et al., 1963).
However, because of their multiple biochemical
actions a simple correlation of anticonvulsant
action with elevation in brain GABA content
was not found. At one time it was proposed that
the anticonvulsant activity of valproate could be
attributed to inhibition of GABA-T, but this
enzymic action is not now thought to be a signif-
icant effect of valproate in vivo (Chapman et al.,
1982). It was the introduction of the irreversible
or catalytic inhibitors of GABA-T that finally
established the relationship between GABA-T
inhibition and anticonvulsant action (Fowler &
John, 1972; Anlezark et al., 1976; Palfreyman et
al., 1981). The structures of some of these com-
pounds are shown in Figure 1. Inhibition of
GABA-T activity by 55-80% leads to a marked
increase in brain GABA content (5-10 fold in
the mouse brain) and a sustained anticonvulsant
action in a wide range of rodent models, and also
in photosensitive baboons (Meldrum & Horton,
1978). Among the catalytic GABA-T inhibitors
vigabatrin (,y-vinyl GABA) appears to have the
fewest acute toxic side-effects in the rodent,
possibly because of its high specificity for
GABA-T. Of the two enantiomers of vigabatrin
it is the R(-) form that is the inhibitor of
GABA-T and that shows the anticonvulsant effect
(Danzin et al., 1984; Meldrum & Murugaiah,
1983).
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Figure 1 Molecular formulae of some irreversible inhibitors of GABA-transaminase (note that in vivo
the diazo ring in BW 357U opens to give hydrozinopropionic acid). (Reproduced from Meldrum (1984)
with permission.)

GABA uptake inhibition

The main method whereby synaptically released
GABA is inactivated is by uptake into nerve
terminals or into glia. Specific carriers are
involved and these appear not to be identical in
glia and neurons. Various GABA analogues can
compete with GABA at this carrier, and the
structural requirements for such competition
differ from those for agonist action at the GABA
receptor or for inhibitory action at the active site
of GABA transaminase (Krogsgaard-Larsen,
1980). GABA uptake inhibitors administered
into the ventricles block sound-induced seizures
in mice, with compounds acting preferentially
on glial uptake (e.g. nipecotic acid, guvacine and
THPO) being the most effective (Meldrum et
al., 1982). These compounds do not cross the
blood-brain barrier significantly, so that various
prodrug or carrier molecules have been studied.
Some efficacy was obtained systemically with
ethyl and pivaloyloxymethyl esters (Meldrum et
al., 1982; Falch et al., 1987), but there were
significant side-effects including cholinergic effects
and myoclonus (Zorn et al., 1987). Diphenyl
butenyl derivatives of nipecotic acid and of
guvacine (SKF 89976A and SKF 100330A) are
potent, orally active GABA uptake inhibitors
with high anticonvulsant activity in rodent seizure
models (Yunger et al., 1984; Loscher, 1985).
However in primates myoclonus appears as a
significant toxic side-effect (Meldrum, un-
published).

Allosteric enhancement of GABAergic activity

The close functional relationship between the
GABAA receptor and a benzodiazepine receptor
originally defined in terms of high affinity binding
to brain membrane receptors (Mohler & Okada,
1977) has been fully substantiated in recent bio-
chemical and physiological studies (see Meldrum
& Braestrup, 1986; Meldrum & Chapman, 1986;
Schofield et al., 1987; Haefely & Polc, 1986).
Benzodiazepines and a variety of other structures
such as triazolopyridazines and 1-carboline
derivatives act at an allosteric site on the GABAA/
benzodiazepine/chloride ionophore molecule to
enhance the binding and efficacy of GABA. The
principal electrophysiological effect is an increase
in the number of channel openings induced by a
given concentration of GABA (Macdonald,
1983; Barker & Owen, 1986). There is a good
correlation between the potency of various
benzodiazepines as anticonvulsants in the
threshold pentylenetetazol test in rodents with
their affinity for the GABA/benzodiazepine
receptor (Meldrum & Braestrup, 1984). Some
P-carboline derivatives have a partial agonist
effect at the benzodiazepine receptor and produce
a powerful anticonvulsant effect with very little
sedative or muscle relaxant action (Meldrum et
al., 1983; Meldrum & Chapman, 1986). Other
13-carboline derivatives act at the benzodiazepine
receptor to produce an opposite effect to that of
the benzodiazepines, decreasing the hyper-
polarising action of GABA in vitro, and being
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anxiogenic and proconvulsant in vivo (De Deyn
& Macdonald, 1987; Meldrum & Chapman,
1986). Endogenous peptides have been purified
from rat, bovine and human brain that appear to
act on the benzodiazepine receptor in this 'inverse
agonist' fashion (Guidotti et al., 1983; Ferrero et
al., 1986; Marquardt et al., 1986).

Benzodiazepines are very potent anticon-
vulsants in animal test systems. In clinical use
they suffer from two disadvantages, impairment
of motivation and complex skills and tolerance
to their anticonvulsant effect that develops in
one third or more of patients.

Action at the chloride ionophore

Some convulsant drugs (such as picrotoxinin)
and some anticonvulsants such as barbiturates
appear to act at a site separate from the GABA
recognition site or the benzodiazepine site, but
closely related to the chloride ionophore (Olsen,
1982). At this site anaesthetic barbiturates pro-
long the open time of the chloride channel (Study
& Barker, 1981). Barbiturates show both a direct
action on chloride conductance and a potentiation
of the effect of GABA. The relationship between
these effects on chloride conductance and the
anticonvulsant and anaesthetic actions of bar-
biturates is not yet defined.

Summary

For the last 10-15 years the design of novel
compounds that enhance GABA-mediated
inhibition has provided a rational approach to
anticonvulsant drug therapy (Meldrum, 1978).
Of the various possible pharmacological
approaches, the use of direct agonists has proved
somewhat disappointing. Why potent agonists
cause myoclonus and other proconvulsant effects
is uncertain, but may involve a process of desen-
sitisation to the inhibitory action of GABA or
depolarisation at dendritic sites. The use of
GABA-uptake inhibitors seems to give rise to
similar problems but may merit further explora-
tion. These problems are less significant with
catalytic inhibitors of GABA-T, suggesting that
the effect is probably not a sustained flooding of
the synaptic and perisynaptic spaces with GABA.
Enhanced synaptic release would ensure that the
enhanced GABAergic activity had the correct
spatial and temporal characteristics to suppress
seizure activity. This is also true of benzodiaze-
pine-like compounds that act post-synaptically
to enhance the efficacy of GABA. At the present
moment these two approaches offer the best
prospect of providing significant new therapeutic
agents in epilepsy.
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