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Introduction
Part I of this article describes the

practical recruitment problems faced in
some randomized clinical trials and sug-
gested that when those problems are
severe, consideration should be given to
replacing randomized allocation with risk-
based (assured) allocation, in which all of
the higher-risk persons receive the new
treatment.1 Here we give three examples
of risk-based allocation as applied to
studies involving measurements, rates of
events, and survival times. The data sets
of these studies were the only ones used to
test risk-based allocation methods, and
the cutpoints used to define the high-risk
groups were the only ones tried. We did
not dredge data sets for favorable results.

A Measurement Study
In many clinical trials, the allocation

variable is a measure of risk of future
disease, an estimate of disease severity, or
a baseline measurement of a disease
marker. For a trial of a cholesterol-
reducing drug, the allocation variable may
be a serum cholesterol measurement; in
an acquired immunodeficiency syndrome
(AIDS) drug treatment trial, it may be a
CD4 cell count. We use the cholesterol
example to illustrate the risk-based alloca-
tion design involving a measurement.

High cholesterol (at least the low-
density lipoprotein component) is gener-
ally regarded as a risk factor in heart
disease. Our plan is to give all the high-risk
patients (those with high cholesterol mea-
surements) a recommended diet and an
experimental drug for reducing cholesterol,
and to give the lower-cholesterol patients
(the control or standard treatment group)
the recommended diet and a placebo. In
the usual randomized study, the treatment
effect is the difference in (or ratio of) the

average change between pretreatment
and posttreatment measurements in the
treatment and control groups. This mea-
sure is not valid under risk-based alloca-
tion because by the regression-to-the-
mean phenomenon alone one would
expect a larger decrease in cholesterol for
the treatment (high-cholesterol) group
than for the control group.

One method of dealing with this
problem is to take a second ("auxiliary")
pretreatment measurement of each sub-
ject's cholesterol level. The auxiliary mea-
surement need not be independent of the
allocation measurement, given the "true"
or long-term cholesterol level of the
individual. The treatment effect is then
redefined (although the redefinition is
mathematically equivalent to the original)
as the average change from the auxiliary
to the endpoint (posttreatment) measure-
ment in the new treatment (high-risk)
group less the average change that would
have resulted for the same subjects if they
had received the standard treatment. The
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actual average change for the high-risk
subjects is observed directly from the
results of the trial. The hypothetical aver-
age change for these subjects had they
received the standard treatment cannot be
directly observed since, under risk-based
allocation, they all received the new treat-
ment. As a result, we must use a statistical
model to estimate what average change
would have occurred had the standard
treatment been given to this group.

The simple model that we use in this
example assumes that the expected change
between the auxiliary and endpoint mea-
surements for a subject receiving the
standard treatment is a linear function of
the formE(Y-X'IX) =A +BX,where
E(Y - X' IX) is the expected value of the
difference between the endpoint measure-
ment Y and the auxiliary measurement X'
for a given value of the allocation measure-
ment X. The key assumption is that this
model holds for all values ofX, both above
and below the cutoff point for allocation
to treatment or control. HereA and B are
constants to be estimated from the data
for those control group subjects actually
receiving the standard treatment. OnceA
and B are estimated by standard linear
regression methods, the response to the
standard treatment is estimated for the
high-risk subjects by using theirX values
in the equation.

The reader may ask why the auxiliary
measurement X' is needed at all; why not
simply regress the endpoint measurement
Y on the allocation variable X, using the
model E(YIX) = A + BX to estimate A
and B? This is, in fact, sometimes pro-
posed for making adjustments in observa-
tional studies. It suffers, however, from
the objection that the linear relationship
between YandXposited by the model will
hold only in special circumstances. Sup-
pose, for example, that each subject has a
true (long-term, or "error-free") level of
cholesterol that varies arbitrarily in the
patient population. Suppose further that
the allocation measurement X varies
about the true level with a normally
distributed error. Then, even assuming
that the mean value of Y is a linear
function of the true level and X, it can be
shown that only a normal distribution for
the true cholesterol level in the population
will produce the linear model E(YIX) =
A + BX. While the assumption of nor-
mally distributed measurement error for
X around the true level is quite reason-
able, the assumption that the true level is
normally distributed in the population is
gratuitous. As a result, we would generally
not find E(YIX) to be linear.

With an auxiliary measurement X',
the relationship between Y - X' and X
can be linear without any assumed distri-
bution of true cholesterol values. As a

result, the linearity assumption is more

likely to be valid with the auxiliary
measurement than without it. For a

discussion of this point, see the appendix.
In addition, the model with an auxiliary
measurement is advantageous because its
estimates of treatment effect will usually
have a smaller sampling error.

We now apply this method to a

portion of the data from a placebo-
controlled, double-blind, randomized clini-

cal trial in which the drug cholestyramine
was used to lower blood cholesterol.2 The
data are from the Stanford University
portion of the original multicenter study
and have been the subject of previous
discussion.3 The purpose of the trial was
to test the efficacy of lowering cholesterol
in reducing risk of coronary heart disease,
but we take as our endpoint for discussion
the effect of cholestyramine on total
cholesterol levels.

In this study, there were 165 subjects
in the treatment group and 172 in the
placebo group. A series of pre- and
posttreatment measurements were made
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TABLE 1 -The Effect of Cholestyramine vs Placebo on Total Plasma Cholesterol
Levels, by Pretrial Cholesterol Level and Treatment vs
Control Group Status

Reduction between
Pretrial Auxiliary and Standard No.

Groupa Treatmenta Posttreatment, mg/dLb Error Subjects

. 290 Experimental 34.42 3.295 88
> 290 Placebo 5.02 1.831 89
< 290 Experimental 27.03 3.473 77
< 290 Placebo 8.17 1.670 83

Source. Data are from 337 subjects randomly assigned in the Stanford portion of the Lipid Research
Clinic's Coronary Primary Prevention Trial.

aGrouped by initial total cholesterol level above or below 290 mg/dL (approximately the median), as
determined by a baseline (allocation) measurement and by assignment to experimental or
placebo treatment.

bThe mean difference in mg/dL of total cholesterol between a second pretrial (auxiliary)
measurement and the posttrial measurement.

50 Regression line fitted to left panel
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Note. On the abscissa, X is the prediet, pretreatment total cholesterol level as determined by the
allocation measurement. On the ordinate, Y-X' is the difference in milligrams per decilter in total
cholesterol between the posttrial measurement Y and pretreatment level as determined by the
auxiliary measurement X'. The regression line is based on the 83 subjects with initial total
cholesterol levels below 290 mg/dL.

FIGURE 1--Change In total plasma cholesterol level for 172 placebo-treated men
In the Stanford portion of the Lipid Research Clinics Coronary Pri-
mary Prevention Trial.
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of total cholesterol and its components;
here we focus on the total. One of the
pretreatment measurements was made
just prior to a baseline period diet
prescribed for all trial participants. This
we use as our allocation variable X. A
subsequent pretreatment measurement
was taken just prior to randomization
about 4 months later. This we use as our

auxiliary measurement X'. To compare
this actual trial with our proposed risk-
based allocation trial, we considered the
subgroup of individuals whose prediet

cholesterol measurement exceeded the
median and chose them to receive the
new treatment.

In the randomized clinical trial there
were 177 subjects whose prediet choles-
terol measurement exceeded 290 mg/dL
of blood (approximately the median); of
these, by random selection, 88 were in the
treatment subgroup and 89 were in the
control subgroup. The 88 treatment sub-
jects in this high-cholesterol subgroup
showed an average reduction of 34.42
mg/dL from the baseline auxiliary (post-

diet cholesterol) measurement, while the
89 control subjects showed an average
reduction of 5.02 mg/dL from that mea-
surement. The "gold standard" estimate
of treatment effect is thus a 29.40 mg/dL
reduction (34.42 mg/dL- 5.02 mg/dL)
for the high-cholesterol subgroup, while
the standard error of this estimate is
±3.77 mg/dL. This result from the ran-
domized trial is for the subgroup with
cholesterol levels above 290 mg/dL to
make that group correspond to the group
receiving treatment under risk-based allo-
cation. For the entire group of subjects in
the randomized trial, including those with
cholesterol levels below 290 mg/dL, the
165 treatment subjects showed an average
reduction of 30.97 mg/dL from the base-
line auxiliary measurement, while the 172
placebo subjects showed an average reduc-
tion of 6.54 mg/dL from the baseline. The
treatment effect was thus measured as a
reduction of 24.43 mg/dL from the base-
line, with a standard error of ±2.70
mg/dL. This smaller average reduction
for the entire group suggests that the drug
is less effective (in absolute terms) for
subjects with lower initial measurements.
Some results from the data of the study
are summarized in Table 1.

To test how close risk-based alloca-
tion results would be to this conventional
randomized clinical trial result, we cre-
ated a risk-based allocation by discarding
those cases in which a placebo was given
to subjects with cholesterol readings by
the allocation measurement at or above
290 mg/dL and those cases in which the
new treatment was given to subjects with
cholesterol readings below 290 mg/dL.
With these deletions, the data consisted
of 88 subjects with X at or above 290
mg/dL, all of whom received the new
treatment, and 83 subjects with X below
290 mg, all ofwhom received the placebo.

Using the linear model E(Y - X'I
X) =A + BX, we estimated the constants
A and B, by ordinary least squares re-
gression from the control group data, to
be A = -38.54 and B = 0.1102. The
treatment effect before adjustment for the
placebo effect is, as stated, a reduction of
34.42 mg/dL for the cholestyramine group.
Using the regression equation, the esti-
mated standard treatment response for
that group is a reduction of 3.66 mg/dL.
The treatment effect after adjustment for
the standard treatment response is the
difference between the two, or a reduc-
tion of 30.76 mg/dL. This is close to the
randomized trial result of 29.40 mg/dL.
The standard error of the 30.76 mg/dL
estimate is +8.02 mg/dL. (The standard
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TABLE 2-The Effect of Low-Dose (Experimental) AZT vs High-Dose (Standard)
AZr on the Rate of Opportunistic Infections In AIDS Patients, by
Pretrial CD4 Cell Count and Treatment

No. Total Rate
CD4 Opportunistic Follow-Up (Infections No.

Groupa Treatmenta Infectionsb Time, Yearsc Per Year) Subjectsd

>60 Experimental (low dose) 292 217.88 1.340 126
> 60 Standard (high dose) 290 210.92 1.375 133
<60 Experimental (low dose) 262 207.10 1.265 128
< 60 Standard (high dose) 296 181.33 1.632 126

Source. Data are from 513 patients randomly assigned in the AIDS Clinical Trials Group Study 002 of
low- vs high-dose AZT.

aGrouped by CD4 cell count above or below 60/tLL of blood (approximately the median), as
measured at randomization and by assignment to experimental (low-dose) and standard
(high-dose) treatment.

bThe total number of opportunistic infections in the group during follow-up.
cThe total number of years of follow-up for the group, with follow-up period from the date of

randomization to the date of death or withdrawal from therapy.
dlncludes one subject in fourth group with zero days of follow-up. Eleven subjects from the original

trial with missing CD4 cell counts have been excluded.
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0:4e. 0.3 - LalB weightedreon Rate exp(a + bCD4}

O0.2 _ f(f=0.2, 2 robust passes) Curve based only on subjects
Curve based on allsubjects in higb dose group with CD4 > 60

_in higb dose AZT group (n=258) (n = 133)
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Baseline CD4 oeunt + 1

Note. The abscissa is the log of 1 plus the CD4 cell count at randomization. The ordinate is the log of
the rate of opportunistic infections. The wavy solid line is the actual rate of opportunistic infections
smoothed by locally weighted regression (f = 0.2, 2 robust passes). The curve is based on all 258
subjects in the high-dose group. The smooth dotted curve is the rate of such infections estimated
by the model, Rate = exp (a + bCD4). The curve is based only on the 133 subjects in the
high-dose group with a CD4 cell count above 60/LL. AZT = zidovudine.

FIGURE 2-Estimated and observed rates of opportunistic Infections for 258
high-dose AZT subjects in AIDS Clinical Trials Group Study 002.
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error is calculated by summing the inde-
pendent contributions to the variance
from the treatment and control groups.
The variance from the treatment group is
the usual variance of a sample mean,
which in this case is [30.9112/88 = 10.86.
The mean value of X among those with
X > 290 is 316.56. The estimated vari-
ance of the predicted mean from the
regression model at X = 316.56 is 53.39.
The variance of the sum is 10.86 +
53.39 = 64.25. The standard error is the
square root of that, or ± 8.02, as stated.)
The data and the regression line are
shown in Figure 1. Thus, for the high-risk
patients, the risk-based allocation results
are virtually identical to those of the
conventional trial.

As the calculation of the variance
shows, for comparable sample sizes and
variances, the size of the regression model
component of the variance depends pri-
marily on the degree of extrapolation
from the lower observed range of the data
for the control group to the higher range
of the data for the treatment group. The
predominance of that term in the sum
indicates that the bigger the average gap
in severity of illness between the treat-
ment and control groups, the larger the
variance of the estimates because the
projection requires a greater extrapola-
tion. On the other hand, if the two groups
are close together, the problems encoun-
tered in the classical randomized trial that
we noted in Part II begin to emerge. One
way to decrease the standard error of the
estimate when the difference in severity of
illness between the two groups is large is
to augment the size of the control group.

A Rate-of-Event Shudy
In many clinical trials, the outcome

being measured is the rate of some event
(i.e., the expected number of events per
unit time per person). In immunosup-
pressed patients, a therapy may be tried to
reduce the rate of opportunistic infec-
tions. In risk-based allocation trials of
such therapies, the allocation variable
may be a CD4 cell count, and one must
use a model that relates the value of the
count to the rate of opportunistic infec-
tions. The key, of course, is the correct-
ness of the model. There should be data
from prior studies or from the natural
history of the disease against which to test
the proposed choices.

To illustrate this situation, we use
data from a clinical trial to test the efficacy
of low-dose vs high-dose zidovudine
(AZT) on very sick AIDS patients.4 At

the time of this trial (referred to as ACI'G
[AIDS Clinical Trials Group] 002), low-
dose AZT (500 mg/day) was the experi-
mental treatment and high-dose AZT
(1500 mg/day) was the standard. Al-
though survival time was the major end-
point of the trial, and although the study
has been criticized as biased,5 we focus
here on a secondary endpoint, the num-

ber of opportunistic infections, to illus-
trate a study involving count data. (The
data are available on diskette from the

National Technical Information Service

as ACTG 002, NTIS Order No. PB93-
506087.)

In this trial, there were 254 subjects
in the low-dose (experimental) group and
258 in the high-dose (standard treatment)
group. (There were 524 patients enrolled
in the study, but 11 had missing informa-
tion on CD4 cell counts and 1 had zero

days of follow-up time.) Data for those

subjects receiving the standard treatment
suggest that the opportunistic infection

rate can be appropriately modeled by the

exponential function R(X) = A exp {BX],
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Note. Observed survival curves are product-limit estimates for the indicated subgroups from the
randomized clinical trial: CD4 cell count at or below 60 (n = 128) and CD4 cell count above 60
(n = 126). AZT = zidovudine.

FIGURE 3-Observed survival rates for 254 patients on low-dose AZT In AIDS
Clinical Trials Group Study 002, by Initial CW4 cell count.
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Note. The solid and broken lines are the observed survival probabilities for the groups with initial
CD4 cell counts above or below 60/ILL of blood, respectively. The dotted and dashed lines are
averages of the adjusted survival probabilities for patients with initial CD4 cell counts above or
below 60I1L, respectively, as estimated by a Cox model with a time-varying relative hazard
parameter. AZT = zidovudine.

FIGURE 4-Estimated and observed survival rates for 254 patients on low-dose
AZT In AIDS Clinical Trials Group Study 002, by Initial CD4 cell count.
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where X is the CD4 cell count at the start
of the trial and A and B are constants to
be estimated from the data. We assume

there would have been a basis in prior
experience for choosing this form of
model. The rate, R(X), is the expected
number of opportunistic infections per

year of survival per patient for those with
initial CD4 count X. This is a commonly
used form of model for event data, equiv-
alent to the model lnR(X) = In A + BX.
We take CD4 cell counts at or below 60
F.L of blood as a marker for the sicker
patients; this is approximately the median
for the group.

In the original trial, the number of
opportunistic infections in the high-dose
(standard) treatment group among the
sicker patients was 296, with 66 186 days
of follow-up, for an opportunistic infec-
tion rate of 1.632 per year. The follow-up
period was from the date of randomiza-
tion to the date of withdrawal from
therapy or death. Many subjects withdrew
because of the toxicity of AZT. Indeed,
this was partly the reason for testing the
efficacy of the low-dose therapy. The
number of opportunistic infections in the
low-dose (experimental) treatment group
among the sicker patients was 262, with
75 591 follow-up days and a rate per year
of 1.265. The ratio of treatment to control
group rates is 1.632/1.265 = 1.290 (stan-
dard error +0.109). Thus, the standard
estimate of the low-dose effect on the
sickest patients is that it reduces their rate

of opportunistic infections by about 22.5%
(1-1/ 1.290 = 0.225). Selected results from
the trial are summarized in Table 2.

If the trial had used a risk-based
allocation scheme with all of the sicker
patients receiving the experimental low
dose, the effect of the high dose on the
sicker patients would have been estimated
instead of being directly observed. Under
the modeling approach, this would have
been done by fitting the model from the
data of the less sick (CD4 cell counts >

60) patients who received the standard
treatment. This involves selecting by com-
puter iteration the pair of values for the
parametersA and B that best fits the data.
(Technically, we used maximum likeli-
hood estimation for the data under a

Poisson regression model, which assumes

that the number of opportunistic infec-
tions occurring in a given time period t has
a Poisson distribution with mean tR[XI.)
The result isA = 0.541 and B = -0.00155.
The curve thus estimated compared with
the smoothed actual data is shown in
Figure 2.

The model estimates, for example,
that with a CD4 cell count of 60, the
opportunistic infection rate would be
1.452 per year; with a count of 10, it would
be 1.526 per year. In the experimental
group, the expected number of opportunis-
tic infections for each patient is derived by
multiplying the observed follow-up for
that patient by the rate per year. Under
standard treatment, the total expected

number of opportunistic infections for the
sicker patients is the sum of these expecta-
tions over all 128 such patients who in fact
received the low dose. That sum is 340.46,
as compared with the actual number of
262. Thus, the estimated rate ratio (the
treatment effect in the present case)
among the sicker patients is 340.46/262 =
1.2995 (with a standard error of approxi-
mately ±0.147 after adjusting for overdis-
persion). Under risk-based allocation,
then, the estimated low-dose effect on the
sicker patients is a reduction in the rate of
opportunistic infection of 23.0% (1-1/
1.2995 = 0.230), close to the standard
estimate of 22.5%.

Note that the rate ratio in the
original trial among the less sick patients
(CD4 cell counts >60) was nearly unity
(1.375/1.340), suggesting little treatment
efficacy in that subgroup. The rate of
opportunistic infections per unit time (our
parameter of interest, R) was lower in the
experimental group than in the standard
treatment group because of a reduced
number of opportunistic infections and a
longer survival time in the experimental
group. Both factors are a legitimate
benefit of the treatment that is appropri-
ate to reflect in R because the longer
survival time probably resulted from en-
hanced protection against opportunistic
infections afforded by the low-dose regi-
men. In the estimation of R, the use of
risk-based allocation and an appropriate
model generated results that are virtually
indistinguishable from those of the ran-
domized clinical trial.

A Survival Time Study
A third subject of study in clinical

trials is the effect of the treatment on time
to some event. In the AIDS context, an
important endpoint is death, so the
measurement of interest is survival time.
This is commonly appraised by comparing
survival curves for the treatment and
control groups. In a randomized trial,
these curves are calculated from the
observed data for those groups. In a
risk-based allocation trial, the survival
probabilities for the high-risk group receiv-
ing the new treatment are calculated in
the usual way but those for the high-risk
group assuming receipt of the standard
treatment are estimated by fitting a model
to the data for the low-risk group and then
projecting the results to the high-risk
group. The treatment effect is the differ-
ence between the observed and estimated
survival curves for the high-risk group.
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FIGURE 5-Estimated and observed times to AIDS event or death: 60 AIDS-
related complex or asymptomatic patients with initial CD4 cell counts
at or below 60/ILL on AZT in AIDS Clinical Trials Group Study
116B/117.
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To demonstrate the method of esti-
mation, we use data from another trial in
the AIDS Clinical Trials Group series
(ACTG 116B/117) that compared contin-
ued low-dose AZT (which by then had
become the standard treatment) with
didanosine in patients infected with hu-
man immunodeficiency virus (HIV).6 In
this study, HIV-infected patients who had
tolerated AZT for at least 16 weeks were
randomized to two different doses of
didanosine; the randomly selected control
group was continued on AZT. The study
included patients who had AIDS and
those who had AIDS-related complex
(ARC) or were asymptomatic but HIV
positive. For the latter group (ARC or
asymptomatic), the endpoint was death or
the occurrence of an AIDS-defining event.
We focus on this group. (The data are
available from the National Technical
Information Service as ACTG 116B/117,
NTIS Order No. PB94-504099.)

Our first step is to specify a model for
the risk of an AIDS-defining event or
death (collectively, the endpoint). The
usual choice would be from the family
of Cox models of the form HX(t) =
Ho(t) exp * {BXI. In this model, X is a
function of the initial CD4 cell count,
defined as X = In [(CD4 + 1)/61]. The
reference CD4 value is thus arbitrarily set
at 60, with 1 added to prevent a zero value
for which the logarithm is undefined. The
quantity Ho(t) is the hazard odds at time t
for a patient with an initial CD4 cell count
at the reference point. Hazard odds are
used in discrete time models, and time
here is measured in discrete days. The
hazard odds are defined as the probability
of an endpoint event occurring on day t
divided by the probability of an endpoint
event occurring after day t. The parameter
B is the approximate percentage ofchange
in the hazard odds for each change of 0.01
in X, or each 1% change in CD4 + 1. The
product of the adjusting factor, ex{BX},
and the reference hazard odds, Ho(t), is
the hazard odds, HX(t), at time t for a
patient with a CD4 value of X. For a
patient with an initial CD4 cell count of
60,X = 0 and HX(t) = Ho(t); asX moves
away from the reference point, the odds
are adjusted accordingly.

To check the appropriateness of this
model, we look at data from the high-
dose, low-dose AZT trial previously dis-
cussed as our prior experience. The
patients in ACTG 002 all had AIDS and
the endpoint was death alone, so the
experience should be viewed as no more
than suggestive for the AC7G 116B/117
patients. Using a CD4 cell count of 60 as

the cutoff point defining the high-risk
(CD < 60) and low-risk (CD > 60)
groups, we find that the data are not
consistent with the simplest Cox model.
The survival curves for the two groups are

not separated, as they would be ifB were

a constant; instead, they converge over

time and eventually cross (see Figure 3).
Figure 3 suggests that in ACTG 002,

the effect of the different CD4 starting
points "wears off" as the population of

patients is reduced by death. The same

pattern may or may not apply to the data
from ACI7G 116B/117, but to allow for
possible changes in B as time progresses,
we make B a time-varying parameter by
substituting B* = Bo + B, max[0, (t -
364)/7], where t is the number of days
since the baseline measurement. This in

effect gives B* two legs: the first year, in

which it is constant, and the later period,
in which it changes over time. This model
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asymptomatic patients with Initial CD4 cell counts at or below 60/IL
in AIDS Clinical Trials Group Study 116B/117.
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closely fits the data from ACTG 002.
Figure 4 displays the observed survival
curves and the average across subjects of
the fitted survival curves for the high- and
low-risk subgroups.

The next step is to estimate Bo and B1
from the data from the low-risk group in
ACTG 116B/117. To do so, we use a
standard maximum discrete-time partial
likelihood estimation. The results are
Bo = -0.90689 (95% confidence inter-
val [CI] = -1.691, -0.123) and B1 =
-0.054357 (95% CI = -0.164, 0.055).
Thus, Bo is significant at the usual 5%
level, but B1 is not. We keep B1 in the
model because ACTG 002 data suggest
that it is needed and because leaving it out
would involve a further assumption. These
estimates imply that a 1% decrease in the
initial CD4 count (plus 1) is associated
with a 0.9% increase in risk during the
first year; thereafter, the risk grows over
time although the change is not statisti-
cally significant.

Using these values of Bo and B1, we
calculate from a logistic regression model
the value of Ho(t) at each day on which an
endpoint event occurred, with the param-
eter Ho(t) estimated by maximum likeli-
hood. The hazard odds for the patients in
the high-risk group are then obtained
from the regression model using their
initial CD4 cell counts, and the survival
curve for the group is calculated from the
hazard probabilities in the usual way. A
technical description of the model and the
formulas for calculating survival curves
are given in the appendix.

Agreement between the model esti-
mates and the observed survival curve for
the high-risk group is quite good. As

shown in Figure 5, the estimated curve
tracks the observed curve quite closely
and is well within a 95% confidence
interval for the observed curve (calculated
by the Greenwood formula7).

Both the observed and estimated
endpoint curves for AZT, compared with
those for didanosine, tell the same story:
for the sicker patients, high-dose didano-
sine confers little if any benefit, whereas
low-dose didanosine confers a substantial
benefit (compare Figure 6 [randomized
trial] with Figure 7 [risk-based allocation
trial]). In this example, as in the earlier
ones, a trial using risk-based allocation
yields essentially the same results for the
sicker patients as the randomized trial.

Conclusion
It is clear from our examples that a

risk-based allocation scheme can produce
estimates of treatment effect that are
close to those of a standard randomized
clinical trial. Nevertheless, we do not
suggest that nonrandom allocation is a
preferred way of conducting well-con-
trolled trials. There are distinct disadvan-
tages. The choice of model introduces
uncertainty and must be justified; there is
the probable loss of double blinding; and
it may be difficult to appraise unexpected
side effects for which there is no good
basis for choosing a model. It is only when
poor recruitment, noncompliance, or ethi-
cal objections make it difficult or impos-
sible to carry out the conventional random-
ized design that risk-based allocation is an
alternative to be considered. In such cases
it should be considered, because random-
ized trials, if they can be performed at all,
may in practice suffer from threats to

statistical integrity that are much greater
than those that would arise under risk-
based allocation designs. O
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LetXdenote a pretreatment observation used to allocate subjects
to either new or standard treatment. Allocation to standard treatment
occurs ifX E A, whereA is a subset of possibleX values; allocation to
new treatment occurs ifX e A. In the cholestyramine example, A =

{X < 2901, where X is the first serum cholesterol measurement (in
milligrams per milliliter), while in the AIDS trial examples, A =

{X > 60), where X is the baseline CD4 cell count (in cells per

millimeter cubed). Most often, X will be a measure of risk of future
disease, an estimate of true disease severity, or a baseline measurement
of a disease marker. Let Y denote the posttreatment measurement of
the endpoint or response-for example, the final cholesterol level, the
number of opportunistic infections in the observed follow-up period, or

the time to death or AIDS-defining event (or censoring). Let X' denote
an auxiliary pretreatment measurement, which may be a concomitant
measure of risk, a replicate measure ofX (e.g., a second blood assay),
or a baseline version of the endpoint Y.

Our goal in an assured allocation trial is to estimate the
treatment effect parameter T, defined as the average response for the
sicker patients under the new treatment minus the average response

for the same patient group under the standard treatment. In symbols,

(1) T = EI[YIX e A] - Eo[YjX e A],

where E1[Y IX e A] denotes the population average (expected value) of
Y for subjects with X e A given the new treatment, and Eo [YIX e A]
denotes the same for subjects given the standard treatment. Note that any
pretreatment variable may be subtracted from Y without changing X
because the expected value of such a variable is the same under either
treatment subsequently delivered. Thus equivalent expressions for T are

(la) T = EJ[Y - XIX e A] - EO[Y - X0X e Al or

(lb) T =EI[Y-cX'IX A -EO[Y-XcX'X e A]
for any constant c. Henceforth, we omit the subscript on expectations
of pretreatment variables.

To fix ideas, suppose there exists a subject-specific parameter, 0,

characterizing each subject's true risk or disease severity. For example,
0 might be a subject's long-term average cholesterol level (free of daily
fluctuation or measurement error) or a subject's true immune status (of
which CD4 cells comprise one component).A keyfeature ofour analysis
is that noparametric assumptions are made conceming how the variable 0

is distributed in the population. However, because patients withX e A
are not observed under standard treatment in the assured allocation
trial, some assumptions about the relations between X, X', and Y are

necessary to estimate T. Without the auxiliary variable X', T can be
estimated under certain parametric assumptions about the distribution
ofX, together with a model for the expectation of Y. We refer to this as

the semiparametric case (parametric in X and Y, nonparametric in 0).
With the auxiliary variable X', T can be estimated without any
parametric assumptions about the distributions of X, X, or Y but
merely a model for the expected values of X' and Y under standard
treatment. We refer to this as the nonparametric case.

To illustrate the semiparametric case, suppose that, given disease
severity 0, X follows a Poisson distribution with mean 0, XI 0 -P(O),
and that standard treatment affects 0 multiplicatively:

(2) Eo[YIX, 0] = a - 0 * g(X; b),

where g(x; b) is a given function of x depending on (at most) an

unknown parameter b. The case g(x; b) = 1 for allx specifies a constant
ratio, a, of post- to pretreatment means for each subject and was

considered in Robbins and Zhang.1 The more general case of
nonconstant g(x; b) allows the magnitude of the standard treatment
effect to depend on X. (This would apply, e.g., when there is a

dose-response relation and dose is based onX.) Note that in (2) we do
not necessarily assume that Yhas a Poisson distribution.

Taking conditional expectations of 0 given X in (2) yields
Eo[YIX] = a * g(X; b) * E[0 IX], but the form ofE[0 IX] is not known and

generally will not be linear (unless 0 is assumed, gratuitously, to follow a

gamma distribution). Note, though, that for any function u(x), we have

Eo[Yu(X) IX] = a E[Ou(X)g(X; b) 1X], so that, unconditionally,
Eo[Yu(X)] = a * E[Ou(X)g(X; b)]. Robbins and Zhang' remark that, under
the Poisson semiparametric assumptionXl 0 P(O), for any function v(x)

(3) E[Ov(X)] = E[Xv(X - 1)].

Applying (3) to v(x) = u(x)g(x; b) yields

(4) Eo[Yu(X)] = a E[Xu(X - 1)g(X - 1; b)],

in which the right-hand side involves only observable variables. For
example, for j = 0 and 1, let uj(x) = xjI(x EA), where I() is the
indicator function for a specified event. Then, using uI and u0 in (4) and
dividing yields

5 Eo[XYI(XEA)] E[X(X- 1)g(X- 1;b)I(X- 1 EA)]
(5) Eo[YI(X E A)] E[Xg(X - 1; b)I(X- 1 E A)]

Given n pairs (Xi, Yj) for i = 1,.. ., n, we can estimate b by finding that
value of b, say bn, such that the sample version of (5) is
satisfied-namely:

(6) XiYYI(XI EA) _IX(X, - 1)g(Xi - I; b)I(X, -1 EA)

YjYI(X1EA) Y,Xig(Xi - 1; b)I(X,-1E A)

It can be shown that if g(x;b) has monotone ratio-that is, if
g(x; b)lg(x;b') is monotone increasing (resp. decreasing) in X for any

pair of values b < b', then the right-hand side of (6) is monotone
decreasing (resp. increasing) in b. Thus, there can be only one value b,
satisfying (6). Given b, parameter a may be obtained from (4) using
either uo or u1; for example, using uo we can estimate a by

(7) iYXiI(X,EA)
an = XiXg(Xi -1; bn)I(X - I E A)'

The estimates a, and bn defined in (6) and (7) are strongly consistent by
the law of large numbers. Using these we may now estimate Eo[YIX e
A] as follows. Letting u(x) = I(x e A) in (4) gives Eo[YI(X e A)] = a

E[Xg(X - 1; b)I(X - 1 e A)], so that

(8) Eo[YIX e A] = a * E[Xg(X - 1; b)I(X - 1 e A)]IP[X e A],

which we estimate by

(9)
,Xig(Xi- 1; b,)I(X, -1 A)

IiI(Xi e A)

Then T may be estimated by subtracting (9) from the sample mean of Y
under the new treatment, IiXYI(Xi e A)/;II(Xi e A).

A numerical example is provided by the ACTG 116B/117 data
withX equal to the baseline CD4 cell count andA = {X > 601. Let Y
denote the CD4 cell count for those subjects on low-dose AZT who
were alive and had measured values at 24 weeks after baseline.
Suppose we wish to estimate the 24-week average cell count
Eo[YIX < 60] and the average cell count ratio Eo[YIX < 60]/E
[XIX < 60] for the patients with lowered CD4 cell counts using only
response data from subjects with X > 60. From previous experience,
we choose the response function g(x; b) = 1 - exp (-bx) to model a

linearly declining rate ratio as CD4 cell counts approach zero and a

nearly constant rate ratio for large counts. Using data from 127 subjects
on AZT withX > 60, we estimate bn = 0.0257 from (6), and from (7)
we obtain a, = 0.847 (which is the limiting subject-specific rate ratio for
large X). Using (9), we estimate Eo[YIX < 60] to be 16.2 and the
average cell count ratio to be 16.2/31.4 = 0.52. These results compare
nicely with the observed values of 16.7 and 0.53, respectively, based on
the 66 subjects with X < 60 on AZT in the randomized trial. Some
characteristics of these data are summarized below.

American Journal of Public Health 703

TABLE Al-Patients on Low-Dose AZT in
ACTG 116B/117

Group No. Avg X (+SE) Avg Y (+SE) Avg Y/Avg X

CD4 >60 127 171.4 + 8.1 141.5 + 9.2 0.83
CD4 <60 66 31.4 + 2.1 16.7 + 1.8 0.53
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Analogous semiparametric results are available for other assump-
tions about the distribution ofX given 0. The normal case is treated in
Robbins and Zhang.2

For the nonparametric case, suppose that Y and X' have
conditional expectations, givenX and 0, of the form

(10)

(10')

Eo[YIX,0]= a + fX + yO and

E[X' IX, 0] = a' + B'AX + y'O.
Assumption (10) includes the simple multiplicative (a = 0 = 0) and
additive (p = 0, y = 1) cases for standard treatment response and
allows for a linear dose-response relation with X. Assumption (10')
specifies that X' is similar to Y in these respects but with possibly
different coefficients. For X' to be informative, we require -y' . 0, and
because 0 may be arbitrarily scaled, only the coefficient ratio c = -y/-y'
matters. In fact, upon elimination of 0, we have for eachX

(11) Eo[Y- cX'IXI = a + bX,

where a = a - ca', b = X - co', and c = y/y'. We remark that (10) and
(10') may be viewed simply as motivation for equation (11), which is
actually all that we require to estimate T. Previous clinical data will
ordinarily be used to validate the model (11) over the entire range ofX
values, and only (11) requires such validation. The assured allocation
trial then calibrates and verifies the model empirically among the
concurrent controls in the region X E A. The key assunption is that
(11) holds for both X E A and X e A. Then it follows that
Eo[Y - cX IX e A] = a + bE[XAIAX e A] and thus that Tin (lb) may be
evaluated as

(12) T= EI[Y-cX'IX ¢ A] - a - bE[XIX e A].

Apart from the coefficients a, b, and c, the right-hand side of (12)
involves only means of observable variables.

In the cholestyramine example, we assumed that c = 1, equivalent
to the assumption y = y' = 1 of an additive shift in the expectation of
X' from initial true cholesterol level 0 to postdiet, pretreatment level
a' + b'X + 0, plus another additive shift in the expectation of Y from
prerandomization level a' + b'X + 0 to posttreatment level a + bX + 0.
The linear dependence of X' and Y on X could reflect a number of
causes: the effect of a time lapse between measurements, including the
dietary effect between pre- and postdiet cholesterol measurements
during the baseline period; a placebo or other psychological effect due
to subjects' knowledge of their X values; a regression to the mean
effect; or the previously mentioned clinical dose-response relation in
cases where the dietary recommendations or standard treatment
dosage is based onX.

The analysis proceeds by linear regression of Y - X' on X,
estimating a and b by the ordinary least squares estimators a, and bn,
respectively, based on data (Xi, Xi', Yi) fori = 1, . . , n withAXi EA. The
estimate of T iS

-Ai(Y',)I(Xi, A)
In iI(Xi e A) -nb)l(13)

where XI = Z;XiI(Xi ¢ A)I1JI(Xi e A) is the sample mean of X
among new treatment subjects. The standard error of r,,, conditional on
given Xi, is obtained as the square root of the sum of the squared
standard error of the mean Y - X' in the new treatment arm and the
squared standard error of the estimated regression mean at XI. The
latter term is

(14)

where

s'{nO + (Xi - Xo)2/Yi(Xi - Xo)'1,

Xo = Y,XiI(Xi EA)/no,

no = IiI(Xi E A),

and

s2 = (no - 2)-' -i(Yi '- a,, - b,,Xi)2I(Xi E A)-

A similar analysis applies for any other assumed value of the
constant c When c is unknown, an additional estimation is required;
this case will be discussed elsewhere. When the regression ofX' on X
happens itself to be linear, or if Yis independent of 0 givenX, then (11)
is equivalent to the simple linear regression model of YonX (set c = 0
and omitX). From (10'), though, E[X' IX] would be linearonlywhen 0
follows a conjugate prior, so that E[0 IX] is linear in X.

The two HIV examples in the text are elaborations on
conventional models for Ygiven X, like the case c = 0 above. For Y =
the number of opportunistic infections, we assume a multiplicative rate
process such that, givenXand follow-up interval of length t,

(15) E[YIX, t] = R(X) * t with log R(X) = a + bX.

This model would arise, for example, from a Poisson process Y with
mean E[YIX, t,0] = exp (a + 1AX) * 0 * t under the parametric
assumption E[0 IAX, t] = exp (a' + 1'X). Our goal in this example is to
estimate the rate ratio (RR) of the two treatments among the sicker
group of patients, conditional on their observed follow-up times. The
rate ratio is the total expected number of infections for patients on new
treatment to the total expected number of infections on standard
treatment:

(16) EI,YiYIXi e A,ti;i=1= n]
Eo[YiYi,XiA A, ti; i =1. n] -

The numerator of (16) may be estimated directly by the sample mean
Ml = YiYJI(Xi e A)/ZII(XA Z A). For the denominator, one may
estimate a and b in (15) using maximum likelihood estimates a, and bn
in a Poisson regression model. (One should allow for overdispersion in
the Poisson regression model for appropriate standard errors of a, and
b,,, although that refinement does not typically affect the point
estimates substantially.) Then, a consistent estimate for the denomina-
tor of (16) is Mo = li{ti exp (a,, + b,,Xi))I(Xi i A)/ IYI(Xi e A), so the
rate ratio may be estimated consistently by RRn = Ml IMo, or,
equivalently,

(17) R= iYI(Xi , A)
RRn =

iti exp (a. + b,,Xi)I(Xi A)'

RIn is in the familiar form of an observed-to-expected ratio, OnIEn,
with 0n = I,YiI(XA e A) and En = Y.i{ti exp (an + bnXi)}I(XA i A).

The standard error of logRRn is the square root of the sum of the
squared standard error for log 0n and the squared standard error for
log En. The squared standard error of log 0n is the squared standard
error of the sample sum 0n divided by On2. (This term would reduce
to 0-1 in a Poisson model for the number of opportunistic infections
under the new treatment. To adjust for overdispersion, multiply On- l by
the variance inflation factor X2/df, where x2 is the usual chi-squared
goodness-of-fit statistic for Poisson data on dfdegrees of freedom). The
squared standard error of log En is given by Va, + 2X6lVab + X2Vbb,
where V,,,, Vatb, and Vbb are, respectively, var (an), cov (an, b,), and
var (bn) estimated from the Poisson regression model, and where XI =
Y.itXiti exp (an + bAXi))I(Xi 0 A)/E,. The adjustment for overdisper-
sion, if required, is X2ldf, where x2 is the model goodness-of-fit
chi-squared statistic, x2 = Yi[tYi - ti exp (an + bAXi)}21(Xi e A)]!
ti exp (an + bnXi) on df= {Z.I(Xi ¢ A)) - 2 degrees of freedom.

In the survival analysis example, we use a discrete time Cox model
for T, the time to a primary event (in days from baseline). In ACTG
116B/117, a primary event among the asymptomatic and AIDS-related
complex patients was the occurrence of a first AIDS-defining event or
death. For j = 1, 2,. .., the discrete time hazard function is the
conditional probability of a primary event at time T = j given survival
to time j - 1. The hazard function for those with covariate X will be
written PX[T = j IT 2 j] = PX[T = j]/P,[T 2 j]. We take X =
log {(1 + CD4)/61;. The reference value X = 0 corresponds to those
with baseline CD4 cell counts of 60/,uL. The discrete time Cox model
allows an arbitrary unknown reference hazard odds, Po[T = j IT 2 j]/
Po[T > j IT > j] = Po[T = j]/Po[T > j], but relates the hazard odds at
nonzero values ofX to the reference hazard odds via a model for the
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log (hazard) odds ratio at time j, LOR(j), where

LOR(j) = log PO[T = jI T > j]/Po[T > j T 1j]

= lo PXIT = j]/PxJT > j]
PO[T= j]/Po[T > j]

In (24), aS(j)1a(a, 1) is the (j + 2) x 1 vector of derivatives
(aS*(j)Iaa1...aS*(jj7aT, aS*(j)/1ao, aS,*(j)/aP1)' evaluated at (a, b)
and Cov (a, b) is the (j + 2) x (j + 2) asymptotic variance-covariance
matrix of the maximum likelihood estimates based on the data from
subjects with Xi E A, also evaluated at (a, b). The derivatives are

) n fin(a,bJ1x)a(a {-log f,(a,bIX,)}
Based on findings of the ACTG 002 trial, we adopt a two-parameter
model with a time-dependent log hazard odds ratio:

(19) LOR(j) = {Po + I1max (0, j - 364)1 X= p(j) X.

Model (19) specifies a constant hazard odds ratio, exp (Po), during the
first 52 weeks of follow-up, while PI provides for a changing relative
hazard odds, exp I 3(j)}, after 52 weeks.

The first step is to estimate = (Po, 13I)' using only the data from
ACTG 116B/117 patients with baseline CD4 cell counts above 60 on

standard treatment (low-dose AZT)-that is, the setA = {X > log 611.
We use the exact conditional maximum likelihood estimate, b =

(bo, bl)', that maximizes the discrete logistic partial likelihood function
(accounting for tied event times).

The next step is to estimate the reference survival function,
Po[T > j], forj = 1, 2, .... This entails estimating the reference hazard
log odds parameter, aj = log {Po[T = j]IPo[T > j]), for each observed
event time j, based on data (Ti, Xi) from those individuals at risk at
timej. For these we obtain restricted maximum likelihood estimates, aj,
in the logistic regression model log {PA[T = j]/P,[T > j]) = ao + 3(j)X,
where the coefficients of 1(j) are held fixed at their conditional
maximum likelihood estimates; that is, the values of P(i) are fixed at
b(j) = bo + b, max (0, j - 364). Once the aj are in hand, the baseline
survival function is estimated as So(j) = fll<k.jJI - Po[T = k]l
Po[T 2 k]) = H1I .k.jl /{1 + exp (ak)). Similarly, for any nonzero value
ofX, the adjusted survivalfunction is estimated by

(20) Sx(j) = 1/{1 + exp (ak + b(k)X)1.
I <k <j

Our goal is now to estimate the average survival function difference

(21)
T(j) = PI[T > jIX 0 A]

-Po[T>jIlX A] forj=1,2,....

= n- fj (a, b IX)[pI(X/), ,p (X,
1:9<n--(25)

| 1 Pk(X,)}Xl, 1 E Pk(Xr)ck}Xj',
I <k<j 1<k<j

where for anyX,pk(X) = exp{ak + b(k)X)/[1 + exp lak + b(k)X}]. For
an explicit expression for Cov (a, b), let m = 1, . ., n(k) index the
subjectswithXi EA in thekth risk`sti, and let wk,, =pk(Xm){1 - pk(Xm)).
Let Xk = I1 <m .n(k)Wk,nXm/y1 <m <n(k)Wkn, and let X be the 2 x j matrix

(26)

Then the inverse information matrix is

Cov (a, b)

(27) |{l(IDg n(k)m) ;k=1, .j}+X V(b)X -X'V(b

V(b) V(b)

where for V(b) we use the inverse information matrix from the discrete
logistic partial likelihood function evaluated at = b. V(b) is the
asymptotic variance-covariance matrix for b that is ordinarily used for
drawing inferences about 13.

To aid interpretatioin of (24) to (27), consider the case n = 1
corresponding to the adjusted survival function estimate (20), given a
single covariate value X. Then (24) reduces to

Var Sx(j) = Sx(j)2[{ I pk(X)2 I Wk.
I <k <j I <m <n(k)

(28)
+ r(X) V(b)rj(X)]

The first term in (21) may be estimated by the usual product-limit
estimate of the survival function using observed data from either of the
didanosine treatment groups. The second term in (21) may be
estimated by the average adjusted survival function under standard
treatment for patients withX e A, to wit:

(22) Sl j) = E Sx,( j)I(Xi e A)/ 2 I(Xi A),

with S,,(j) given by (20) withX = Xi.
We state a formula for the approximate squared standard error

for S*( j). Let

(23) fj(a, 13IX) = exp {- log [1 + exp{ak + ,B(k)XI]},
-- 1~~~~<k <j

where P(k) = P3o + PICk and Ck = max (0, k - 364). For any covariate
value X, 1; is a function of the j + 2 parameters a = (al, ., aj)' and

p = (P3o,Pi)'. Let n = >,I(Xi V A), and let / = 1, . . ., n index the
observations with Xi e A. Then, with maximum likelihood estimates
(a,b) for (a, 3), we have S*(j) = n-I E1-.n fj(a,bIX,), and the

approximate squared standard error of S,( j) is given by

(24) VarS4(j) = ( ) Cov (a,b) a( ) .

where rj(X) is the 2 x 1 vector

(29) r 1(X)= Pk(X)(X-Xk) * (1, Ck).-I <k <j

The first term in (28) generalizes Greenwood's formula, which covers
the case of no covariates. In that case, the maximum likelihood
estimates ofPk arepk = d(k)/n(k), where d(k) denotes the number of
failures at the kth failure time out of n(k) subjects at risk; and the first
term in (28) reduces to the familiar expression for Greenwood's
formula for the asymptotic variance of the product-limit estimate of the
survival probabilityPfT > j],vizS(j)21l.k.jd(k)I[n(k){n(k) - d (k))].
When the Cox model is estimated with covariate X, the additional term
rj(X)'V(b)rj(X) increases the variance in a manner analogous to the
second term of (14) in the context of linear regression. When X = 0,
(28) provides the squared standard error for the reference survival
function Po[T > j]. O
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