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Introduction

Despite their vast anatomic differences, both the nervous system
and the immune system deal in the same commodity: informa-
tion. Consequently, insight into their function can be gained
through application of formal information theories developed
in other disciplines, e.g. computer science. Jerne first used this
approach in immunology by describing the immune response in
terms of network theory (Jerne, 1974). This review will examine
some recent developments in network theory and consider how
these ideas might apply to immune networks.

Like the nervous system, the immune system must learn new
information, recall previously learned information, and make
decisions based upon prior experiences. Moreover, each organ
system must be cognitive, in that each must perceive and
respond to a specific environment. Perception, recall and
decision-making represent specific facets of the more general
concept known as intelligence. Research into the fundamental
nature of intelligence has grown into a major industry, with the
nervous system serving as the primary biological model of the
intelligent machine. But is intelligence an exclusive property of
neural networks? A recent advance in network theory, known as
parallel distributed processing (PDP), suggests that network
intelligence is primarily a function of network architecture, as
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opposed to the intrinsic capabilities of their individual elements
(sometimes referred to as processing units in PDP). As long as
the processing units satisfy certain criteria, they can be incorpor-
ated into a (potentially) intelligent network. Although the
neuron is considered the biological prototype of the PDP
processing unit, lymphocytes also possess the properties of
processing units, as discussed below. Consequently, lympho-
cytes, like neurons, can be linked into an 'intelligent' network.

PDP describes networks of similar processing units operat-
ing in parallel. All units are simultaneously receiving, storing,
processing and sending out data, with each unit interacting with
a limited number of other units to which it is directly 'con-
nected'. Although structurally similar to the simple networks
used by Jerne to model the immune system, networks with PDP
architecture, unlike Jerne networks, have great capacity to
learn, recall and associate complex patterned information.

The theoretical framework ofPDP was largely developed by
computer scientists working in the field of artificial intelligence,
but recent advances suggest direct applications in biological
systems, and PDP has already been used extensively in the
analysis of neural networks. PDP represents a highly publicized
major refinement of network theory, which has been surpris-
ingly ignored by theoretical immunologists. This situation may
be due to the historical development ofimmune network theory.
When Jerne first proposed the theory, in 1974, interest in parallel
processing models was dampened by Minsky and Papert's book
Perceptrons (Minsky & Papert, 1969). This treatise demon-
strated the limited computational power of a simple class of
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parallel processing networks known as perceptrons. Later
analysis showed that Minsky and Papert had underestimated
the power of PDP. The late 1970s saw a renaissance in parallel
processing; unfortunately, this renaissance took place well after
the simpler network concepts used by Jerne had become firmly
entrenched in theoretical immunology.

We feel that the application ofPDP to lymphocyte networks
may help us to understand how the immune system processes
and stores large amounts of information, and that PDP may
shed some light on specific phenomena, such as antibody cycling
and antigenic competition. Our present communication has a
dual purpose; first, to introduce the fundamental tenets ofPDP
to immunologists and, second, to discuss the specific implica-
tions of PDP for immune networks.

Building a PDP network

Consider a set of identical processing units. Each unit must be
equipped to send and receive some form of data, must possess a
memory to store data, and must use some logic function to
convert incoming data into outgoing data. The B lymphocyte,
for example, fulfils these criteria, in that it receives input (from
antigen-presenting macrophages or dendritic cells, other lym-
phocytes, and cytokines), generates output (antibody),
remembers its antigenic specificity, and converts input (antige-
nic stimulation) into output (antibody secretion) in a quantita-
tive fashion. Individual units in PDP networks do not have to
exhibit sophisticated behaviour because, according to PDP
theory, sophisticated processing is an expected capability of
networks consisting ofhuge numbers ofsimple processing units.

The units are then connected into a network. Like its
component units, the network receives information from its
environment, processes it, and generates output. There are three
types of units within a PDP network; input units, output units
and 'hidden' units, i.e. units which communicate with other
units but which do not communicate directly with the network's
external environment (Fig. 1). In a PDP immune network, for
example, input units would be lymphocytes involved in antigen
recognition, output units would be plasma cells secreting
antigen-specific antibody, and lymphocytes producing anti-
idiotypic antibodies would be examples of hidden units (in some
cases, a given lymphocyte may serve as both an input unit and
output unit simultaneously). For a network to function as a
PDP device, four aspects of the network must be defined
(Rumelhart, Hinton & McClelland, 1986):
1. A pattern of connectivity among the units, which determines
how the inputs and outputs ofindividual units are connected.

2. A connectivity weight matrix, defining the relative strengths
and signs of the connections.

3. An activation rule which defines the output of each unit as a
function of the total input.

4. A learning rule which defines how experiences modify the
network's connectivity weight matrix.

The complete formulation of PDP theory requires further
assumptions, but these four will suffice for the purposes of this
discussion. We will now consider each of these aspects in greater
detail.

The pattern of connectivity
In the case of neurons or microprocessors, the connections
between units will be direct physical links, i.e. axons or wires,
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UNITS

'HIDDEN'
UNITS
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Figure 1. The basic architecture of a parallel-distributed processing
(PDP) network. Three types of simple processing units are illustrated:
input, output and hidden. The layers of hidden units, i.e. units that do
not interact directly with the environment, allow the network to store
patterns of data as internal representations, or steady states, of the
network (see text). In an immune network, lymphocytes involved in
immunoregulation, but not directly concerned with antigen processing
or antigen-specific antibody production (e.g. lymphocytes producing
anti-idiotypic antibodies) would serve as hidden units.

while in a lymphocyte network connections will be formed by
chemical links (e.g. anti-idiotypic antibody, lymphokines),
whose efficiency is enhanced by an effective sorting system for
the units (e.g. lymph node, spleen, Peyer's patch) which employs
the inherent traffic of lymphocytes to alter the proximity of
responding units (Davies et al., 1969; Fossum & Ford, 1985;
Lanzavecchia, 1985). The connectivity pattern specifies how the
individual units are 'wired' together. Will one unit be directly
connected to two, three, four or more other units? Will the
pattern of connectivity be uniform, i.e. with each unit connected
to the same number of other units, or will some units be more
connected than others? Will the network as a whole be 'highly
connected' or 'poorly connected'? X-ray diffraction studies
suggest that any one idiotype may be recognized by as many as
forty different anti-idiotypes (Novotny, Handschumacher &
Haber, 1986). Consequently, an idiotypic-anti-idiotypic
network is probably highly connected.

The pattern of connectivity defines certain properties of the
network, such as the speed of information propagation through
the network, and the network's 'fault tolerance', or ability to
perform after the destruction of processing units and/or the
interruption of established connections (Hillis, 1985). The
performance characteristics of a variety of connectivity pat-
terns, also known as topologies, have been studied. Any detailed
PDP model of an immune network will need to specify a
topology, taking into consideration the theoretical properties of
known topologies and matching these with available data
concerning lymphocyte connectivity.

The connectivity weight matrix
The connections in a PDP network are not homogeneous, i.e.
some connections will be stimulatory and others inhibitory
(depending upon whether negative or positive information is
relayed between two units), and some connections will be strong
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W14= +0.16 W31 = +1.98

W23 = -0.34 W =-0.01

W12 =W21 =W34=W43=
Figure 2. A small network and its corresponding connection weights.
The connection weights are given as coefficients of a connection weight
matrix. The matrix is a dynamic entity which summarizes the connec-

tivity of the network at any time. Note that the connections are

unidirectional and that the connection weight oftwo disconnected units
is zero.

and others weak (depending upon the quantity of information
relayed between units). Connections are considered polarized,
i.e. information flows in only one direction through a connec-

tion. All ofa network's connection strengths can be summarized
in a connection weight matrix. For each pair of units, x and y, in
the network, there is a corresponding weight matrix element,
wxy, such that the output from x is converted to input into y by
the equation:

inputy= (wxy) (outputj)
For example, postulate that x's output is connected to y's input
with a strength, or weight, of + 2 and y's output connected to x's
input with a strength of -3. If we work with dimensionless
units, let x send an ouput of 1 to y. In fact, y will actually receive
an input from x of (1 x 2) = 2. The output of x has been
'weighted' by a factor of 2 before entering y. Likewise, if y sends
an output of 0-5 to x, x will receive an input from y of(-3 x 0 5)
or -1-5. In this example, wy= + 2, while wYX= -3. Figure 2
illustrates a small PDP network and its associated connection
weights. Note that a connection weight of zero is equivalent to
total disconnection of the two units. The weight matrix is a

difficult concept, but it is central to PDP theory. A PDP network
learns by modifying its connection weight matrix in response to
external training. The weight matrix summarizes the entire
superstructure of the network at any one time, and reflects the
information stored within the network as well as the computa-
tional power of the network.

In the neurosciences, the connection weights characterize the
interneuronal connections, i.e. synapses. Excitatory synapses

have positive weights, while inhibitory synapses have negative
weights. The magnitude of the weight represents the degree of
hyperpolarization, or depolarization, ofthe post-synaptic mem-
brane that occurs with synapse firing. The plasticity of the
neuronal network is a function of plasticity of the connection
weight matrix.

What is the analogue of a PDP connection weight in an

immune network? We postulate that the connection weight
between an idiotypic lymphocyte and a corresponding anti-
idiotypic lymphocyte is determined by the affinity ofthe idiotypic-
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Figure 3. Simple activation rules for PDP processing units. Rule (a) gives
the output of the unit as a linear function of the input. Rule (b) is a step-
function, which illustrates the behaviour ofa simple on-off device which
is triggered when the input reaches the threshold, T. Rule (c) is a

sigmoidal activation curve, which is triggered at threshold T, has a linear
region where output is proportional to input, and then reaches
saturation. Biological units, such as neurons and lymphocytes, follow
non-linear activation rules, such as (b) and (c).

anti-idiotypic interaction. A positive connection weight means

that the anti-idiotype 'helps' or stimulates the idiotype, while a

negative weight suppresses the idiotype. These assumptions are

straightforward. If the affinity is zero or near zero, then the two
lymphocytes can be considered disconnected, while a high
affinity predicts that the output of the anti-idiotype clone will
have a strong influence on the behaviour of the idiotype. A
corollary would predict affinity changes secondary to conforma-
tional alteration of the idiotope (e.g. as occurs with antigen
binding).

The activation rule
The activation rule defines each unit's output as a function of the
total input received from other, directly connected units. In the
simplest case, the output is linearly proportional to the input
(Fig. 3a). Networks constructed of units with linear behaviour
are, in general, uninteresting (Rumelhart, Hinton & McClel-
land, 1986). Useful activation rules define the output as a non-

linearfunction ofthe input, and networks based upon these rules
are said to be non-linear.

Figure 3b illustrates one of the simplest non-linear acti-
vation rules, the step function. The processing unit has a

minimum output of zero and a maximum output of one, with a

threshold of 'T'. For total inputs below threshold the output is
zero, while for input above T the output is maximum.

A more complex activation rule is depicted in Fig. 3c. In this
case, the output is a sigmoidal function of the input. The
sigmoidal function is essentially a step function which contains a

region wherein the output is linearly dependent upon the input.
Three regions are defined by the sigmoidal activation rule: (1)
below threshold, where input yields no output, (2) the linear
region, where output is proportional to input and (3) saturation,

OUTPUT
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where further increases in input yield no additional output. We
will postulate here that lymphocytes follow a sigmoidal acti-
vation rule. This postulate is not new, in that most quantitative
models of Jerne networks assume a sigmoidal input/output
curve for lymphocytes (Richter, 1978). The activation rule for a
given lymphocyte may not be a rigid parameter, but rather one
which is subject to local modulation by non-immunoglobulin
secretory products (e.g. lymphokines, interferons, prostaglan-
dins). The remainder of this discussion will apply only to PDP
networks consisting of units employing a simple non-linear
activation rule, such as the examples given in Figs 3b and c.

The learning rule
As stated above, a PDP network learns by modifying its
connection weights. Three different modifications can occur: (1)
new connections can be made (by changing zero connection
weights into non-zero weights), (2) old connections can be
removed (by changing non-zero connection weights into zero
weights) and (3) or old connections can be strengthened or
weakened. The learning rule defines how the network alters its
connection weights when presented with new information.

In his book, Organization of Behavior, Hebb suggested the
prototypical learning rule: Connections are strengthened or
weakened in direct proportion to their use. Thus, if a connection
is used frequently it becomes strong, but if it is used rarely it will
atrophy or even vanish. Most PDP learning models are based
upon some variant of this, the Hebbian learning rule (Hebb,
1949). The Hebbian rule has intuitive appeal, for it implies that
learning depends upon repetition.

A particularly useful Hebbian variant is the delta rule, which
defines changes in the connection strengths as a function of
'ideal' outputs (Rumelhart, Hinton & Williams, 1986). As an
illustration of the delta rule, consider a rifle marksman whose
'ideal' output consists of hitting the centre of a target. If he
misses, he will modify his next shot according to the difference
between his actual output (a missed shot) and his ideal output (a
centre shot). A large miss to the right will require a large
correction to the left, a small miss to the left will require a small
correction to the right, and so on. The marksman will proceed
through a series of shots, each followed by a series ofsmaller and
smaller corrections, until he achieves his ideal endpoint. In this
manner, the marksman 'learns' what aim will produce the
desired outcome. Similarly, a PDP network can learn what
values of the connection weights will give a specified output by
repeated applications of the delta rule; the connection weights
are altered according to an error algorithm with each cycle, until
the desired output state is achieved. The error algorithm defines
the change in the connection weights as a function of the output
error, i.e. the difference between the actual and desired output
states (e.g. bacteremia vs. immune clearance). Several such
algorithms have been developed, and the search for better ones
continues (Rumelhart et al., 1986).

Cycling of antibody production is a well-known phenome-
non, which occurs in both primary and secondary antibody
responses (Romble & Weigle, 1982). In a PDP model of the
immune response, individual cycles would represent propaga-
tion of the changes in connection weights that occur during the
learning, or remembering, of antigen patterns. The general
increase in antibody affinity during the course of an immune
response implies that a PDP network would obey some Hebbian

learning rule, i.e. the connection weight (affinity) increases with
use (antigenic stimulation).

The learning rule distinguishes a PDP network from the
simpler Jerne network. In the Jerne model, the number and
affinities of the idiotypic-anti-idiotypic connections are impor-
tant from the viewpoint of network stability. In PDP theory,
however, the characteristics of the connections are the key to the
more profound aspects of the network, such as pattern memory
and learning. As mentioned above, connection weights in a PDP
network must be plastic. Are the idiotypic-anti-idiotypic inter-
actions of a Jerne network plastic, i.e. do the affinities of the
idiotypic-anti-idiotypic interactions change during the course
of an immune response? Cycling of antigen-specific antibody
affinities has been described (Doria, 1982), but no comprehen-
sive study of how the affinities of anti-idiotypic antibodies
change during an immune response has been reported, to our
knowledge. Experimental verification of a PDP immune
network may require detailed study of how the number and
affinities of anti-idiotypic antibodies change during the acqui-
sition of immunological memory.

The properties of PDP networks

Now that the basic tenets of PDP theory have been outlined,
what are the properties of PDP networks that would make a
PDP theory of the immune network desirable? Like other
processing architectures, PDP networks are fundamentally
computational devices, receiving input data, solving problems
based upon that data, and generating an output. Before
continuing, it should be noted here that the analysis of PDP
networks is beyond the theoretical stage. Large scale, operatio-
nal PDP machines exist, e.g. Daniel Hillis's Connection
Machine, built by Thinking Machines Corporation, which
consists of more than 65,000 processors linked in a Boolean n-
cube topology. Interested readers are referred to Hillis's book,
The Connection Machine (Hillis, 1985).

There are several properties which make PDP networks
unique, and which make them particularly desirable as models
of biological behaviour. Four of these properties will be
discussed in detail; speed, content-addressable memory, fault
tolerance and, pattern completion.

Speed
PDP networks process information very quickly, by virtue of
their intrinsic division of labour. Processing units, or groups of
units (e.g. lymphocytes), may be working on different aspects of
the same problem simultaneously. Conventional computers are
serial devices, in that they can only work on one aspect of a
problem at a time.

Computers based upon PDP architecture, e.g. the Connec-
tion Machine, have as their chiefadvantage the ability to deliver
approximate answers, within minutes, to complex problems
which would require hours for a conventional Cray supercom-
puter to solve exactly. Of course, this is a disadvantage if exact
solutions are required. For biological systems, however, the very
rapid output of approximate solutions is probably preferable to
the laborious output ofexact solutions, and so PDP architecture
would be an advantage. Speed, of course, is a relative term.
Connections of the immune system operate on a much slower
scale than the nanosecond relays in a computer or the milli-
second scale of neuronal action potentials, owing to the time
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required for cell sorting and chemical communication. Never-
theless, rapid computation is probably equally important for
both immune and neural networks.

Content-addressable memory (CAM)
Serial computers contain a main processing unit and a separate
depot ofmemory storage which is intermittently accessed by the
main processing unit. In contrast, PDP devices have many
processing units, each with its own limited memory storage. One
might reasonably ask the question, 'Where is the main memory
of a PDP device?' Hopfield pointed out that the PDP network's
steady states can store information, with each steady state
mapped to a pattern of data (Hopfield, 1982, 1984). The
network 'remembers' these patterns byjumping between steady
states. The information stored in the network's steady states is
said to be in the content-addressable memory, or the CAM. The
CAM is the main memory of a PDP device. In PDP networks,
therefore, memory is not allocated to any one centralized location,
but can be considered a collective property of the entire network.
In a PDP model of the immune system, it follows that some
portion ofimmunological memory will be stored at the network
level.

Fault tolerance
Large PDP networks are reasonably buffered against random
failure of processing units and/or the interruption of individual
connections. This is in marked contrast to serial devices which
can be crippled by the failure of a single critical connection or
logic circuit. From the biological viewpoint, high fault tolerance
may be one ofthe most attractive features ofPDP devices. Jerne
networks, for example, have a very low fault tolerance. The loss
of a single anti-idiotype may predispose to the neoplastic
proliferation of the corresponding idiotype clone during an
immune response. Real biological systems must be fault toler-
ant, given their natural senescence.

The fault tolerance of a PDP device is due, in part, to the
'global' distribution of information storage which they employ.
Conventional computers, for example, store information regio-
nally in their memories. The difference between regional and
global storage of information can be illustrated by comparing
the image stored in a conventional photograph to the image
stored in a holographic plate. If one cuts away one-half of a
conventional photograph, then one-half of the information
contained in the original image will be irretrievably lost (unless
both halves are identical, i.e. information is redundantly stored
in the image). A holographic image can be divided in half,
however, and the original image can be completely recon-
structed from the information stored in either half. Data stored
in a PDP network are similar to holographic images, in that they
can be recovered from some subset of the original network.
While this property of holograms and PDP networks seems
counterintuitive, it is, nevertheless, real. For the interested
reader with a limited background in network theory, Tank and
Hopfield recently have provided a detailed and lucid discussion
of the steady state concept of network memory storage (Tank &
Hopfield, 1987).

Pattern completion
PDP networks deal best with patterned information, i.e. infor-
mation arrayed in a spatial format. This derives from the spatial
character of the networks themselves. The steady states which

comprise the CAM consist ofa set ofspatially oriented patterns
stored by the network.

Moreover, PDP networks are capable of completing pat-
terns, or images, from incomplete information. If a network has
stored a photographic image, for example, it can recognize that
image again when provided with only a small subset of picture
elements (Hinton & Sejnowski, 1986). In effect, the network will
automatically 'fill the gaps' present in incomplete data.

Because the external environment rarely provides perfect
input, pattern completion is essential to the process ofcognition
in the nervous system. Fortunately, the brain is an excellent
pattern completion device; recall, for example, how easily one
can identify a popular song after hearing only the first few notes.
The ability to recognize a friend after he has grown a new beard
is another example of pattern completion. Even with half of the
facial image obscured, there are enough recognizable features
remaining to allow the brain to associate the bearded face with
the unbearded one stored in memory.

Not surprisingly, PDP models are gaining favour with
cognitive theorists, but will they gain favour with theorists in
immunology? The answer to this question depends, to some
extent, upon how one defines cognition as it applies to the
immune system. As portrayed by conventional immunology,
immune cognition consists simply of individual lymphocytes
recognizing individual epitopes. If the immune system has a
PDP architecture, then this may be a gross underestimate of the
immune system's cognitive abilities. A PDP network could, in
theory, store and recall complex antigen patterns containing
multiple epitopes, as will be discussed below.

Cognition and the immune system

The brain's perception of the external environment can be
broken down into two fundamental processes; sensation and
cognition. Sensation occurs at the level of the sensory organ and
is characterized by individual units responding to specific
stimuli, e.g. the response of retinal rods to photons of light.
Cognition, on the other hand, requires higher level integration
of the information provided by the sensory organs, and
comparison of this information with patterns previously stored
in memory. In the case ofthe visual system, integration ofretinal
information occurs within the visual associative areas of the
cerebral cortex. Thus the retina responds to light reflected from
an apple, while the cortex reconstructs the image of an apple
and, by comparing this image with previously stored visual
images, perceives an apple. By virtue oftheir pattern completion
and storage capabilities, PDP devices provide a paradigm for
understanding how sensation leads to cognition.

Like visual cognition, cognition within the immune system
would require higher level integration, at the network level, of
information received simultaneously from many responding
lymphocyte clones. In a PDP network this information would be
stored in CAM as an antigen image, which can be recalled later.

For example, consider the immune response to a strain of
bacteria. Overall, hundreds of different lymphocyte clones may
respond to the multiple epitopes present on the bacteria.
According to the PDP paradigm, the responding lymphocytes,
in turn, generate new anti-idiotypes or alter the affinities of
existing anti-idiotypes, which, in turn, affect the number and
affinities of their corresponding anti-idiotypes, and so on.
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Figure 4. Perception as the integration of multiple response units at the network level.

t

Changes in the connection weights (idiotype-anti-idiotype
affinities) propagate throughout the weight matrix, according to
some Hebbian learning rule, as the immune response matures.
The altered weight matrix ultimately acquires a new steady state
configuration which the immune network will, in future, identify
with that bacterial strain. The responding clones form an
'antigen retina', with the immune network acting as a visual
cortex, integrating the pattern of individual clonal responses
into an antigen image. The pattern completion property of a
PDP immune network would allow recognition of the bacterial
strain even when the system is presented with fragments of the
whole bacterial cell. While lymphocytes perceive and recall
individual epitopes, the PDP network perceives and recalls
complex epitope patterns. As in the brain, sensation occurs at
the cellular level, while cognition, association, and learning of
complex patterned information would occur at the organ level
(Fig. 4).

In the PDP model, the response to any one epitope will be
influenced by other epitopes introduced simultaneously. Thus
PDP theory may shed light on the phenomenon of antigenic
competition (Taussig, 1977).

The PDP immune network: a summary
Our proposed PDP immune network model may be summarized
as follows:

1. The immune network exhibits a PDP architecture with
individual lymphocytes serving as processing units and idioty-
pic-anti-idiotypic interactions serving as connections. The
topology of such a network is conjectural at present.

2. The strength of an idiotypic-anti-idiotypic connection is
equivalent to the affinity of the anti-idiotype for the idiotype.
The sign of the connection will be positive if the anti-idiotype
stimulates the idiotype, and negative if it suppresses.

3. Lymphocyte units exhibit a sigmoidal activation rule.
Consequently, the immune network is non-linear.

4. The network employs a Hebbian learning rule, in that the
strength of individual connections is proportional to their
usage. We conjecture that the changes in antibody affinities that
occur during an immune response are a manifestation of that
learning rule. Moreover, we conjecture that the cycling which
occurs during a typical immune response represents the propa-
gation of connection weight changes throughout the network,
with each cycle representing one iteration in the network's
attempt to approximate the 'ideal' response to a given antigen
pattern.

5. Complex antigen patterns consisting of multiple epitopes
can be learned and stored at the network level, with each pattern
mapped into a steady state of the network.

6. We speculate that lymphokines could participate in a PDP
network in at least three ways: (a) Trophic lymphokines, e.g.
interleukin-2, would have an obvious impact upon the number
of processing units. (b) Lymphokines may also influence the
activation rule of specific lymphocyte clones (Fig. 3c) by
changing the triggering threshold, for example, or by altering
the slope of the linear region. Thus, the activation rule is not
fixed, but would be influenced by the prevailing lymphokine
milieu which exists within an individual lymphoid tissue
microenvironment at any time point (Kelly & Wolstencroft,
1972). Given fluctuations in type and amount of lymphokines
produced during an immune response, their local chemical
modulation of a lymphocyte's output in response to a fixed
input would be expected to greatly increase network complexity.
In the case of a PDP network, however, complexity is an
advantage, in that it increases the number of network steady
state configurations and the computational power of the
network. (c) The cycling of antibody affinities requires the co-
operation of several subsets of lymphocytes, presumably in
concert with lymphokines (Romble & Weigle, 1982). Our
proposed learning rule, i.e. the Hebbian increase of idiotypic-
anti-idiotypic affinities during acquisition of immunologic
memory, is likely to involve similar processes. Exactly how the
learning rule is implemented, and how the development of

il

6



Immune network theory 7

memory for a given antigen is translated into changes of
idiotype-anti-idiotype affinities within all of the 'hidden' units
of the lymphocyte network, remain topics for future investiga-
tion.

Conclusion
The above discussion draws more heavily on computer science
than immunology, and some will question whether highly
technical theories derived by artificial intelligence specialists will
prove useful in the analysis ofimmune function. Nevertheless, it
seems pointless for theoretical immunologists to retain rela-
tively simple network concepts while ignoring the major
revolution that has taken place in network theory. Serendipity
has been a kindly scientific ally in the past but, in the case of
immune networks, we may be forced to wrestle with the
increasingly complex abstractions of network theory, or give up
our attempts to understand immune function in terms of
network theory altogether.
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