Table 1. Data collection and MIR phasing statistics

	Native	PIP	PTN
Data collection			
Resolution (Å)	2.4(2.35,2.4)	3.0(3.11-3.0)	3.0(3.11-3.0)
Completeness*(%)	99.4(100)	91.6(63.4)	95.7(80.2)
Multiplicity	18.6	6.5	5.6
<i σ(i)="">*</i>	39.0(3.7)	15.4(2.2)	10.5(1.0)
R _{merge} *	0.11(0.57)	0.05(0.38)	0.13(0.58)
Wilson B (Å ²)	58.3	67.7	79.2
MIR phasing			
Resolution (Å)		50 - 4.0	50 - 4.0
Sites per molecule		3^{\dagger}	4
Total occupation		0.77	0.95
Phasing Power [‡] !!	1.4(1.7)[1.1] 1.1(1.3)[1.1]		
R _{Cullis} ^{‡¶}	0.71(0.76)[0.93] 0.82(0.82)[0.92]		

^{*}Numbers in parentheses are values in the high resolution shell, where

 $R_{merge}\!\!=\!\!\Sigma(I_i\!\!-\!\!<\!\!I\!\!>)\!/\Sigma I_i$ summed over all independent reflections.

[†]Each site was split into pairs. [‡]The three numbers represent summation over: centric(acentric)[acentric anomalous] reflections.

"Root mean square (rms) f_h /residual= $\sqrt{(\Sigma(F_{deri}-F_{PH})^2)}$, where f_h and F_{PH} are the calculated heavy-atom and derivative structure factors, respectively.

 $\P{R_{cullis}} = \Sigma ||f_h| - (|F_{deri}| - |F_{nati}|) / |\Sigma| ||F_{deri}| - |F_{nati}||, \quad where \quad F_{deri} \quad and \quad F_{nati} \quad are \quad the \quad observed \\$ derivative and native structure factors, respectively.