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A mathematical technique for integrating growth and thermal inactivation models of microorganisms into
a smooth combined model that can be applied to circumstances under which the temperature gradually rises
from growth to inactivation regions is described. For the death part of the model, a correction term is
introduced to allow for additional resistance of the cells gained during slow heating. The model was validated
with Brochothrix thermosphacta heated in broth at rising temperatures.

A large number of prepared food products that depend for
their safety on a mild heat treatment combined with refriger-
ated storage are now available. These include refrigerated
foods of extended durability that may have a shelf life of
between 3 and 6 weeks and cook-chill, ‘‘sous-vide,’’ or other
types of prepared meals that are stored for shorter periods.
The recommended heat treatments and storage temperatures
depend on the type of product and its intended shelf life
(reviewed in reference 14), but they are designed to eliminate
and/or prevent growth of vegetative pathogens such as Listeria
monocytogenes and spore-forming nonproteolytic Clostridium
botulinum organisms.
There is a continuing trend towards minimal processing, to

ensure retention of flavor, texture, and aroma, and some rec-
ommended heat processes would reduce numbers of L. mono-
cytogenes by only four log10 units (a 4D reduction) (23).
Though products of this type have a good public health record,
it is essential to adhere rigorously to recommended codes of
practice concerning hygienic preparation and temperatures of
cooking and refrigerated storage. Problems could arise, for
example, if conditions during preparation allowed substantial
growth before the heating step, especially if the heat process
was relatively mild. Combined models that could predict both
growth and inactivation would allow the relative safety margins
of different processing regimens to be assessed.
Models for predicting growth of food-borne pathogens un-

der a wide range of environmental conditions are now avail-
able (10, 12, 21). Validation tests have demonstrated that un-
der constant temperature conditions, growth rates of microbes
in food are close to those predicted by the models (20, 30).
Models for predicting growth when temperature changes with
time within the growth range have also been published (2, 11,
22, 31, 32).
The mathematical principles of thermal processing based on

the traditional concepts of D and z values are well known (19,
24, 28), but there have been relatively few attempts to combine
and validate models for growth and death of microbes. Al-
though linking two models would appear to be a simple pro-
cess, there are, in practice, several complicating factors. The
main problem arises from the uncertainty in the behavior of
microbes in the temperature zone around the growth-death
boundary. If the model specifies that a change from a positive

rate to a negative rate occurs at a discrete temperature, dif-
ferences of a fraction of a degree can have a large effect on
predicted behavior if the time spent around the transition
point is appreciable. Microbial responses in this region are
likely to be dependent on previous growth history and there-
fore somewhat unpredictable. The model behavior during the
inactivation phase could thus exhibit extreme sensitivity to the
initial conditions.
A further problem in combining two models is that of en-

suring continuity at the joint boundary between the models.
Van Impe et al. (31) linked a growth model described by a
first-order differential equation to the thermal inactivation
model of Bigelow (4), using an empirical function to describe
the transition process.
Conventional thermal processing calculations assume that

the heat resistance of microbes under changing conditions can
be predicted from their behavior at static temperatures. This
assumption is not true for vegetative cells of Escherichia coli,
Salmonella typhimurium, and L. monocytogenes, whose resis-
tance can increase during heating at rising temperatures (8, 9,
16–18, 25, 27, 30). Allowance for this increase in resistance
must therefore be made in dynamic models.
In the work described here we derive a combined dynamic

model for growth and subsequent thermal inactivation of Bro-
chothrix thermosphacta, based on the approach described by
Baranyi and Roberts (1) and Baranyi et al. (2). The model is
tested by comparing the observed growth and death of B.
thermosphacta in broth during heating at rising temperatures
with behavior predicted by the model. The spoilage microbe B.
thermosphacta was chosen as the test organism in developing
the model because it is nonpathogenic and can therefore be
used in validation studies with food conducted outside micro-
biology laboratories.

MATERIALS AND METHODS

Organism. B. thermosphacta MR 165 (NCFB 2891) was maintained on glass
beads at 2708C. Working cultures were grown at 258C on nutrient agar slopes
and stored at 58C.
Viable counts. Samples were diluted in Maximum Recovery Diluent (Oxoid

catalog no. CM733), and 50-ml volumes were spread in duplicate on Tryptone
Soya Agar (Oxoid catalog no. CM131). Viable numbers were estimated from
colony counts after incubation for 48 h at 258C.
Thermal inactivation in broth at constant temperatures. Cultures were grown

at 258C to an optical density at 680 nm of 0.2 in Tryptone Soya Broth (TSB;
Oxoid catalog no. CM129) adjusted to pH 7 plus 0.5% NaCl (case 1) or in TSB
adjusted to pH 5.9 plus 2% NaCl (case 2) (2). Samples were heated at 45, 48, 50,
52, and 558C by one of the following three methods: (i) in sealed glass ampoules
totally submerged in a stirred water bath; (ii) in the submerged coil apparatus
described by Cole and Jones (7), or (iii) by addition of 1.0 ml of culture to 50 ml
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of preheated broth contained in a conical flask immersed up to its neck in a water
bath. Samples were removed at various intervals for determination of viable
counts.
Growth and inactivation in broth at changing temperatures. Cultures were

grown for 16 to 18 h at 258C as described by Baranyi et al. (2). The optical density
of this culture was measured, and a volume sufficient to give an initial concen-
tration of 103 cells per ml was added to 100 ml of TSB contained in a 250-ml
bottle, which had been equilibrated to the desired temperature. Temperature
ramps were created by a programmable water bath (RTE-2110P; Neslab Instru-
ments, Inc.). Temperatures were recorded with a thermocouple attached to a
logging device (Psion Organiser II with temperature logging module SF 10; Psion
plc). The thermocouple was placed in 100 ml of distilled water in an identical
bottle adjacent to the culture. Viable counts in the broth were determined at
various intervals during the heating program.
Mathematical methods. A dynamic model for predicting growth and inactiva-

tion at rising temperatures was constructed in stages. Growth and inactivation
data were obtained under constant temperature conditions. Curves were fitted to
the natural logarithm of the measured bacterial concentrations, as detailed
below, to estimate the respective maximum specific growth and death rates.
Separate models for growth and inactivation were constructed to describe how
these rates depended on temperature. The separate models were then joined
together by means of a smoothing technique. A system of differential equations,
solved numerically, predicted the growth of the organism under changing con-
ditions.
(i) Fitting curves to isothermal growth or death rate data. In what follows, m

will denote the maximum specific rate of the growth or death curve (i.e., the
steepest slope of the curve ln cell concentration versus time). With growth
curves, m is positive; with death curves, it is negative. By conventional terminol-
ogy, doubling time equals ln 2/m for growth curves and the D value equals 2ln
10/m for death curves.
The thermal inactivation of microbes is conventionally described as conform-

ing to pseudo-first-order kinetics, i.e., a plot of the logarithm of the surviving
fraction against time gives a straight line. In our experiments the curves were
often sigmoid or variants of sigmoid lacking the initial shoulder or tail regions
(see Results).
Both the growth and inactivation curves were fitted by a special case of the

model of Baranyi and Roberts (1) considering an inactivation curve as a mirror
image of a growth curve. As shown by Baranyi et al. (2), that model, describing
bacterial growth by a pair of differential equations, can also be used in cases in
which temperature changes with time. For isothermal conditions, however, it has
an explicit solution which can be expressed as

y~t! 5 y0 1 mA~t! 2
1
m
ln S11

emmA~t! 2 1
em~ymax2y0! D (1)

where

A~t! 5 t1
1
v
ln~e2vt 1 e2h0 2 e2vt2h0! (2)

y0 is the natural logarithm of the initial concentration, ymax is the natural loga-
rithm of the cell concentration reached in stationary phase, m is the maximum
specific growth rate, v is a curvature parameter to characterize the transition to
the exponential phase, m is a curvature parameter to characterize the transition
from the exponential phase, and h0 is the product of m and the lag.
For curve fitting purposes, the inactivation curves were transformed into their

mirror images by the following simple technique. (i) Denoting the natural log-
arithm of the measured cell concentrations of an inactivation curve by hi (i 5
0,. . .,k 2 1), fix a value, say hfix, which is greater than any hi. Then, hi 5 hfix 2
hi (i 5 0,. . ., k 2 1), assigned to the same time values, will form a growth curve,
a mirror image of the inactivation curve. (ii) Fit the obtained growth curve
(y0. . .yk21) by the model of Baranyi and Roberts (1), where y0 5 hfix 2 h0 (h0 is
the natural logarithm of the cell concentration at the beginning of the inactiva-
tion curve); ymax 5 hfix 2 h` (h` is the natural logarithm of the cell concentra-
tion in the tail region of the inactivation curve); and m is the maximum specific
rate for the obtained growth curve, and so2m is the maximum specific rate of the
original inactivation curve.
As mentioned by Baranyi and Roberts (1), the last (logarithmic) terms in

equations 1 and 2 are responsible for (i) the stationary-phase (or ‘‘tail,’’ with
death curves) and (ii) the lag phase (or ‘‘shoulder,’’ with death curves), respec-
tively.
Omitting one or both of those terms, the model allows curves to be fitted

without shoulder and/or tail regions. According to this approach, a straight-line
inactivation curve, for example, is a special case of the model. To choose the
most appropriate curve to fit to the data, an F test was applied. Effectively, this
decided whether it was worth introducing a transition to or from the exponential
phase. If a transition-ensuring term was not omitted, then the values of the
respective curvature parameter were fixed as v 5 m and/or m 5 1 accordingly
(see the reasons given by Baranyi and Roberts [1]).
(ii) Rescaling the growth and death rates. The specific growth and death rates

(m values) are of different orders of magnitude and so are not easily represent-

able in the same coordinate system. To overcome this problem, we rescaled this
parameter by a useful, novel transformation designated the L transformation:

L~m! 5 sign(m) z ln(1 1 umu) (3)

Here, sign(m) is the so-called signum function:

1, if m . 0
sign(m) 5 0, if m 5 0

21, if m , 0
(4)

The L transformation is continuous, invertible, and differentiable, leaving the
sign of m unchanged. L(m) is close to m if the absolute value of m (denoted by
m) is small but takes the (possibly negative) natural logarithm of m if it is
large. It provides a useful tool for rescaling the vertical axes of specific rate-
versus-temperature plots such that for large m values the plots appear to have a
logarithmic scale, whereas for small m values the scale appears linear. The
specific rate, m, is positive in the growth region, and therefore so is L(m); it is
negative in the death region (m , 0), and so is L(m).
(iii) Constructing a smoothed combined model. Growth and death models

were combined in a single smoothed model as follows: suppose that a growth
model, m 5 g(T), is given for T # T1 temperatures and a death model, m 5 f(T),
is given for T$ T2, where T1# T2. For the boundary temperature region (T1,T2),
we model the bacterial growth by a zero model (m 5 0) for the reasons described
in the introduction.
To allow a smooth transition at the turning points T1 and T2, a combined

model was constructed as follows: from the growth model, g(T), construct a
smoothed growth model, G(T), according to the following rule: if g(T), as well as
its derivative, is zero at T1, then leave g(T) unchanged [G(T)5 g(T)]. If this is not
the case, introduce a so-called smoothing function:

S~T; T0, w0! 5 @12 exp(2w0uT2 T0u!]2 (5)

where w0 . 0 and apply it for g(T):

G~T! 5 g~T! z S~T; T1, w1! 5 g~T! z $12 exp[2w1~T1 2 T!#}2 (6)

for T # T1.
In the above expression, w1 is a curvature parameter joining the growth model

valid for T # T1 to the zero model which is assumed for the boundary region
between growth and inactivation temperatures. For example, the square-root
model for the entire growth range (26), rearranged to express the specific growth
rate and not its square root, already contains the smoothing function. There, g(T)
is a parabolic function, =g(T) being linear with temperature. However, the
polynomial model of McClure et al. (20) needs to be completed by a smoothing
function.
F(T), the smoothed version of the f(T) death model, can be constructed in a

similar manner: if f(T) and its derivative are zero at T2, then leave f(T) un-
changed [F(T) 5 f(T)]; otherwise let F(T) be defined as

F~T! 5 f~T! z S~T; T2, w2! 5 f~T! z $1 2 exp[2w2~T2 T2!#}2 (7)

where T $ T2.
Just as above, w2 is a curvature parameter joining the zero model of the (T1,T2)

interval to the death model.
(iv) Predicting growth and death at rising temperatures. The dynamic model

of Baranyi and Roberts (1) employs a pair of differential equations to describe
microbial behavior under conditions that change with time. To predict combined
growth and death curves, these differential equations must be solved numerically
as described by Baranyi et al. (2).
The instantaneous specific growth rate at the time t, at rising temperatures,

was calculated as

G~T!
m~T! 5 0

F~T2 Tshift)

if T# T1
if T1 , T, T2 1 Tshift
if T2 # T

(8)

where T is the actual temperature value at t. That is, we assume that in the
growth phase the instantaneous specific rate corresponds to the actual temper-
ature value but that in the inactivation phase it corresponds to a temperature
value which is Tshift lower than the actual one. Tshift is an empirical correction
term making the estimation of death rates fail-safe.
The results of the above-described procedure can be seen in Fig. 6 (see

Results).
At a temperature profile, T(t), increasing from the growth region to the

inactivation region, the final model, rearranged from that of Baranyi and Roberts
(1), can be written as

dy~t!
dt

5
1

11 e2Q~t! m@T~t!#$12em@y~t!2ymax#% (9)

dQ~t!
dt

5 v@T~t!# (10)
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with the initial values

y~0! 5 y0 (11)

Q~0! 5 2ln(eh0 2 1) (12)

The so-called initial value problem, represented by equations 9 to 12, with the
simplifying assumptions that m 5 1 and

v@T~t!# 5 m@T~t!# (13)

was solved numerically to give predictions for bacterial curves at temperatures
increasing with time. Here, y0 is the initial cell concentration and h0 quantifies
the suitability of the cells to the postinoculation environment. The value of h0,
which is also the product of the lag and the maximum specific growth rate in
isothermal growth curves, was taken to be constant, as estimated by Baranyi et al.
(2). The function m[T(t)] is defined by the given temperature profile and the
growth and death rate models (functions g and f) determined under isothermal
conditions and combined into a smooth, continuous function by equations 6, 7,
and 8. Note that for constant temperature, the solution of the initial value
problem presented above is given by equations 1 and 2 as discussed in more
detail in Baranyi and Roberts (1).

RESULTS

Growth model. The specific growth rates of B. thermosphacta
in broth at pH 7 containing 0.5% NaCl (case 1) and in broth at
pH 5.9 containing 2% NaCl (case 2) are partly taken from
Baranyi et al. (2) (below 308C) and partly estimated from new
experiments as reported below (Table 1). The temperature
dependence of growth (function g in the section ‘‘Mathemati-
cal methods’’ above) was described by the square-root model
of Ratkowsky et al. (26), of the form

Ïm 5 Ïg~T! 5 b~T2 Tmin!$12 exp[2w1~T1 2 T!#} (14)

where b, Tmin, w1, and T1 are model parameters.
Fitted curves and parameters are shown in Fig. 1 and 2,

respectively. The slope parameter b1 was different for the dif-
ferent growth conditions (cases 1 and 2), but there were no
significant differences between the temperature parameters
Tmin and T1.
Inactivation kinetics. Semilogarithmic plots of survival data

were often sigmoid or otherwise nonlinear. Examples of inac-
tivation curves fitted to data as described in Materials and
Methods are shown in Fig. 3.
To investigate whether the nonlinear kinetics were caused by

the heating method, we compared survivor curves obtained
from the same cell suspension heated in (i) submerged am-
poules, (ii) a submerged coil apparatus, and (iii) a flask im-
mersed up to its neck in a water bath. Nonlinear curves were
obtained by all methods and confirmed by application of the F
test, suggesting that the phenomenon was not a methodologi-
cal artifact (data not shown). There was no consistent pattern
to the particular shape of curve obtained under different heat-
ing conditions, although the type shown in Fig. 3d was more
common at higher temperatures.
If curves are genuinely sigmoid, it implies the existence of a

more resistant fraction in the population or a change in resis-
tance during heating. The number of organisms that compose
the tail is small and near the detection limit for plate counts. It
is therefore difficult to obtain reliable data for the rate of
inactivation in this region. We attempted to obtain more pre-

FIG. 1. Specific growth rates (m) of B. thermosphacta fitted by the square-
root model. Open circles with continuous line, specific growth rates under con-
ditions of case 1 (pH 7; 0.5% NaCl); filled triangles with broken line, specific
growth rates under conditions of case 2 (pH 5.9; 2% NaCl). T1, the upper
temperature of the growth region (lower limit of the boundary temperature
region), is practically identical for case 1 and case 2.

FIG. 2. Estimated coefficients for the combined model.

TABLE 1. Specific rates and their L-transformed values for
growth and death of B. thermosphactaa

Case 1b Case 2c

Temp (8C) m (1/h) L(m) Temp (8C) m (1/h) L(m)

2 0.156 0.145 2 0.060 0.058
2 0.111 0.105 2 0.056 0.054
5 0.230 0.207 5 0.137 0.128
5 0.205 0.186 5 0.149 0.139
10 0.411 0.344 10 0.285 0.251
10 0.345 0.296 10 0.209 0.190
20 0.849 0.615 20 0.462 0.380
20 0.836 0.608 20 0.481 0.393
25 1.324 0.843 25 0.541 0.432
25 1.430 0.888 25 0.897 0.640
30 0.800 0.588 30 0.560 0.445
30 0.905 0.644 30 0.600 0.470
45 23.94 21.60 45 25.57 21.88
45 29.24 22.33 45 23.41 21.48
45 28.38 22.24 45 211.4 22.52
45 210.9 22.48 48 214.0 22.71
45 29.02 22.30 48 216.6 22.87
45 24.45 21.70 50 217.5 22.92
45 23.78 21.57 50 222.6 23.16
48 216.2 22.85 52 275.4 24.34
48 211.6 22.53 52 257.1 24.06
48 215.0 22.77 55 2257 25.55
50 226.5 23.31 55 2145 24.99
50 223.7 23.21 55 2150 25.02
50 225.0 23.26
52 259.8 24.11
55 2243 25.50
55 2261 25.57

a Data for temperatures below 308C are those of Baranyi et al (2).
b Environmental conditions: pH 7 and 0.5% NaCl.
c Environmental conditions: pH 5.9 and 2% NaCl.
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cise data by heating suspensions that had been concentrated by
centrifugation and resuspension, but this procedure altered
both the kinetics of inactivation and the fraction of organisms
in the tail in an unpredictable way (data not shown).
For many curves, a straight line was not the best fit to the

data (Fig. 3). However, even though a better fit could be
obtained with a sigmoid curve, the rate m so obtained applied
only to that part of the curve in which inactivation occurred
most rapidly. This rate was not representative of the whole
inactivation process and would overestimate the lethality of a
heat treatment. For this reason, approximate but generally
fail-safe estimates of m were obtained from straight-line fits
(Fig. 3).
Inactivation model. The inactivation model is analogous to

the conventional D and z model for thermal inactivation. The
assumption that the z value is constant is equivalent to the
assumption that ln(2m) depends linearly on temperature (the
function f in the section ‘‘Mathematical methods’’), i.e.,

ln(2m) 5 ln[2f~T!] 5 b2~T2 Tref) (15)

where b2 and Tref are model parameters.
From this, it follows that z 5 ln10/b2. Inactivation rates

determined in this work are listed in Table 1. There were no
significant differences between cases 1 and 2 in terms of the
estimated b2 and Tref parameters (Fig. 2 and 4).
Establishing the boundary region between growth and inac-

tivation temperatures. The model described above does not
allow a lower temperature boundary for the inactivation region
to be established, because ln(2m) cannot be zero. The L trans-
formation (see Materials and Methods) proved useful in re-
solving this problem. We fitted all the L(m) values (from both
case 1 and case 2), by the function

L~m! 5 2 c1~T2 T2!/$11 exp[2c2~T2 T2!#} (16)

with three parameters, c1, c2, and T2, being fitted (Fig. 5). The
estimated values are plotted and tabulated in Fig. 2 and 5,
respectively. The lower boundary of inactivation temperatures,
T2, is set equal to that temperature at which L(m) 5 0, i.e., at
which m 5 0. The corresponding upper temperature limit for
growth was defined, from the growth model, as the tempera-
ture at which m 5 0. Because the boundary temperatures were
practically identical for both case 1 and case 2, the (T1,T2)
interval was estimated as T15 31.28C and T25 36.78C for both
cases. In the combined model, it is assumed that growth and
death rates in this region are zero.

FIG. 3. Thermal inactivation curves for B. thermosphacta at 458C, pH 7, and
0.5% NaCl (example of a curve without a shoulder but with a tail) (a); at 458C,
pH 7, and 0.5% NaCl (example of a curve with a shoulder and with a tail) (b);
at 488C, pH 5.9, and 2% NaCl (example of a curve with a shoulder and without
a tail) (c); and at 558C, pH 5.9, and 2% NaCl (example of a curve with a sudden
initial decrease followed by an exponential phase) (d). The curves were fitted by
the mirror image of the model of Baranyi and Roberts (1) (continuous line), as
well as by a simple linear function (broken line). Note the different time scales
of the plots. conc., concentration.

FIG. 4. Modelling the specific death rates (m , 0) of B. thermosphacta in
terms of temperature. The assumption that the z value of the organism is
constant is equivalent to a linear model for the ln(2m)-versus-temperature
relation. The legend is as for Fig. 1.

FIG. 5. Fitting the L values of the specific growth and death rates of B.
thermosphacta together for case 1 (pH 7; 0.5% NaCl) and case 2 (pH 5.9; 2%
NaCl). Rescaling the m values allowed specific growth and death rates to be
represented on the same graph; if m is small, then L(m) ' m; otherwise,
L(m) ' ln m. The zero point of the fitted function gives an estimation for the
upper limit, T2, of the boundary temperature region (lower limit of inactivation
temperatures).
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Combining the growth and inactivation models. Having es-
tablished the temperatures delineating the boundary temper-
ature region, we joined the growth and death models by using
the smoothing technique described in Materials and Methods.
Because the data were insufficient to establish the curvature
parameters w1 and w2, the values of these parameters were
fixed empirically at 1.
For the functions G(T) and F(T), described by equations 6

and 7, the following equations were obtained:

G~T! 5 @b1~T2 Tmin)]2 z {12exp[2w1~T1 2 T!#%2 (17)

for T # T1 and

F~T! 5 2exp@b2~T2 Tref)] z {12exp[2w2~T2 T2!#%2 (18)

for T $ T2 1 Tshift.
In this combined model, the boundary temperature region is

joined by a smooth transition to the growth and death regions.
When cases 1 and 2 were compared, significant difference was
found in the estimated values of the parameter b1 only (b1 5
0.034 and 0.023, respectively). Therefore, the other parameters
were taken, in both cases, to be as follows: Tmin 5 28.6, T1 5
31.2, b2 5 0.35, Tref 5 40, and T2 5 36.7. The model is
demonstrated in Fig. 6.
Compensation for heat shock-induced thermotolerance. Ini-

tial experiments revealed that the model overestimated the
rate of inactivation during heating at rising temperatures, i.e.,
the cells were more resistant than predicted from isothermal
data. To compensate for this increased resistance, a correction
term, Tshift, was introduced (see equation 8). To estimate a
value for Tshift, unpublished data of Mackey and Derrick that
showed that the maximum increase in resistance of S. typhi-
murium or L. monocytogenes following heat shock corre-
sponded to an approximately threefold increase in D value
were taken into account. Calculating with Dcorr 5 b2 5 0.35
(Fig. 2), Tshift can be estimated by

Tshift ' ln Dcorr/b2 5 ln 3/0.355 3.14 ~8C) (19)

That is, we assume that when the transition from growth phase

to inactivation phase is relatively slow, the inactivation in fact
begins only at the temperature T2 1 Tshift. For a higher tem-
perature, the instantaneous specific death rate corresponds to
a m value measured in isothermal experiments at a tempera-
ture which is Tshift lower than the actual instantaneous tem-
perature.
Applying the formula described in Materials and Methods,

the final formula for the specific rate in the inactivation region
is:

m 5 F~T2 Tshift! (20)

for T $ T2 1 Tshift. The difference between F(T) and F(T 2
Tshift) is shown in Fig. 5.
Validation of the combined growth-death model in broth.

Predictions of the combined growth and death model were
compared with changes in viable numbers experimentally ob-
served as temperatures increased through the growth range
into the inactivation range.
Results for growth and subsequent inactivation in broth dur-

ing a linear increase in temperature between 10 and 508C over
35 h (pH 5.9; 2% NaCl) are shown in Fig. 7. As in the paper of
Baranyi et al. (2), two curves were predicted, one with no lag
phase and one with a typical lag phase. The measured log
counts were in this case closest to the predicted curve for no
lag. Note that both predicted curves include the Tshift correc-
tion term.
A similar validation experiment was done in broth at pH 7

containing 0.5% NaCl, with temperature changing linearly from
25 to 598C in 24 h. Beside the predicted curves as described
above, Fig. 8 also includes a predicted curve with Tshift 5 0,
showing that omission of the correction factor would result in
an overestimation of lethality.

DISCUSSION

Inactivation rates. Several problems associated with con-
structing a combined model for growth and thermal inactiva-
tion were outlined in the introduction. In addition to these, it
emerged that experimentally observed inactivation rates for B.

FIG. 6. The final combined model for the temperature dependence of the
specific growth-death rate of B. thermosphacta for conditions of case 1 (pH 7;
0.5% NaCl). The growth and death models are joined to the boundary temper-
ature region (where growth and death rates are assumed to be zero) by an
empirical smoothing function. The continuous line indicates the model with the
Tshift 5 3.148C correction term. The broken line indicates the inactivation model
when the increase in resistance of the cells during the slow heating is not taken
into account (Tshift 5 0).

FIG. 7. Predicted (continuous lines) and measured (filled squares) viable
counts of B. thermosphacta grown and then subsequently inactivated in TSB at
pH 5.9 and 2% NaCl, with slowly increasing temperature (Tshift 5 3.148C).
Broken line, temperature profile; upper solid line, predicted curve with no lag;
lower solid line, predicted curve with typical lag determined from isothermal
data. conc., concentration.
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thermosphacta deviated from the first-order behavior assumed
in conventional models based on D and z values. Similar non-
linear curves have been reported for thermal inactivation of
other microbes (5, 13, 27). Whether such nonlinear curves
represent true inactivation rates or are methodological arti-
facts remains controversial. Since we obtained sigmoid or
other nonlinear curves by more than one technique, it is nec-
essary to suppose that all the methods, including the use of
totally submerged sealed glass ampoules, induced similar arti-
facts. In view of the variety of curves observed in different
experiments and the way in which attempts to concentrate cells
affected the kinetics, it seems more reasonable to suppose that
the observed kinetics are real but highly dependent on the
physiological state of the cells. However, until the physiological
basis of tailing is fully understood, it is impossible to assess its
practical significance.
Others who have reported sigmoid inactivation curves have

calculated rates with the Gompertz equation (3). The rates so
obtained are derived from the most rapid phase of inactivation
and, if used in process calculations, would overestimate the
degree of inactivation if appreciable shoulder or tail regions
exist. An alternative, ‘‘vitalistic’’ model for describing nonlin-
ear inactivation kinetics was described by Cole et al. (6). In this
approach, the use of the logistic function with log heating time
allowed the development of an accurate predictive model.
Because the shapes of survivor curves of B. thermosphacta

were variable, we chose to take the rate based on a straight-line
fit. For a sigmoid curve this would overestimate the rate during
the initial phase of inactivation but would underestimate the
rate during the latter phase. We believe this simple approach
to be appropriate because (i) inactivation rates increase expo-
nentially with temperature so that small deviations from the
actual order of death at any particular temperature become
insignificant when the total thermal process, covering a wide
range of temperatures, is considered and (ii) our approach
would yield unsafe predictions only if the tail region of the
curve were unduly prolonged. We have no evidence that this
was so, but the thermal properties of the last surviving cells in
a heated population require clarification.
Many processes designed to inactivate vegetative microbes

are based on reducing viable numbers by factors of 105 to 107,
i.e., by 5 to 7 log10 units (15). Since the tail portion of the curve
often comprised a fraction equal to only 1025 to 1027, it is
possible to achieve these reductions within the other 99.999 to
99.99999% of the population, i.e., rates calculated without
reference to a tail would not prejudice the safety of processes
based on these levels of reduction.
Construction of a combined model. A general problem as-

sociated with joining different models, viz., that of dealing with
behavior at the transition region, was solved in our combined
growth-death model by considering the specific rate to be zero
in the boundary temperature region. This simple approach was
no less accurate than other, more complex, methods.
An appropriate upper temperature limit for the growth

model was obtained simply by extrapolating the applied
square-root growth model to the temperature at which the
growth rate would be zero. It is not possible to extrapolate the
inactivation model to a zero rate in a similar manner, because
the logarithmic relationship between rate and temperature
means that the zero rate is approached asymptotically. To
overcome this problem, a novel rescaling procedure (the L
transformation) that gave an objective method to define the
lower temperature of inactivation was employed. To prevent
abrupt discontinuities at the limits of the two models, so de-
fined, a smoothing function was applied. Its role, as its name
indicates, is simply to smooth the transition to and from the
boundary temperature region.
The initial validation of the combined model revealed that

B. thermosphacta was more resistant when heated at rising
temperatures than predicted from isothermal data. We assume
that this effect is caused by heat shock-induced thermotoler-
ance as demonstrated for other organisms (8, 9, 16–18, 25, 27,
30). The degree of increased resistance depends on the heating
rate (17, 27). If the relationship between heating rate and
increased resistance were known, it would be possible to con-
struct more precise models for inactivation at rising tempera-
tures. However, a simpler, fail-safe approach is to assume the
maximum possible increase. Quantitative data for different
organisms are scarce, but indications are that the maximum
increase corresponds to an approximately threefold increase in
D value. For B. thermosphacta, this means that the instanta-
neous specific death rates of organisms heated up slowly cor-
respond to rates measured in isothermal experiments at tem-
peratures about 38C lower. When an empirical shift term
(Tshift) correcting for the effect of increased resistance was
included in the model, the predictions were satisfactory. The
effect of increased resistance during slow heating may be im-
portant in products given marginal heat processes.
The combined model described here incorporated several

new mathematical features that overcame the inherent prob-
lems associated with combining separate growth and death
models. Validation studies showed that the model accurately
predicted growth and inactivation of B. thermosphacta in broth
during heating at rising temperatures. The approaches devel-
oped in this work will be applicable to other food-borne or-
ganisms, allowing the relative safety margins of different prep-
aration and processing regimens to be assessed.
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