(Imido)Titanium Complexes as Hydroamination Catalysts: Substantially Enhanced

Reactivity from an Unexpected Cyclopentadienide/Amide Ligand Exchange

Jeffrey S. Johnson and Robert G. Bergman*

Department of Chemistry, University of California, Berkeley, CA 94720

Supporting Information

I.	Synthetic Procedures for preparation of imines from allene and amines	S2
II.	Synthetic Procedures, and IR and combustion analysis data for 6-py, 6-OPMe ₃ ,	
	15, 16, 17	S2
III.	¹ H NMR Spectroscopic Data for New Compounds (Table S1)	S4
IV.	¹³ C{ ¹ H} NMR Spectroscopic Data for New Compounds (Table S2)	S6
V.	Kinetic Studies of Allene Hydroamination Catalyzed by 6-py	S9
VI.	Data from the X-ray Diffraction Study of 6•OPMe ₃	S14

I. Synthetic Procedures for preparation of imines from allene and amines

Hydroamination of allene catalyzed by Cp₂TiMe₂. General Procedure. A vial was charged with 0.2 mmol of amine and *ca*. 0.03 mmol of 1,3,5-trimethoxybenzene. These materials were dissolved in 0.5 mL of a 0.04 M C₆D₆ solution of CpTiMe₂ and the resulting orange solution was transferred to an NMR tube and fitted with a Cajon ultratorr adapter. The solution was degassed with three freeze-pump-thaw cycles and allene (67 torr x 66 mL) was condensed onto the frozen (77 K) solution. The tube was flame-sealed under dynamic vacuum and a single pulse ¹H NMR spectrum was obtained. The tube was heated to 90 °C until the amine was consumed (as judged by ¹H NMR spectroscopy). The yield was measured by comparison of the integration of the aryl resonances of 1,3,5-trimethoxybenzene and a well-resolved signal for the product imine.

II. Synthetic Procedures, and IR and combustion analysis data for 6-py, 6-OPMe₃, 15, 16, 17

Cp(py)(2,6-Me₂C₆H₃NH)Ti=N(2,6-Me₂C₆H₃) (6·py). An orange solution of 101 mg (0.49 mmol) of dimethyltitanocene, 120 mg (0.99 mmol) of 2,6-dimethylaniline, and 69 mg (0.87 mmol) of pyridine in 5 mL of toluene was heated in a thick-walled glass vessel with Teflon stopcock at 85 °C for 24 h. The resulting brown solution was concentrated *in vacuo* to a brown oil that was vigorously triturated with three 2 mL portions of pentane. The residual oil was subjected to dynamic vacuum to afford 108 mg of a brown foam. The pentane washes were concentrated *in vacuo* to a brown oil that was triturated with three 2 mL portions of pentane. Subjection of the resulting oil to dynamic vacuum afforded another 12 mg of a brown foam. Combined yield = 120 mg. ¹H NMR analysis revealed the ratio of **6·py**:2,6-Me₂C₆H₃NH₂ = 3.5:1 (12.5:1 w/w). IR (KBr) 3463, 3381, 3036, 2966, 2918, 2852, 1625, 1476, 1439, 1274, 1090, 1017 cm⁻¹. In our hands it was not possible to completely remove the amine from **6·py** and repeated attempts to obtain satisfactory combustion analysis for **6·py**·2,6-Me₂C₆H₃NH₂ were unsuccessful.

In a separate experiment, a solution of 64 mg (0.31 mmol) of dimethyltitanocene, 74 mg (0.62 mmol) of 2,6-dimethylaniline, and 16.4 mg (0.098 mmol) of 1,3,5-trimethoxybenzene in 4 mL of toluene was heated at 75 °C for 24 h. The resulting brown solution was cooled to 25 °C, treated with 37 mg (0.47 mmol) of pyridine, and heated at 75 °C for 3 h. An aliquot was taken, concentrated in vacuo, and analyzed by ¹H NMR. Integration versus the internal standard revealed the yield of imido complex **6-py** was 62%.

Conversion of Cp(py)(2,6-Me₂C₆H₃NH)Ti=N(2,6-Me₂C₆H₃) (6·py) into Cp(Me₃PO)(2,6-Me₂C₆H₃NH)Ti=N(2,6-Me₂C₆H₃) (6·OPMe₃). A mixture of 5.9 mg (0.065 mmol) of trimethylphosphine oxide, 6.3 mg (0.038 mmol) of 1,3,5-trimethoxybenzene, and 30.2 mg (0.065 mmol) of 6·py containing 20 mol% 2,6-Me₂C₆H₃NH₂ was stirred in 3 mL of toluene for 1 h, then concentrated *in vacuo* **to a brown oil. The residue was redissolved in 3 mL of toluene, stirred an additional hour, and concentrated** *in vacuo***. The residue was analyzed by ¹H NMR spectroscopy; no 6•py remained. The yield of 6•OPMe₃ versus the internal standard was 90%. The identity of 6•OPMe₃ was corroborated by independent synthesis (***vide infra***).**

Cp(Me₃PO)(2,6-Me₂C₆H₃NH)Ti=N(2,6-Me₂C₆H₃) (6•OPMe₃). To a mixture of cyclopentadienyl titanium trichloride (57 mg, 0.26 mmol) and trimethylphosphine oxide (24 mg, 0.26 mmol) in 12 mL of THF at -35 °C was added a pre-cooled (-35 °C) solution of LiNH(2,6-Me₂C₆H₃) (99 mg, 0.78 mmol) in 2 mL of THF. The solution rapidly darkened from orange to greenish-brown, lightening at

the end of the addition. Over 2 h the trimethylphosphine oxide dissolved, again darkening the solution. After a reaction time of 2 h the mixture was concentrated *in vacuo* and the resulting residue was extracted with 10 mL of 1:1 toluene/pentane. The mixture was filtered and concentrated *in vacuo* to a brown oil. Unpurified yield = 145 mg (*ca.* quantitative for **6-OPMe**₃ plus 2,6-Me₂C₆H₃NH₂). ¹H NMR analysis of the unpurified reaction mixture showed only the desired product and 2,6-dimethylaniline. The residue was triturated with three 1 mL portions of cold pentane and concentrated *in vacuo* to a brown foam. Orange crystals suitable for X-ray diffraction were obtained from a saturated toluene solution layered with pentane (-35 °C). Yield = 42 mg (36%). IR (Nujol mull) 1622, 1587, 1461, 1406, 1307, 1258, 1231, 1105, 1014, 946, 858 cm⁻¹; Anal. Calcd for C₂₄H₃₃N₂OPTi: C, 64.86; H, 7.48; N, 6.30. Found C, 64.93; H, 7.60; N, 6.09.

(2,6-Dimethylphenyl)-(1-methyl-2-phenylethylidene)amine (15). A solution of 55 mg (0.45 mmol) of 2,6-dimethylaniline, 58 mg (0.50 mmol) of 1-phenyl-1,2-propadiene, and 13.5 mg (0.031 mmol) of (imido)titanium complex 6-py in 3 mL of toluene was heated in a thick-walled glass vessel with Teflon stopcock at 90 °C for 24 h. The brown solution was cooled to 25 °C, diluted with 10 mL of hexanes, and treated with two drops of water to yield a flocculent precipitate. The solution was dried (MgSO₄), filtered, and concentrated *in vacuo* to a brown oil that was purified by flash chromatography on silica gel (10-20% Et₂O/petroleum ether) to afford 106 mg (0.43 mmol, 96%) of the title compound as a pale yellow oil: IR (CHCl₃) 3011, 2953, 1660, 1593, 1469, 1366, 1245, 1217 cm⁻¹; TLC (10% Et₂O/hexanes) R_f 0.19; Anal. Calcd for C₁₇H₁₉N: C, 86.03; H, 8.07; N, 5.90. Found C, 85.98; H, 8.18; N, 5.88.

(2,6-Dimethylphenyl)-(1-methyloctylidene)amine (16). A solution of 42 mg (0.35 mmol) of 2,6dimethylaniline, 52 mg (0.42 mmol) of 1,2-nonadiene, and 15 mg (0.035 mmol) of (imido)titanium complex 6-py in 3 mL of toluene was heated in a thick-walled glass vessel with Teflon stopcock at 90 °C for 48 h. The brown solution was cooled to 25 °C, diluted with 10 mL of hexanes, and treated with two drops of water to yield a flocculent precipitate. The mixture was dried (MgSO₄), filtered, and concentrated *in vacuo* to a brown oil that was purified by flash chromatography on silica gel (5-8% Et₂O/petroleum ether) to afford 73 mg (0.30 mmol, 85%) of the title compound as a clear oil: IR (CHCl₃) 3011, 2956, 1661, 1467 cm⁻¹; TLC (10% Et₂O/hexanes) R_f 0.40; Anal. Calcd for C₁₇H₂₇N: C, 83.20; H, 11.09; N, 5.71. Found C, 83.33; H, 10.94; N, 6.09.

Cyclononylidene-(2,6-dimethylphenyl)amine (17). A solution of 62 mg (0.51 mmol) of 2,6dimethylaniline, 75 mg (0.61 mmol) of cyclononadiene, and 22 mg (0.05 mmol) of (imido)titanium complex **6-py** in 3 mL of toluene was heated in a thick-walled glass vessel with Teflon stopcock at 85 °C for 40 h. The brown solution was cooled to 25 °C, diluted with 10 mL of hexanes, and treated with two drops of water to yield a flocculent precipitate. The mixture was dried (MgSO₄), filtered, and concentrated *in vacuo* to an orange oil that was purified by flash chromatography on silica gel (5-10% Et₂O/petroleum ether) to afford 87 mg (0.36 mmol, 70%) of the title compound as a clear oil: IR (CHCl₃) 3019, 2926, 1642, 1470, 1445, 1214, 781 cm⁻¹; Anal. Calcd for C₁₇H₂₅N: C, 83.89; H, 10.35; N, 5.75. Found C, 84.29; H, 10.21; N, 5.83.

Compound	δ (ppm)	Multiplicity	J(Hz)	Area
Isopropylidene-naphthalen-	7.96	dd	6.5, 3.3	1
1-yl-amine	7.68	dd	6.5, 3.3	1
N [∞] CMe ₂	7.45	d	8.2	1
	7.30-7.25	m	-	3
	6.65	d	7.2	1
	1.96	S	-	3
	1.30	S	-	3
N'-Isopropylidene-N,N-	2.39	S	-	6
dimethylhydrazine	1.73	S	-	3
	1.70	S	-	3
Me ₂ C=NNMe ₂				
Isopropylidene- <i>p</i> -tolyl-	6.99	d	8.0	2
amine	6.67	d	8.0	2
N _{SCM2}	2.14	S	-	3
	1.88	S	-	3
Me	1.42	S	-	3
tert-Butyl-isopropylidene-	1.83	S	-	3
amine	1.52	S	-	3
	1.26	s	-	9
Me ₂ C=NCMe ₃				
Isopropylidene-(1-	7.47	d	7.6	2
phenylethyl)-amine	7.21	t	7.6	2
Me	7.09	t	7.6	1
CMe ₂	4.42	q	6.4	1
N N	1.82	S	-	3
(±)	1.44	d	6.4	3
	1.36	S	-	3
Isopropylidene-(4-	7.33	d	8.0	2
trifluoromethylphenyl)amine	6.46	d	8.0	2
N _{SCM}	1.79	S	-	3
Civie ₂	1.20	S	-	3
F ₃ C				
Isopropylidene-(4-	6.78	dt	8.8, 2.4	2
methoxyphenyl)amine	6.66	dt	8.8, 2.4	2
	3.34	s	-	3
	1.90	s	-	3
Meo	1.44	s	-	3
(2,6-Dimethylphenyl)-(1-	7.23 (E)	d	7.2	2
methyl-2-	7.15 (E)	t	7.2	2
phenylethylidene)amine (15)	7.07 (E)	t	7.2	1
	6.99 (E)	d	7.6	2
	6.90 (E)	dd	8.0, 6.8	1

 Table S1.
 ¹H Spectroscopic Data (C₆D₆)

15 , cont.	(Z) aromatic			
Me	protons not			
	well-resolved			
Pn N	3.55 (E)	S	-	2
Me	3.04(Z)	S	-	2
	2.05(Z)	S	-	6
	2.00(E)	s	-	6
	1.96(Z)	S	-	3
	1.25(E)	S	-	3
Cyclononylidene-(2.6-	6 99	d	7.6	2
dimethylphenyl)amine (17)	6.86	t	7 2	1
	2.62	m	-	$\frac{1}{2}$
Ме	2.02	m	_	$\frac{2}{2}$
	2.11	S	_	6
	2.07	m		2
	1.57	m	-	$\frac{2}{2}$
() Me	1.00	m	-	2 8
	1.00-1.40	111	-	0
(2 6-Dimethylphenyl)-(1-	7 02 (E)	d	72	2
methyloctylidene)amine	6.91(E)	t	7 2	1
(16)	2.23(E)	t	7.5	2
Me	2.25(E) 2.00(E)	S	-	6
Me	1.67(E)	auintet	74	$\frac{0}{2}$
	1.07(E) 1.30(F)	s	-	3
	1.30(L) 1.35-0.82(F)	m	_	13
Me	1.55-0.62 (E)	111	_	15
Cp(py)(ArNH)Ti=NAr	9.00	br s	-	1
(6 • py)	8.73	d	4.8	2
$(Ar = 2, 6 - Me_2C_6H_3)$	7.12	d	7.2	2
Me	7.02	d	7.6	2
	6.87	t	7.6	1
Ti Ne	6.73	t	7.2	1
	6.69	t	7.6	1
Me Me	6.32	t	7.6	2
	6.01	S	-	5
	2.30	S	-	6
	2.19	S	-	6
Cp(Me ₃ PO)(ArNH)Ti=NAr	8.30	S	-	1
(6•OPMe ₃)	7.22	d	7.2	2
$(Ar = 2, 6 - Me_2C_6H_3)$	7.09	d	7.2	2
Me	6.91	t	7.2	1
	6.75	t	7.2	1
	6.07	s	-	5
Me ₃ P=O [´] Me NH	2.62	S	-	6
Me Me	2.35	s	-	6
	0.76	d	13.2	9
	0.70	4		-

Compound	δ (ppm)	assignment
Isopropylidene-naphthalen-	168.7	С
1-yl-amine	148.8	С
	134.8	С
	128.3	СН
	126.7	С
	126.3	СН
	126.2	СН
	125.5	СН
	124.0	СН
	123.2	СН
	113.8	СН
	28.1	CH ₃
	20.3	CH ₃
N'-Isopropylidene-N,N-	163.0	DEPT not
dimethylhydrazine	47.1	done
	24.8	
	17.5	
Isopropylidene- <i>p</i> -tolyl-	167.1	С
amine	150.0	С
	132.0	С
	129.7	СН
	119.8	СН
	28.3	CH ₃
	20.8	CH ₃
	19.8	CH ₃
<i>tert</i> -Butyl-isopropylidene-	161.8	DEPT not
amine	54.5	done
	31.2	
	30.7	
	21.3	
Isopropylidene-(1-	163.5	С
phenylethyl)-amine	147.0	С
1 5 57	128.5	СН
	127.1	СН
	126.7	СН
	59.8	СН
	29.3	CH ₃
	25.6	CH ₃
	17.6	CH ₃
(2,6-Dimethylphenyl)-(1-	169.2 (<i>E</i>)	C
methyl-2-	167.8(Z)	С
phenylethylidene)amine	149.4 (E)	С
(15)	149.1 (Z)	С
	137.8 (E)	C

 Table S2.
 ¹³C{¹H} Spectroscopic Data (C₆D₆)

1	12(0(7)	0
15, cont.	136.8 (Z)	C
	129.61 (Z)	СН
	129.56 (<i>E</i>)	СН
	128.81 (<i>E</i>)	СН
	128.78 (Z)	СН
	128.6 (Z)	СН
	128.4(Z)	СН
	128.3(E)	СН
	126.9(E)	СН
	1267(Z)	CH
	1261(Z)	C
	125.8(E)	C
	123.0(E) 123.1(Z)	CH
	123.1(Z) 122.0(<i>E</i>)	
	122.9(E)	
	40.4(E)	CH_2
	41.3(Z)	CH_2
	25.2 (Z)	CH ₃
	18.5 (<i>E</i>)	CH ₃
	18.4 (Z)	CH ₃
	18.2 (<i>E</i>)	CH ₃
Cyclononylidene-(2,6-	178.3	C
dimethylphenyl)amine (17)	148.0	C
	127.9	СН
	125.9	С
	122.3	СН
	38.0	CH ₂
	34.4	CH ₂
	26.6 (2)	CH_2
	26.4	CH_2
	25.9	CH ₂
	24.1	CH_2
	23.2	CH ₂
	18.2	CH_2
(2.6-Dimethylphenyl)-(1-	170.1	C
methyloctylidene)amine	149.9	Č
(16)	128.3	СН
(10)	125.7	C
	122.7	СН
	40.8	CH ₂
	32.2	CH ₂
	29.9	CH ₂
	29.6	CH ₂
	26.6	CH ₂
	23.1	CH ₂
	19.5	CH ₃
	18.1	CH ₃
	14.3	CH ₃

Cp(py)(ArNH)Ti=NAr	159.6	С
(6 •py)	156.7	С
$(Ar = 2, 6 - Me_2C_6H_3)$	151.8 (br)	СН
	138.5 (br)	СН
	131.0	С
	127.6	СН
	126.5	С
	123.9 (br)	СН
	119.7	СН
	119.3	СН
	111.4	СН
	110.5	СН
	20.5	CH_2
	20.5	0113
	20.0	CH ₃
Cp(Me ₃ PO)(ArNH)Ti=NAr	20.0 159.5	CH3 CH3 C
Cp(Me ₃ PO)(ArNH)Ti=NAr (6•OPMe ₃)	20.0 159.5 158.1	CH ₃ C C C
$Cp(Me_3PO)(ArNH)Ti=NAr$ $(6 \cdot OPMe_3)$ $(Ar = 2,6-Me_2C_6H_3)$	20.0 159.5 158.1 131.8	CH ₃ C C C C
$Cp(Me_3PO)(ArNH)Ti=NAr$ $(6 \cdot OPMe_3)$ $(Ar = 2,6-Me_2C_6H_3)$	20.0 159.5 158.1 131.8 128.6	CH ₃ C C C C C C C H
$Cp(Me_3PO)(ArNH)Ti=NAr$ $(6 \cdot OPMe_3)$ $(Ar = 2,6 \cdot Me_2C_6H_3)$	20.0 159.5 158.1 131.8 128.6 127.9	CH ₃ C C C C C C C C C H C H
$Cp(Me_{3}PO)(ArNH)Ti=NAr$ $(6 \cdot OPMe_{3})$ $(Ar = 2,6-Me_{2}C_{6}H_{3})$	20.0 159.5 158.1 131.8 128.6 127.9 126.2	CH ₃ C C C C C C C C C C C C C C C C C C C
$Cp(Me_3PO)(ArNH)Ti=NAr$ $(6 \cdot OPMe_3)$ $(Ar = 2,6 \cdot Me_2C_6H_3)$	20.0 159.5 158.1 131.8 128.6 127.9 126.2 118.8	CH ₃ C C C C C C C C C C C C C C C C C C C
$Cp(Me_3PO)(ArNH)Ti=NAr$ $(6 \cdot OPMe_3)$ $(Ar = 2,6 \cdot Me_2C_6H_3)$	20.0 159.5 158.1 131.8 128.6 127.9 126.2 118.8 118.7	CH ₃ C C C C C C C C C C C C C C C C C C C
Cp(Me ₃ PO)(ArNH)Ti=NAr (6•OPMe ₃) (Ar = 2,6-Me ₂ C ₆ H ₃)	20.0 159.5 158.1 131.8 128.6 127.9 126.2 118.8 118.7 110.4	CH ₃ C C C C C C C C C C C C C C C C C C C
$Cp(Me_3PO)(ArNH)Ti=NAr$ $(6 \cdot OPMe_3)$ $(Ar = 2,6 \cdot Me_2C_6H_3)$	20.0 159.5 158.1 131.8 128.6 127.9 126.2 118.8 118.7 110.4 20.7 (d, J = 2 Hz)	CH ₃ C C C C C C C C C C C C C C C C C C C
$Cp(Me_3PO)(ArNH)Ti=NAr$ $(6 \cdot OPMe_3)$ $(Ar = 2,6 \cdot Me_2C_6H_3)$	20.0 159.5 158.1 131.8 128.6 127.9 126.2 118.8 118.7 110.4 $20.7 (d, J = 2 Hz)$ 15.6	CH ₃ C C C C C C C C C C C C C C C C C C C

V. Kinetic Studies of Allene Hydroamination Catalyzed by 6-py.

A. Preparation of stock solutions. Stock solution #1 was prepared by dissolution of 1.45 g (12.0 mmol) of 2,6-dimethylaniline, 38.8 mg (0.09 mmol) of (imido)Ti complex 6-py, and 47.6 mg (0.28 mmol) of 1,3,5-trimethoxybenzene in C_6D_6 in a 5.0 ± 0.05 mL volumetric flask ([ArNH₂] = 2.75 M, [1,3,5-C₆H₃(OMe)₃] = 0.056 M).

Stock solution #2 was prepared by dissolution of 395 mg (4.99 mmol) of pyridine in 5.0 mL of C_6D_6 in a 5.0 mL volumetric flask ([py] = 0.999 M).

Stock solution #3 was prepared by condensation of 238 torr x 138 mL of allene onto a frozen (77 K) solution of 31 mg of dimethylzirconocene in *ca*. 2 mL of C₆D₆. The allene concentration of this solution was determined in the following manner: to a solution of 6.4 mg (0.038 mmol) of 1,3,5-trimethoxybenzene in *ca*. 0.4 mL of C₆D₆ was added via syringe 100 µL of stock solution #3. A single-pulse ¹H NMR spectrum was acquired and the Ar-*H* (δ 6.24) and *H*₂C=C=C*H*₂ (δ 4.49) resonances were integrated, giving the ratio of C₃H₄:1,3,5-C₆H₃(OMe)₃ = 0.69; thus, [C₃H₄] = (0.038 mmol)(0.69)/0.100 mL = 0.26 M. Reactions conducted in the absence of Cp₂ZrMe₂ as an internal desiccant were plagued by irreproducible concentrations of **6**-**py**, presumably due to decomposition induced by traces of moisture and/or oxygen. The stock solutions were stored at -35 °C.

Stock solution #4 was prepared by dissolution of 49.0 mg of imidotitanium complex 6•py in C_6D_6 in a 1.00 ± 0.01 mL volumetric flask.

Stock solution #5 was prepared by adding 100 μ L of stock solution #2 to a 1.00 ± 0.01 mL volumetric flask containing 34.5 mg (0.205 mmol) of 1,3,5-trimethoxybenzene. C₆D₆ was added to bring the final volume to 1.00 mL.

B. Determination of order in [6-py] (Table S3). In a typical run a 1.00 ± 0.01 mL volumetric flask was charged with 167 mg (1.38 mmol) of 2,6-dimethylaniline, 346 µL of stock solution #3, 91 µL of stock solution #5, and a volume of stock solution #4 that provided the desired concentration of 6-py (Table S3). C₆D₆ was added to bring the total volume to 1.00 mL and the solution was transferred to an NMR tube, fitted with a Cajon ultratorr adapter, frozen, and flame-sealed under dynamic vacuum. The tube was inserted into a Bruker AMX 300 MHz NMR spectrometer whose probe temperature had been calibrated immediately beforehand employing a neat ethylene glycol standard. Single-pulse ¹H NMR spectra were acquired at regular time intervals (typically 60-240 s) through at least five half-lives; the disappearance of allene with time was monitored. Absolute reactant, product, and catalyst concentrations were obtained by integration comparison with the internal standard. Within experimental error, **[6-py]** was constant throughout each run.

C. Determination of order in [ArNH₂] (a) Conditions of excess [ArNH₂] (Table S4). In a typical run a 1.00 ± 0.01 mL volumetric flask was charged with a quantity of 2,6-dimethylaniline that varied with the run (run 5: 109.0 mg; run 6: 135.2 mg; run 7: 189.7 mg), 335 µL of stock solution #3, 91 µL of stock solution #5, and 79 µL of stock solution #4. C₆D₆ was added to bring the final volume to 1.00 mL. At this point, the sample was prepared and the kinetic run was performed as described in section B.

D. Determination of order in [ArNH₂] (b) Confirmation by method of initial rates (Table S5). A 1.00 ± 0.01 mL volumetric flask was charged with a quantity of 2,6-dimethylaniline that varied with the run (run 8: 5.8 mg; run 9: 19.4 mg), 335 µL of stock solution #3, 91 µL of stock solution #5, and 90 µL of stock solution #4. C₆D₆ was added to bring the final volume to 1.00 mL and the sample was

prepared as described in section B. Absolute reactant, product, and catalyst concentrations were obtained by integration comparison with the internal standard. Reaction progress (growth of imine product) was followed to 15% conversion versus the limiting reagent. A plot of [ArN=CMe₂] versus time was linear in this region; the slope provided the initial rate constant k_{obs} .

E. Determination of order in [py] (Table S6). In a typical run a 1.00 ± 0.01 mL volumetric flask was charged with 500 µL of stock solution #1, 346 µL of stock solution #3, and a volume of stock solution #2 that provided the desired concentration of pyridine (Table S6). C₆D₆ was added to bring the final volume to 1.00 mL and the solution was transferred to an NMR tube, fitted with a Cajon ultratorr adapter, frozen, and flame-sealed under dynamic vacuum. The kinetic run was performed as described in section B.

Run (65.0 ±	[6•py] x 10 ³	[2,6-	$[H_2C=C=CH_2]_o$	[py]	$k_{\rm obs} \ge 10^4$
0.2 °C)	(M)	$Me_2C_6H_3NH_2]_0$	(M)	(M)	$(M^{-1}s^{-1})$
		(M)			
1	3.97	1.38	0.072	0.009	8.4 ± 0.2
2	4.48	1.38	0.09	0.009	10.1 ± 0.2
3	8.49	1.38	0.09	0.009	19.8 ± 0.2
4	11.50	1.38	0.09	0.009	25.2 ± 0.3

Table S3.	Dependence	of k_{obs} on	[6•py]
-----------	------------	-----------------	--------

rate =
$$-d[H_2C=C=CH_2]/dt = k_{obs}[H_2C=C=CH_2]$$
 (1)

$$k = k_{\rm obs}[py][\mathbf{6} \cdot \mathbf{py}]^{-1}$$
⁽²⁾

$$k (65.0 \pm 0.2 \text{°C}) = (2.00 \pm 0.09) \times 10^{-3} \text{ M}^{-1} \text{s}^{-1}$$
 (3)

Run (65.0 ±	[ArNH ₂] ₀	[H ₂ C=C=CH ₂] _o	[py]	$[6 \cdot py] \ge 10^3$	$k_{\rm obs} \ge 10^4$
0.2 °C)	(M)	(M)	(M)	(M)	$(M^{-1}s^{-1})$
5	0.90	0.09	0.009	4.8	6.90 ± 0.16
6	1.13	0.09	0.009	4.8	7.14 ± 0.13
7	1.57	0.09	0.009	4.4	7.47 ± 0.22

Table S4. Dependence of k_{obs} on [ArNH₂] (conditions of excess [ArNH₂])

[2,6-Me₂C₆H₃NH₂] (M) Figure S2. Plot of [2,6-Me₂C₆H₃NH₂] versus k_{obs} .

Run (51.0 ± 0.2 °C)	$[ArNH_2]_0$ (M)	[H ₂ C=C=CH ₂] ₀ (M)	[py] (M)	[6•py] x 10 ³ (M)	$k_{\rm obs} \ge 10^5$ (M ⁻¹ s ⁻¹)
8	0.069	0.113	0.009	5.7	1.84 ± 0.02
9	0.178	0.110	0.009	5.6	1.96 ± 0.02

Table S5. Dependence of k_{obs} on [ArNH₂] (method of initial rates)

$$[ArNH_2]_o (run 9)/ [ArNH_2]_o (run 8) = 2.58$$
 (S4)

$$k_{\rm obs} \,({\rm run}\,9)/k_{\rm obs} \,({\rm run}\,8) = 1.07 \pm 0.03$$
 (S5)

Figure S3. Initial rates study (to 15% conversion), Run #8; plot of [Me₂C=N(2,6-Me₂C₆H₃)] vs time.

Figure S4. Initial rates study (to 15% conversion), Run #9; plot of [Me₂C=N(2,6-Me₂C₆H₃)] vs time.

Run (65 ±	[ArNH ₂] ₀	[H ₂ C=C=CH ₂] _o	[py]	[6•py] x 10 ³	$k_{\rm obs} \ge 10^4$
0.2 °C)	(M)	(M)	(M)	(M)	$(M^{-1}s^{-1})$
10	1.38	0.09	0.009	5.0	11.17 ± 0.33
11	1.38	0.09	0.018	5.0	5.25 ± 0.09
12	1.38	0.09	0.027	5.0	3.52 ± 0.05
13	1.38	0.09	0.036	5.0	2.81 ± 0.05

Table S6. Dependence of k_{obs} on $[py]^{-1}$

VI. Data from the X-ray Diffraction Study of 6-OPMe₃

Figure S6. ORTEP Diagram of Complex 6-OPMe₃

A. Crystal Data $\mathtt{TiPON}_2\mathtt{C}_{\mathtt{25.25}}\mathtt{H}_{\mathtt{38}}$ Empirical Formula Formula Weight 464.46 Crystal Color, Habit Yellow, prism Crystal Dimensions 0.28 x 0.22 x 0.06 mm Crystal System orthorhombic Lattice Type Primitive Lattice Parameters a = 27.715(2) Å b = 13.2652(9) Å c = 14.5729(9) ÅSpace Group Pbcn (#60) Z value 8 1.144 g/cm^{3} D_{calc} 1988.00 F_{000} 3.94 cm^{-1} μ (MoK α) B. Intensity Measurements Diffractometer SMART CCD Radiation MoK α (λ = 0.71069 Å) Detector Position 60.00 mm Exposure Time 10.0 seconds per frame ω (0.3 degrees per frame) Scan Type $2\theta_{max}$ 46.5° Total: 20747 No. of Reflections Measured Unique: $4305 (R_{int} = 0.091)$ Corrections Lorentz-polarization Absorption (Tmax = 0.98 Tmin = 0.87) C. Structure Solution and Refinement Structure Solution Direct Methods (SIR92) Refinement Full-matrix least-squares Function Minimized $\Sigma \omega (|Fo| - |Fc|)^2$ $\omega = 1/\sigma^2 (Fo) = [\sigma_c^2 (Fo) + (p^2/4) Fo^2]^{-1}$ Least Squares Weights p-factor 0.0300 Anomalous Dispersion All non-hydrogen atoms No. Observations $(I>3.00\sigma(I))$ 1756 No. Variables 141 Reflection/Parameter Ratio 12.45 Residuals: R; Rw; Rall 0.064; 0.086; 0.133 Goodness of Fit Indicator 2.69 Max Shift/Error in Final Cycle 0.00 0.55 e⁻/ų Maximum peak in Final Diff. Map Minimum peak in Final Diff. Map $-0.29 \ e^{-}/A^{3}$

Table S7. Crystal Data for $6 \cdot OPMe_3 \cdot (C_5H_{12})_{0.25}$.

Table	S8.	Atomic	coordinates	and	${\rm B}_{\rm iso}/{\rm B}_{\rm eq}$	and	occupancy

atom	x	V	7.	В	000
шеош ті (1)	0 60281(7)	x = 0.3513(1)	- 0 1350(1)	228(5)	000
P(1)	0.6257(1)	0.3299(2)	0.3515(2)	2.20(9) 2.82(8)	
O(1)	0.5973(2)	0.3233(2)	0.2654(4)	2.02(0)	
N(1)	0.5979(2)	0.3010(1) 0.4708(6)	0.2001(1) 0.1470(5)	2.1257	
N(2)	0.6579(3)	0.2735(6)	0 0868(6)	2.6244	
C(1)	0.5225(4)	0.2737(8)	0.1240(8)	3 3 (3)	
C(2)	0.5225(4) 0.5179(4)	0.2757(0) 0.3762(8)	0.1240(0) 0.1215(7)	3.3(3)	
C(2)	0.5179(4) 0.5409(4)	0.3702(0) 0.4112(8)	0.1213(7) 0.0407(8)	3.3(3)	
C(4)	0.5105(1) 0.5587(4)	0.3269(8)	0.0107(0) 0.0043(7)	2.9(3)	
C(5)	0.5307(1) 0.5478(4)	0.2424(8)	0.0019(7) 0.0484(8)	3 0(3)	
C(6)	0.6210(4)	0.4584(8)	0.3828(7)	4 1 (3)	
C(7)	0.6032(4)	0 2566(8)	0.4424(8)	37(3)	
C(8)	0.6882(5)	0 3053(9)	0.3385(8)	5 0 (3)	
C(9)	0.6445(4)	0.5693(7)	0.1495(6)	1.9(2)	
C(10)	0.6146(4)	0 6481 (8)	0.1792(6)	2 2(2)	
C(11)	0.6313(4)	0.7461(8)	0.1824(7)	$2 \cdot 2 (2)$ 2 7 (2)	
C(12)	0.6785(4)	0.7679(8)	0.1552(7)	3 3 (3)	
C(13)	0.07078(4)	0 6911(8)	0.1255(7)	3.3(3) 3.1(3)	
C(14)	0 6916(4)	0.5905(8)	0.1223(7) 0.1224(7)	2 4(2)	
C(15)	0.5635(4)	0 6301(8)	0.2057(7)	3 6 (3)	
C(16)	0.7236(4)	0.5090(9)	0, 0, 90, 2, (8)	4 1 (3)	
C(17)	0.6621(4)	0 1872(8)	0.0328(7)	2 2(2)	
C(18)	0.6803(4)	0.1916(8)	0.0579(7)	2.2(2) 2.6(2)	
C(19)	0.6824(4)	0.1046(8)	0.1100(7)	3, 3(3)	
C(20)	0.6678(4)	0.0149(8)	0.0758(8)	3.6(3)	
C(21)	0.6500(4)	0.0081(8)	0.0130(7)	3.1(3)	
C(22)	0.6479(4)	0.0940(8)	0.0680(7)	2.5(2)	
C(23)	0.6955(4)	0.2912(8)	0.0953(7)	3.4(3)	
C(24)	0.6333(4)	0.0837(8)	0.1662(7)	3.6(3)	
C(25)	0.5000	0.088(3)	0.2500	5(1)	1/4
C(26)	0.516(2)	0.008(4)	0.208(3)	4(1)	1/4
C(27)	0.530(1)	0.019(2)	0.128(2)	7.9(9)	1/2
C(28)	0.494(2)	0.074(3)	0.167(3)	4(1)	1/4
C(100)	0.5375	0.3261	0.0661	0.2000	0.000
H(1)	0.677(3)	0.315(6)	0.070(6)	3.4473	
H(2)	0.5098	0.2377	0.1712	4.6154	
Н(3)	0.5028	0.4215	-0.1686	3.7059	
H(4)	0.5413	0.4817	-0.0217	3.7313	
H(5)	0.5772	0.3333	0.0613	3.4273	
Н(б)	0.5572	0.1753	-0.0314	3.8543	
H(7)	0.6305	0.5003	-0.3382	4.6386	
H(8)	0.6379	0.4690	-0.4391	4.6386	
H(9)	0.5864	0.4713	-0.3978	4.6386	
H(10)	0.5697	0.2710	-0.4570	4.0817	
H(11)	0.6206	0.2710	-0.5008	4.0817	
H(12)	0.6061	0.1859	-0.4338	4.0817	
H(13)	0.6935	0.2319	-0.3250	5.9001	
H(14)	0.7064	0.3177	-0.3925	5.9001	
H(15)	0.7025	0.3403	-0.2890	5.9001	
H(16)	0.6093	0.8023	-0.2025	3.6790	
H(17)	0.6909	0.8390	-0.1580	3.9526	
H(18)	0.7414	0.7081	-0.1069	3.4991	
H(19)	0.5415	0.6255	-0.1512	3.8644	
H(20)	0.5486	0.6808	-0.2434	3.8644	

H(21)	0.5587	0.5661	-0.2362	3.8644
H(22)	0.7122	0.4746	-0.0356	5.2984
H(23)	0.7300	0.4582	-0.1347	5.2984
H(24)	0.7566	0.5338	-0.0716	5.2984
H(25)	0.6944	0.1119	0.1729	3.7954
H(26)	0.6683	-0.0452	0.1148	3.7540
H(27)	0.6419	-0.0572	-0.0371	4.0995
H(28)	0.7215	0.3174	0.0597	3.8264
H(29)	0.7078	0.2830	0.1574	3.8264
Н(ЗО)	0.6699	0.3369	0.0967	3.8264
H(31)	0.6605	0.0977	-0.2085	3.6158
H(32)	0.6088	0.1341	-0.1850	3.6158
Н(ЗЗ)	0.6209	0.0200	-0.1830	3.6158

Table S9. Anisotropic Displacement Parameters

atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Ti(1)	0.023(1)	0.036(1)	0.027(1)	0.003(1)	0.001(1)	-0.004(1)
P(1)	0.032(2)	0.042(2)	0.033(2)	0.001(2)	0.004(2)	0.002(2)
0(1)	0.0307	0.0307	0.0307	0.0000	0.0000	0.0000
N(1)	0.0259	0.0259	0.0259	0.0000	0.0000	0.0000
N(2)	0.0332	0.0332	0.0332	0.0000	0.0000	0.0000

Table S10. Bond Lengths (Å)

atom	atom	distance	atom	atom	distance
TI1	01	2.017(6)	TI1	Nl	1.752(8)
TI1	N2	1.975(9)	TI1	C1	2.46(1)
TI1	C2	2.38(1)	TI1	C3	2.34(1)
TI1	C4	2.40(1)	TI1	C5	2.46(1)
TI1	C100	2.099(2)	P1	01	1.524(7)
P1	C6	1.77(1)	P1	C7	1.76(1)
P1	C8	1.77(1)	Nl	C9	1.38(1)
N2	C17	1.40(1)	C1	C2	1.37(1)
C1	C5	1.38(1)	C1	C100	1.17(1)
C2	C3	1.42(1)	C2	C100	1.18(1)
C3	C4	1.39(1)	C3	C100	1.19(1)
C4	C5	1.40(1)	C4	C100	1.19(1)
C5	C100	1.17(1)	C9	C10	1.40(1)
C9	C14	1.39(1)	C10	C11	1.38(1)
C10	C15	1.49(1)	C11	C12	1.40(1)
C12	C13	1.37(1)	C13	C14	1.41(1)
C14	C16	1.48(1)	C17	C18	1.42(1)
C17	C22	1.40(1)	C18	C19	1.39(1)
C18	C23	1.49(1)	C19	C20	1.35(1)
C20	C21	1.40(1)	C21	C22	1.40(1)
C22	C24	1.50(1)	C25	C26	1.30(5)
C25	C26	1.30(5)	C25	C28	1.24(5)
C25	C28	1.24(5)	C26	C26	1.5(1)
C26	C27	1.23(5)	C26	C28	1.22(6)
C27	C28	1.35(5)			
N2	H1	0.81(8)	C1	H2	0.91
C2	H3	1.01	C3	H4	0.98
C4	H5	0.98	C5	H6	0.96
C6	H7	0.90	C6	H8	0.96
C6	Н9	1.00	C7	H10	0.97
C7	H11	1.00	C7	H12	0.95

C8	H13	1.00	C8	H14	0.95
C8	H15	0.95	C11	H16	1.01
C12	H17	1.00	C13	H18	1.00
C15	H19	1.01	C15	H20	0.96
C15	H21	0.97	C16	H22	0.97
C16	H23	0.96	C16	H24	1.01
C19	H25	0.98	C20	H26	0.98
C21	H27	0.96	C23	H28	0.95
C23	H29	0.98	C23	H30	0.93
C24	H31	0.99	C24	H32	0.99
C24	H33	0.94			

Table S11. Bond Angles (°)

atom atom angle atom atom atom	angle
01 TT1 N1 102 3(3) 01 TT1 N2	103 8(3)
01 TT1 C1 82.3(3) 01 TT1 C2	92.7(3)
01 TT1 C3 $127.5(4)$ C1 TT1 C4	136.7(3)
01 TT1 C5 105 3(3) 01 TT1 C100	110 1(2)
N1 TT1 N2 100 9(4) N1 TT1 C1	1395(4)
N1 TT1 C2 107.0(4) N1 TT1 C3	93.2(4)
N1 TT1 C4 114.7(4) N1 TT1 C5	147.3(4)
N1 TT1 C100 123.3(3) N2 TT1 C100	114.2(3)
01 P1 C6 112.8(4) 01 P1 C7	108.9(5)
01 P1 C8 112.0(5) C6 P1 C7	108.0(5)
C6 P1 C8 106.0(6) C7 P1 C8	109.0(6)
TT1 01 P1 132.9(4) TT1 N1 C9	172.4(7)
TI N2 C17 134.1(7) C2 C1 C5	109(1)
C_1 C_2 C_3 C_1 C_2 C_3 C_4	107(1)
C_{1} C_{2} C_{3} C_{4} C_{5} $108(1)$ C_{1} C_{5} C_{4}	108(1)
N1 C9 C10 122 0(9) N1 C9 C14	1184(9)
C_{10} C_{9} C_{14} $C_{19,5}(9)$ C_{9} C_{10} C_{11}	121(1)
C9 C10 C15 122(1) C11 C10 C15	117.5(9)
C_{10} C_{11} C_{12} C_{10} C_{11} C_{12} C_{13}	119(1)
C_{12} C_{13} C_{14} C_{122} C_{13} C_{14} C_{13} C_{14} C_{13} C_{14} C_{13}	119(1)
C9 C14 C16 120(1) C13 C14 C16	121(1)
N2 C17 C18 122(1) N2 C17 C22	119.5(9)
C_{18} C_{17} C_{22} C_{19} C_{17} C_{18} C_{19}	120(1)
C17 $C18$ $C23$ $119(1)$ $C19$ $C18$ $C23$	121(1)
C_{18} C_{19} C_{20} C_{21} C_{19} C_{20} C_{21}	121(1)
C_{20} C_{21} C_{22} C_{20} C_{17} C_{22} C_{21}	120(1)
C_{17} C_{22} C_{24} C_{21} C_{21} C_{22} C_{24}	119(1)
C_{26} C_{25} C_{26} C_{2} C_{26} C_{25} C_{28}	57(3)
C_{26} C_{25} C_{28} C_{26} C_{26} C_{25} C_{28}	108(5)
C_{26} C_{25} C_{28} $57(3)$ C_{28} C_{25} C_{28}	163(6)
C_{25} C_{26} C_{26} C_{26} C_{26} C_{27} C_{25} C_{26} C_{27}	118(4)
C25 C26 C28 59(3) C26 C26 C27	161(7)
C26 C26 C28 96(5) C27 C26 C28	67(3)
C26 C27 C28 56(3) C25 C28 C26	64(3)
C25 C28 C27 114(4) C26 C28 C27	57(3)
TI1 C100 C1 93.0(5) TI1 C100 C2	88.6(5)
TI1 C100 C3 86.1(5) TI1 C100 C4	89.6(5)
TI1 C100 C5 92.8(5)	
TI1 N2 H1 105(7) C17 N2 H1	109(7)
TI1 C1 H2 121.2 C2 C1 H2	120.4
C5 C1 H2 130.6 C100 C1 H2	175.3
TI1 C2 H3 115.9 C1 C2 H3	127.9

C3	C2	H3	124.2	C100	C2	H3	176.8
TI1	C3	H4	119.1	C2	C3	H4	123.7
C4	C3	H4	129.2	C100	C3	H4	175.8
TI1	C4	H5	116.4	C3	C4	H5	121.3
C5	C4	H5	130.7	C100	C4	H5	175.2
TI1	C5	H6	120.6	C1	C5	H6	128.9
C4	C5	H6	122.8	C100	C5	H6	176.9
P1	C6	H7	112.7	P1	C6	H8	109.1
P1	C6	Н9	107.0	H7	C6	H8	113.2
H7	C6	Н9	109.7	H8	C6	Н9	104.7
P1	C7	H10	113.3	P1	C7	H11	111.8
P1	C7	H12	114.5	H10	C7	H11	103.6
H10	C7	H12	107.5	H11	C7	H12	105.2
P1	C8	H13	110.1	P1	C8	H14	113.4
P1	C8	H15	113.7	H13	C8	H14	104.7
H13	C8	H15	105.1	H14	C8	H15	109.2
C10	C11	H16	120.2	C12	C11	H16	119.9
C11	C12	H17	120.1	C13	C12	H17	120.5
C12	C13	H18	118.1	C14	C13	H18	120.3
C10	C15	H19	112.3	C10	C15	H20	116.4
C10	C15	H21	113.0	H19	C15	H20	103.8
H19	C15	H21	103.5	H20	C15	H21	106.7
C14	C16	H22	114.3	C14	C16	H23	114.2
C14	C16	H24	113.1	H22	C16	H23	107.0
H22	C16	H24	102.9	H23	C16	H24	104.2
C18	C19	H25	116.7	C20	C19	H25	122.3
C19	C20	H26	119.5	C21	C20	H26	119.8
C20	C21	H27	118.9	C22	C21	H27	120.8
C18	C23	H28	109.5	C18	C23	H29	110.0
C18	C23	H30	111.6	H28	C23	H29	106.8
H28	C23	H30	110.4	H29	C23	H30	108.4
C22	C24	H31	112.3	C22	C24	H32	112.9
C22	C24	H33	115.5	H31	C24	H32	102.6
H31	C24	H33	106.2	H32	C24	H33	106.3

Table S12. Torsion Angles (°)

atom	atom	atom	atom	angle	atom	atom	atom	atom	angle
TI1	01	P1	C6	-62.9(7)	TI1	01	P1	C7	177.2(5)
TI1	01	P1	C8	56.6(7)	TI1	Nl	C9	C10	-54(6)
TI1	Nl	C9	C14	127(5)	TI1	N2	C17	C18	-111(1)
TI1	N2	C17	C22	68(1)	TI1	C100	C1	C2	-87.5(6)
TI1	C100	C1	C5	92.0(6)	TI1	C100	C2	C1	93.6(6)
TI1	C100	C2	C3	-86.3(6)	TI1	C100	C3	C2	89.7(6)
TI1	C100	C3	C4	-90.9(6)	TI1	C100	C4	C3	86.0(6)
TI1	C100	C4	C5	-93.1(6)	TI1	C100	C5	C1	-92.2(6)
TI1	C100	C5	C4	88.7(6)	P1	01	TI1	Nl	26.7(6)
P1	01	TI1	N2	-77.9(6)	P1	01	TI1	C100	159.5(5)
01	TI1	Nl	C9	127(5)	01	TI1	N2	C17	-101(1)
01	TI1	C100	C1	13.4(6)	01	TI1	C100	C2	-57.3(6)
01	TI1	C100	C3	-131.1(6)	01	TI1	C100	C4	157.6(6)
01	TI1	C100	C5	85.2(6)	Nl	TI1	N2	C17	154(1)
Nl	TI1	C100	C1	134.2(6)	Nl	TI1	C100	C2	63.5(6)
Nl	TI1	C100	C3	-10.2(6)	Nl	TI1	C100	C4	-81.6(6)
Nl	TI1	C100	C5	-154.0(6)	Nl	C9	C10	C11	-179.1(9)
Nl	C9	C10	C15	3(2)	Nl	C9	C14	C13	179.6(9)
Nl	C9	C14	C16	-1(2)	N2	TI1	Nl	C9	-127(5)

N2	TI1	C100	C1	-102.9(6)	N2	TI1	C100	C2	-173.6(6)
N2	TI1	C100	C3	112.7(6)	N2	TI1	C100	C4	41.3(6)
N2	TI1	C100	C5	-31.1(6)	N2	C17	C18	C19	178(1)
N2	C17	C18	C23	0(2)	N2	C17	C22	C21	-177(1)
N2	C17	C22	C24	7(2)	C1	C2	C3	C4	0(1)
C1	C5	C4	C3	-1(1)	C2	Cl	C5	C4	1(1)
C2	C3	C4	C5	1(1)	C3	C2	C1	C5	0(1)
C9	Nl	TI1	C100	2(6)	C9	C10	C11	C12	0(2)
C9	C14	C13	C12	-1(2)	C10	C9	C14	C13	0(2)
C10	C9	C14	C16	179.4(9)	C10	C11	C12	C13	0(2)
C11	C10	C9	C14	0(2)	C11	C12	C13	C14	1(2)
C12	C11	C10	C15	178(1)	C12	C13	C14	C16	-180(1)
C14	C9	C10	C15	-177.7(9)	C17	N2	TI1	C100	19(1)
C17	C18	C19	C20	1(2)	C17	C22	C21	C20	-2(2)
C18	C17	C22	C21	3(2)	C18	C17	C22	C24	-174(1)
C18	C19	C20	C21	0(2)	C19	C18	C17	C22	-2(2)
C19	C20	C21	C22	1(2)	C20	C19	C18	C23	179(1)
C20	C21	C22	C24	174(1)	C22	C17	C18	C23	179.9(9)