SUPPLEMENTARY MATERIAL

Table S1. Rate constants of the D triplex, obtained at differents flow rates

Flow rate (Ul/min) Kass M s7) Kaiss (10°s7)
40 1430+27 60+6
20 1520452 58+6
10 1420423 61+4
5 156027 60+3

The measures were conducted in a 10mM sodium cacodylate buffer (pH6.2), 100 mM NaCl and
10 mM MgCl,, at 30°C. 10 concentrations of TFO were used to determine the rate constants, as

described in the manuscript.
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Figure S1. Sensorgrams obtained for the D system, on injection of 12 uM TFO, at different flow

rates (5, 10, 20, 40 pl/min): the sensorgrams are superimposable
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Figure S2. Predicted maximum SPR response (RUp.,) and measured SPR response at
equilibrium (RUg,) for the triplex system D, in a 10 mM sodium cacodylate buffer (pH6.2), 100
mM NaCl and 10mM MgCl,, at a temperature of 20°C. RUyx is the expected response if all of
the binding sites at the sensor chip surface were saturated; it was calculated as RUp,= [(TFO
molecular weight) / (DNA hairpin molecular weight)] x (response of DNA hairpin immobilized
at the surface). RU.q is proportional to the amount of bound TFO at equilibrium. The ratio r =
RU,(/RUpax provides the number of TFO bound to each DNA hairpin attached to the sensor chip
surface. A value r = 1 is indicative of a stoechiometry 1:1 for the system TFO/DNA hairpin

duplex.
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Figure S3. (a) SPR experiments were performed on two symmetrical systems differing in the
position of the hairpin loop, located at at the 5’-side (left) and 3’-side (right) of the oligopurine

strand, respectively. (b) Arrhenius plots of the rate constants of the two symmetrical systems. The



measures were performed in a 10 mM sodium cacodylate buffer (pH6.2), 100 mM NaCl and 10
mM MgCl. (¢) Schematic illustration of the triplexes S and S’ at the sensor chip surface. The
directional nucleation-zipping model could explain the influence of the location of hairpin loop
on the association rate constants: a directional triple helix formation should take place inward
(when the loop was at the 5’-side of the oligopurine strand) or outward (when the loop was at the
3’-side of the oligopurine strand) from the sensor chip surface. Negatively charged
carboxymethylated dextran layer might concentrate a higher mount of TFOs, therefore it should

enhance the nucleation at the 5’-side of triplex closer to the surface.



