#↓	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
1	А	G	A*	T*	С	С	А	Α	S	Т	Т	G	G	A*	T *	С	Т
2	А	G	A*	T*	С	С	А	С	S	G	Т	G	G	A*	T*	С	Т
6	А	G	С	Т	С	С	А	С	S	G	Т	G	G	А	G	С	Т
7	А	G	С	Т	С	С	А	G	S	С	Т	G	G	А	G	С	Т
9	А	G	G	Т	С	С	А	Α	S	Т	Т	G	G	А	С	С	Т
10	А	G	G	Т	С	С	А	С	S	G	Т	G	G	А	С	С	Т
11	А	G	G	Т	С	С	А	G	S	С	Т	G	G	А	С	С	Т
13	А	G	Т	Т	С	С	А	Α	S	Т		G	_	А	Α	С	Т
14	А	G	Т	Т	С	С	А	С	S	G	Т	G	G	А	Α	С	Т

Table S1. Operator Sequences used in interference selection. Positions of interest for the work presented here are 5,10,12,17 and are shown in bold. Position 11 is 'S', where S = (G or C). The wild-type operator is shown here as operator #10. In the wild-type interaction, His 6 has been shown to hydrogen bond with the guanines at operator positions 5 and 17. Arg 2 has been shown to interact with the guanines at operator positions 10 and 12. A* and T* indicate that the A's of those basepairs are methylated by *dam* methylase.

	Code	ons	Residues			
#↓	2	6	2	6		
1	AGG	CAT	Arg	His		
2	AGG	CAT	Arg	His		
3	AGG	CAT	Arg	His		
4	CGC	CAT	Arg	His		
5	AGG	CAC	Arg	His		
6	CGT	AGC	Arg	Ser		
7	AGG	CAC	Arg	His		
8	CGC	CAT	Arg	His		
9	AGG	CAT	Arg	His		
10	AGG	CAT	Arg	His		
11	CGC	ACC	Arg	Thr		

Table S2. Selected codons and amino acids using the wild-type operator. Sequence of Mnt positions 2 and 6 from the 11 true positive colonies selected with the wild-type operator.

	Codo	ons	Residues			
#↓	2	6	2	6		
1	AGA	CCA	Arg	Pro		
2	CGA	CCC	Arg	Pro		
3	CGG	CCT	Arg	Pro		
4	CGA	CCA	Arg	Pro		
5	CGG	CCC	Arg	Pro		
6	AGG	CCA	Arg	Pro		
7	CGT	ACT	Arg	Thr		

Table S3. Selected codons and amino acids using the operator #2 (A at position 5). All codons combinations are different; 5 of the 6 Arg codons are represented, as are 3 of the 4 Pro codons.

	Code	ons	Residues			
#↓	2	6	2	6		
1	CGC	TCA	Arg	Ser		
2	CGC	TCG	Arg	Ser		
3	CGG	CCG	Arg	Pro		
4	CGC	ATG	Arg	Met		
5	CGC	ATT	Arg	Ile		
6	CGC	GTT	Arg	Val		
7	CGC	ATC	Arg	Ile		
8	CGC	GTT	Arg	Val		
9	CGG	CCC	Arg	Pro		
10	CGG	GCA	Arg	Ala		
11	CGC	GGA	Arg	Gly		
12	AGG	CCA	Arg	Pro		

Table S4. Selected codons and amino acids using the operator #14 (T at position 5). 11 od the 12 codon combinations are unique.